HIGH SPIN STATES IN
\(^{107}\)Pd, \(^{108}\)Pd, AND \(^{109}\)Ag

K.R. Pohl\(^a\), P.H. Regan\(^b\), J.E. Bush, P.E. Raines, and D.P. Balamuth
Dept. of Physics, University of Pennsylvania, 209 South 33rd St.,
Philadelphia, PA 19104, USA

D. Ward, A. Galindo-Uribarri and V.P. Janzen
AECL, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0, Canada

S.M. Mullins
Dept. of Physics and Astronomy, McMaster University,
Hamilton, Ontario, L8S 4M1, Canada

S. Pilotte\(^c\)
Dept. of Physics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada

\(^a\) Present address: National Air and Radiation Environmental Laboratory, 540 S Morris Ave., Montgomery, AL 36115-2601, USA
\(^b\) Present address: Dept. of Physics, University of Surrey, Guildford, Surrey, GU2 5XH, UK
\(^c\) Present address: Centre de Recherches Nucléaires, Institut National de Physique Nucléaire et de Physique des Particules/Université Louis Pasteur, F-67037 Strasbourg Cedex, France

Submitted to
Physical Review C

NOTICE

This report is not a formal publication; if it is cited as a reference, the citation should indicate that the report is unpublished. To request copies our E-mail address is TASCC@CRL.AECL.CA.

Physical and Environmental Sciences
Chalk River Laboratories
Chalk River, ON K0J 1J0 Canada

1996 February
High Spin States in 107Pd, 108Pd, and 109Ag

K. R. Pohla, P. H. Reganb, J. E. Bush, P. E. Raines, and D. P. Balamuth

Dept. of Physics, University of Pennsylvania, 209 South 33rd St, Philadelphia, Pa 19104, USA

D. Ward, A. Galindo-Uribarri and V. P. Janzen

AECL, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0, Canada

S. M. Mullins

Dept. of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1, Canada

S. Pilottec

Dept. of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada

(January 31, 1996)

Abstract

High-spin states in 107,108Pd and 109Ag have been studied by charged-particle-γ, γ-γ, and charged-particle-γ-γ coincidence measurements of heavy-ion fusion-evaporation reactions. The high-spin level schemes of these nuclides have been significantly extended and new deformed rotational bands have been found in each nuclide. These bands exhibit the general property of back-bends corresponding to the rotational alignment of a pair of $\hbar_{1/2}$ quasi-neutrons. Band properties are compared with predictions of the cranked shell model and total Routhian surface calculations. The properties of the yrast and near-yrast bands of all three nuclides are consistent with predictions of
moderate ($\beta_2 \approx 0.2$) prolate deformation.

I. INTRODUCTION

The interaction between the $Z = 50$ spherical shell gap and the deformation-driving effects of the $h_{11/2}$ neutron intruder orbital results in a variety of collective behavior in the stable and neutron-rich nuclei below the shell gap. For instance, a number of prolate-deformed rotational bands have recently been reported in $^{103-111}$Cd [1-8], nuclides whose low-energy collective states are well described as vibrational excitations. Similar prolate-deformed rotations have been found in $^{104-107}$Ag [9-11] and $^{103-106}$Pd [12-14], with superdeformed bands reported in $^{103-105}$Pd [12,14]. At larger neutron numbers, oblate-deformed rotations have recently been reported in 112,114,116Pd [15], as have triaxial rotations in 108,110,112,114Ru [16]. However, the bulk of this work has concentrated on nuclei away from the region where shape transitions have been predicted by interacting boson approximation (IBA) (c.f. [15]) and microscopic Hartree-Fock-Bogolubov (HFB) calculations [17]. In the present work, we have studied high-spin states in the intermediate nuclides 109Ag and 107,108Pd with the aim of extending our knowledge of nuclides in this region and investigating possible shape-transitional effects.

Two experimental techniques have been applied to study high-spin states in nuclides in this region, both of which rely on large Ge detector arrays to gather γ-γ coincidence data. Heavy-ion fusion-evaporation reactions have been used to populate light Cd, Ag, and Pd nuclides. Unfortunately, the lack of appropriate beam-target combinations and the small cross-sections for charged-particle evaporation channels has largely prevented the use of these reactions for heavier systems. Alternately, spontaneous fission sources can be used to populate Ru and heavy ($A > 110$) Pd nuclides, but are less useful for lighter isotopes. Although some of the nuclides in the middle of this region are stable (including 109Ag and 108Pd,), little is known about their high-spin excited states. To bridge the gap between the two measurement methods, we have used a high-efficiency charged-particle array in conjunction with Ge detectors to enhance the low-yield pxn and αxn evaporation channels through which these nuclides can be populated in heavy-ion fusion reactions.
II. EXPERIMENTAL PROCEDURE AND ANALYSIS METHODS

Experiments were carried out at both the University of Pennsylvania tandem Van de Graaff accelerator and at the Tandem Accelerator Super- Conducting Cyclotron (TASCC) Facility of AECL at the Chalk River Laboratories. At both facilities, the nuclides of interest were populated via fusion-evaporation reactions with an 18O beam incident on thin 96Zr targets (1 mg/cm2 at Penn, 600 μg/cm2 at Chalk River). In both cases, the targets were enriched to 85% 96Zr, with 90Zr comprising the bulk of the remainder. An additional experiment was performed at the University of Pennsylvania using a 13C beam and a 100Mo target enriched to greater than 99% 100Mo.

In the 18O+96Zr experiment performed at the University of Pennsylvania, γ rays were detected in two Compton-suppressed, 25% relative efficiency germanium detectors located at angles of 45° and 90° with respect to the beam axis. Thirteen elements of the Penn 4π-array [18] (a segmented phoswich charged-particle detector array,) subtending about 60% of 4π sr, were used to select proton and α-particle evaporation channels. Data were recorded for events in which a suppressed γ ray was detected in coincidence with a charged particle, and for a fraction of γ-ray singles events. Intensities, angular distributions, and excitation functions for γ rays in coincidence with protons and α-particles were measured for beam energies of 56, 63, 72, and 80 MeV. Approximately 20 million particle-γ coincidences were recorded at each energy. Additional measurements were made using a 1 mg/cm2 natZr target in order to assess the level of contamination due to reactions with the light Zr isotopes. As with the other experiments described here, γ-ray efficiencies and energy calibrations were determined using 152Eu and 133Ba sources placed at the target position.

The bulk of fusion events ($>90\%$) from the 18O+96Zr reaction proceed via neutron evaporation to $^{109-111}$Cd. Given the fact that few, if any, high spin states were previously known in the nuclides of interest, the usefulness of a high-efficiency charged particle detector in selecting the very weak proton- and α-evaporation channels is clear. This is illustrated in Fig. 1, where proton- and α-gated spectra at $E_{\text{BEAM}} = 72$ MeV are compared to an ungated
spectrum. The strongest charged-particle coincident γ rays (the 473 keV γ-ray in 107Pd and a previously unknown 798 keV γ-ray in 109Ag) are indicated with dotted lines. Note that both are dwarfed by neighboring Cd lines (the 796 keV $8^+ \rightarrow 6^+$ in 110Cd and the 466 keV $25/2^- \rightarrow 21/2^-$ in 109Cd.)

The results of this experiment were used primarily to identify optimal beam energies for producing the nuclides of interest, for initial identification of γ-rays in Ag isotopes, and for determining the magnitude of the contamination of the charged-particle coincidence spectra due to reactions on light zirconium isotopes. Note that although the target was enriched to 85% 96Zr, the cross sections for charged-particle emission from reactions on 96Zr were much smaller than the those for reaction on $^{90-94}$Zr, so that nearly half of all events with emitted protons or α-particles came from the lighter isotopes. Some of the peaks in the particle-coincident γ-ray spectra in Fig. 1 which are partially or wholly due to reactions on light zirconium isotopes are indicated with asterisks. Clearly, interference from these contaminant transitions (especially in the proton-coincident spectrum) greatly increases the difficulty of obtaining useful spectroscopic information on these nuclides from particle-γ coincidence data.

While the interference from the overwhelming xn evaporation channels is most easily removed by using a charged-particle coincidence technique, the interference due to the light Zr isotopes is best overcome with γ-γ coincidence methods. An excellent combination of the two is provided by the 8π and ALF detector arrays at the TASCC facility of the Chalk River Labs. We measured γ-γ coincidences with the 8π spectrometer [19], which consists of twenty Compton-suppressed Ge detectors (each 25% relative efficiency) arranged in four rings of five detectors each. Two rings lie 37° off the beam axis at forward and backward angles, while the other two lie 79° off the beam axis. A 70-element bismuth germanate (BGO) inner ball provided the total γ-ray fold (K) and sum-energy (H) for each event. Coincident charged particles were detected and identified with an array of 24 CsI(Tl) detectors [20], which covered about 85% of 4π sr. Data were recorded for events in which at least two suppressed γ rays were detected in the 8π array in prompt coincidence with at least 5 segments of the
BGO ball. Approximately 150 million events were recorded at \(E_{\text{ Beam}} = 70 \) MeV. Of these, protons were identified in about 3 million events and \(\alpha \)-particles were identified in about 2 million. Approximately 50 million events were recorded at 60 MeV, with proton- and \(\alpha \)-coincidences forming less than 0.5 million events, each.

Data from the Chalk River experiment were sorted offline into separate \(\gamma \)-\(\gamma \) matrices for \({}^{107}\text{Pd} \), \({}^{108}\text{Pd} \), and \({}^{109}\text{Ag} \) analysis (after unfolding higher Ge-detector multiplicities.) For each matrix, particle-identification cuts on the CsI(Tl) data and \(H \) and \(K \) cuts on the BGO ball data were used to emphasize the channel of interest. Analyses were also performed on the \(\gamma \)-\(\gamma \) data from 5n- and 3n-evaporation leading to \({}^{109,111}\text{Cd} \). The results of these analyses have already been published [6].

Transition intensities were determined from fits to the total projection spectrum of each matrix when possible, or from selected coincidence spectra. Information about \(\gamma \)-ray multipolarity was determined using a gated angular distribution method. In this method, two \(\gamma \)-ray energy matrices (labelled “37° matrix” and “79° matrix”) are generated. If the first \(\gamma \) ray of a \(\gamma \)-\(\gamma \) pair is detected at 37° (or 143°), the \((E_1, E_2)\) element of the 37° matrix is incremented, regardless of where the second \(\gamma \) ray is detected. \((E_1 \text{ and } E_2 \text{ refer to the energies of the first and second } \gamma \text{ rays, respectively.})\) Similarly, if the first \(\gamma \) ray is detected at 79° (or 101°), the \((E_1, E_2)\) element of the 79° matrix is incremented. The process is then repeated, with the detection angle for the second \(\gamma \) ray determining in which matrix the \((E_2, E_1)\) element is incremented. For a given \(\gamma \)-\(\gamma \) pair, either the 37° matrix is incremented twice, or the 79° matrix is incremented twice, or each is incremented once. The angular distribution of a \(\gamma \) ray can be determined by placing gates on coincident lines, projecting both matrices onto the \(x \)-axis, and comparing the intensities of the peak of interest.

We define an anisotropy

\[
A = 2 \left(\frac{I_{37^\circ} - I_{79^\circ}}{I_{37^\circ} + I_{79^\circ}} \right)
\]

where \(I_{37^\circ} \) is the intensity in the 37° matrix projection, and \(I_{79^\circ} \) is the intensity in the 79° matrix projection. For initial states with fully aligned magnetic substate distributions,
stretched quadrupoles will have \(A > 0.4 \), and stretched dipoles will have \(A < -0.2 \). Generally, the initial state will not be fully aligned and the anisotropy will be attenuated by a factor \(\alpha: A = \alpha A_0 \), where \(A_0 \) is the fully aligned anisotropy. In principle, the attenuation for a particular state depends on the details of the reaction used and the spins of the feeding states. In practice, \(\alpha \) can be taken to be a monotonically increasing function of excitation energy, with values from known transitions used as guides. Typical anisotropies in this experiment were \(A \approx 0.3 \) for \(\Delta I = -2 \) quadrupoles, \(A \approx -0.3 \) for \(\Delta I = -1 \) dipoles, and \(-1 < A < 1\) for mixed \(\Delta I = -1 \) transitions. Figure 2 shows calculated anisotropies for various pure and mixed transitions. The principal advantage of the gated angular distribution technique over the more common directional correlation of orientation (DCO) technique is that the multipolarity of the gating transition need not be known since correlations between the two \(\gamma \) rays are "averaged out" by gating at both angles. This is especially useful for analyses of weak, mixed \(\Delta I = -1 \) bands. Disadvantages include the need to determine the substate alignment \(\alpha \), and the requirement of many detectors at each angle in order to remove correlations. (The method obviously fails for fewer than two detectors at each angle, and errors of order 0.05 can exist even for the \(8\pi \) array, which has 10 detectors at each angle. Note, however, that these errors can be reduced by combining results from different gates.)

Since the reactions used preferentially populate near-yrast states, we discount transitions which increase the nuclear spin. Consequently, transitions with \(A \leq -0.05 \) can be assigned as \(\Delta I = -1 \). Positive anisotropies can result from \(I \rightarrow I, I \rightarrow I-2 \), or mixed \(I \rightarrow I-1 \) decays. However, \(\Delta I = 0 \) transitions are usually accompanied by competing \(\Delta I = -1 \) or \(-2 \) decays, and we take the absence of such as evidence against a \(\Delta I = 0 \) assignment. Considerations such as the overall decay pattern and the plausible size of \(E2 \) matrix elements were also used to choose among the possible multipolarities and mixing ratios.

An experiment designed to detect very low energy \(\gamma \) rays \((E_{\gamma} < 200 \text{ keV}) \) was performed at the University of Pennsylvania using a 65 MeV \(^{13}\text{C} \) beam incident on a thin \((1 \text{ mg/cm}^2)\) \(^{100}\text{Mo} \) target \((> 99\% \text{ enrichment})\). Events were recorded for prompt or delayed coincidences between a low energy photon spectrometer (LEPS) and a Compton-suppressed 25\% relative
efficiency germanium detector, as well as for a fraction of γ-ray singles events in each detector. The detectors were located at angles of $\theta = 90^\circ$ with respect to the beam axis, and the azimuthal angle between the two detectors was 180°. Unlike the other experiments, no charged-particle detectors were used. Approximately 3×10^5 γ-γ events were recorded on tape.

III. EXPERIMENTAL RESULTS AND LEVEL SCHEMES

A. 108Pd

Prior to this work, firm knowledge of the 108Pd yrast level scheme was limited to states with I^+ of up to 6^+ in the ground-state band, based on radioactive decay [21], inelastic scattering [22], and Coulomb excitation [23]. Tentative 8^+ and 10^+ states were reported from fission-fragment spectroscopy experiments [24]. Negative parity states with spins 3, 4, and 5 were known from inelastic scattering, transfer reactions, and Coulomb excitation reactions.

Preliminary results of the present work for 107,108Pd, including level schemes, have already been presented [25]. The partial level scheme of 108Pd produced from analysis of the Chalk River data is shown in Fig. 3. In addition to five transitions previously reported in 108Pd, fourteen new γ rays were identified and placed in the level scheme. The properties of these transitions are tabulated in Table I. The first and second columns of the table give the γ-ray energy and intensity. Due to the small production cross-section for 108Pd, listed intensities are taken from a spectrum gated on the 433.9 keV $2^+ \rightarrow 0^+$ transition. The measured anisotropy is listed in column 3, and the deduced initial and final state spins are shown in column 4.

The ground-band of 108Pd (band 2 in Fig. 3) has been extended through a backbend to 18^+. Fig. 4 shows a summed spectrum for the 108Pd ground-state band, produced by gating on the 708.0, 777.2, and 540.9 keV lines. The 2548.4 keV 8^+ state reported by Ref. [24]
is seen as a member of this band, but the 3350.5 keV 10^+ state reported in that work is identified as part of a non-yrast side band (band 1) similar to one seen in 110Cd [8], and may be a continuation of the non-aligned ground-band configuration. This band is seen to a 12^+ state, with a tentative 14^+ state. A definite assignment of this state is precluded by the relative weakness of the depopulating 818.4 keV γ-ray, together with interference from an 813.3 keV transition in band 3.

The isotope 110Cd exhibits the unusual feature of three nearly degenerate 8^+ states. Similar, though less pronounced, degeneracies occur in 106,108Cd [3,5] and 102,104Pd [13]. In contrast, a detailed study of 106Pd [13] revealed only one 8^+ state. In the present work, a candidate second 108Pd 8^+ state at 2397.5 keV was found. The anisotropy and coincidence relationships of the depopulating 626.3 keV γ ray indicate a stretched $E2$ transition feeding the 6^+ state. However, the intensities of the 626.3, 777.2, and 991.0 keV γ rays in the 433.9 keV gated spectrum sum to $123 \pm 11\%$ of the 723.1 keV intensity. Furthermore, the ratio of intensities of the 626.3 keV and 777.2 keV transitions in coincidence with the 614.2 keV $4^+ \rightarrow 2^+$ is 0.26 ± 0.06 compared to 0.42 ± 0.06 for the 433.9 keV gate. It is therefore possible that the 626.3 keV γ ray feeds the 6^+ state through intermediate, unobserved transitions, with some strength feeding the 2^+ state through a separate branch. No γ rays linking the tentative 8_1^+ state with the 8_2^+ or either 10^+ state were observed. We place upper limits of less than 10\% (2σ) of the 614.2 keV γ-ray intensity on such transitions.

Strongly-populated negative-parity bands with band head spins of $5 - 9\hbar$ are a common feature of neutron-rich even-even palladium and cadmium nuclides. These typically feed into the ground band via strong ≈ 1 MeV $7^- \rightarrow 6^+$ and $5^- \rightarrow 4^+$ γ rays. A structure with similar properties has been identified in 108Pd. A cascade which includes two gamma rays (518.4 and 682.2 keV) whose anisotropies are consistent with stretched $E2$ multipolarity feed the 6^+ state via a 991.0 keV transition and the 4^+ state via a 437.4 – 1276.7 keV branch. The 991.0 and 1276.7 keV γ rays have large negative anisotropies as expected for pure dipole transitions. Interference from the 433.9 keV $2^+ \rightarrow 0^+$ line prevented accurate determination of the 437.4 keV transition multipolarity; the $I = 5$ assignment to the 2323.8
keV state is based on the 1276.7 keV transition anisotropy, which is inconsistent with a
$\Delta I = 2$ assignment at the 2σ level. (A $\Delta I = 0$ assignment would imply a highly unlikely
octupole 437.4 keV γ-ray.) The energy and spin of the 2323.8 keV state are consistent with
a ≈ 2320 keV $L = 5$ state seen in (t,p), (p,t), and (p,p') reactions [26].

In neighboring even-even nuclides, the analogous negative-parity bands are accompanied
by similarly intense signature-partner bands, with $\Delta I = 1$ transitions linking the bands near
the band heads. No evidence has been found in the present work for another negative-parity
band in 108Pd.

B. 107Pd

The level scheme for 107Pd deduced from the present work is shown in Fig. 5. Table II
lists the energies, intensities, and anisotropies of γ rays assigned to this nuclide, along with
deduced substate alignments, mixing ratios, and placements. Sample coincidence spectra
for 107Pd are shown in Fig. 6.

Band 1 in Fig. 5 is an yrast negative-parity band built on the isomeric 214.9 keV 11/2$^-$
state. The band is extended from the previously known [27] 19/2$^-$ state through the first
angular-momentum alignment to 51/2h. For the higher transitions, the angular distributions
are consistent with $E2$ multipolarity although the uncertainties are large. These uncertain-
ties are indicated in Fig. 5 and table II by parentheses on the level spins and parities.

Following completion of these analyses, results of an experiment in which 107Pd was
populated via the same reaction were published [7]. The level scheme of that work confirms
the results for band 1 from the present work (first reported in Ref. [25]) up to the 39/2$^-$
state, though with small discrepancies in transition energies.

At energies above 2 MeV, positive-parity states in 107Pd are seen in three distinct bands,
labeled 2, 3, and 4 in Fig. 5. Bands 2 and 3 appear to be signature-partner bands with
strong $\Delta I = -1$ linking transitions, while band 4 is a decoupled $E2$ band. The bulk of
the strength in the high-spin structures feeds into the negative-parity yrast band through
$E1$ decays from the 19/2, 21/2 and 25/2 states, in a manner similar to that reported in
109Cd [6,7]. The γ rays assigned to bands 2 and 3 above the 21/2$^+$ state have also been
reported in Ref. [7], although 704 keV and 1104 keV transitions shown in that work feeding
the 33/2$^+$ and 31/2$^+$ states from a 35/2$^+$ member of band 3 cannot be confirmed here due
to interference from competing transitions.

Below 2 MeV, the band structure of the positive parity states becomes less distinct.
Bands 3 and 4 primarily feed into the 19/2$^+$ state, which in turn decays by a decoupled
$E2$ cascade to the 312.0 keV 7/2$^+$ state. The ordering of states below the 17/2$^+$ state is
uncertain. While Fig. 5 represents the most likely ordering of the γ rays depopulating this
state, the relative weakness of the transitions, combined with the difficulties due to multiple
degenerate γ-ray pairs, allow the possibility that the ordering down to the 9/2$^+$ state is
reversed, i.e. the 677.7 and 644.2 lines may lie above the 772.6 and 805.8 transitions, with
the 402, 404, and 368.2 keV lines placed appropriately. Evidence against this alternative
includes the fact that the 392.5 keV line is significantly stronger than the 303.8 keV line
in the 772.6 keV gate. If the order were reversed, the intensities would have to be equal.
The intensity difference implies unseen branches from the 1374.0 keV 13/2$^+$ state, though,
which further indicates the uncertainty of the placements. (Interference from the 675.7 keV
transition in band 4 prevents a similar comparison using a 677.7 keV gate.) The weakness
of the 368.2, 402, and 404 keV lines preclude determination of the spin of the 1742.2 keV
state. Values of 13/2, 15/2 and 17/2 are possible. The 677.7 and 772.6 keV transitions, as
well as the 642.8, 721.5, and 696.9 keV γ rays of band 4 have also been reported by Juutinen
et al. [7].

Klamra and Rekdal [27] first investigated high-spin states in 107Pd using 104Ru(α,n).
They reported 643.3 and 808.5 keV transitions as the lowest members of a stretched $E2$ band
built on a 312.8 keV 7/2$^+$ state, based on weak coincidence data and detailed γ-ray angular
distributions. More recently, Juutinen et al. [7] reported the low-lying members of band 4
with no mention of an 808 keV line. We have resolved the discrepancy by the discovery of
the 805.8 - 644.2 keV cascade above the 696 keV 9/2$^+$ state. This cascade weakly feeds the
312 keV state via the 384 keV line, explaining the coincidence relationships described in Ref. [27]. The 808.5 keV line in the spectrum shown in Ref. [27] appears to be unresolved from a lower-energy line. This may explain the 3 keV energy difference. No energy uncertainties are given in Ref. [27].

Other differences among the present work and the results of Refs. [27] and [7] are worth noting. First, although the anisotropy we report for the 312.0 keV line is consistent with the A_2 given in Ref. [27], (the anisotropy is approximately equal to the A_2 for small values of A_4) we calculate an upper limit on the $E2/M1$ mixing ratio of -0.2 (using the phase convention of [28]) compared to their value of $-0.05^{+0.07}_{-0.03}$ (in the same phase convention); the difference is attributable to considerably different values of the substate alignment parameter: 0.5 ± 0.1 here versus ≈ 0.9 in that work. The value used in Ref. [27] was presumably chosen based on the apparent substate alignment of the feeding 643 keV line; the existence of the 644.2 line, which may have been stronger in the (α, n) reaction than the 642.8 line, may explain the relatively large substate alignment used. Also, while Ref. [7] reports substantially similar energies and anisotropies for the strongest γ rays in the positive-parity level scheme, most of the weaker lines in the present work, along with band 4, are new.

Finally, it is necessary to discuss the ordering of the 303.8 – 392.5 keV pair depopulating the 9/2$^+$ state. States at both 302.8 and 392.5 keV are known from 107Rh β^- decay [29], with the former being assigned $I^r = (3/2, 5/2)^+$ based on (d,p) [30] and (d,t) [31] data. Clearly, the 392.5 keV state is fed by the 562.7 keV γ-ray from the 11/2$^+$ member of band 4, but the possibility that the 9/2$^+$ state decays to the 302.8 keV state by a 393.5 keV γ-ray rather than (or as well as) decaying to the 392.5 keV state must be addressed. If this were the case, the 393.5 keV line would have to be stretched $E2$ in nature (with a 5/2 spin assignment for the 302.8 keV state) and would therefore have a positive anisotropy. The decay of the 302.8 keV state would be $5/2 \rightarrow 5/2$, and would also be expected to have a positive anisotropy (see Fig. 2.) In fact, both lines are seen to have negative anisotropies (when gated on transitions above the 9/2$^+$ state so as to eliminate the feeding of the 7/2$^+$ state through the 562.7 keV transition.) Based on this and the measured energy of 303.8 ± 0.2 keV rather than 302.8
keV, we conclude that although a decay branch from the $9/2^+$ state through the 302.8 keV state is possible, it is considerably weaker than the cascade through the 392.5 keV state shown in Fig. 5. (Since the 677.7 and 772.6 keV transitions were used to determine this, the arguments concerning their ordering are unchanged.) Interestingly, the opposite ordering (a 393 keV line feeding a 303 keV line) was found in the (α,n) reaction; in that case, the initial state was probably a known $1/2^+$ state near 697 keV. No lines were reported by Ref. [7] at either of these energies.

C. ^{109}Ag

Past work on ^{109}Ag has largely been limited to Coulomb-excitation [32], radioactive decay (c.f. [33]), and direct reaction (c.f. [34]) studies. These techniques, though, are ineffective tools for populating yrast states, which in other odd-A Ag isotopes are built on low-lying $g_{9/2}$ isomers. Consequently, although the corresponding isomers ($7/2^+$ at 88 keV and $9/2^+$ at 133 keV) have been seen in ^{109}Ag, no higher-spin states have been identified.

The strongest proton-evaporation channels from the ^{114}Cd compound nucleus were p4n and p3n, leading to $^{109,110}\text{Ag}$, respectively. Since no high spin states were known in either nuclide, proton-gated excitation functions (shown in Fig. 7) from the Penn particle-γ experiment were used to identify candidate γ rays for each. (Note the factor of 50 difference in cross sections between the xn and pxn channels.) Coincidence relationships and gated angular distributions from the Chalk River p-$\gamma-\gamma$ data were used to identify and place other lines in the ^{109}Ag level scheme, which is shown in Fig. 8. Measured intensities (from $\gamma-\gamma$ coincidence data) and anisotropies for ^{109}Ag transitions are listed in Table III, along with deduced substate alignments, mixing ratios, and placements. Spectra gated on the 298.8 keV line (band 1) and 213.5 keV line (bands 2 and 3) are shown in Fig. 9. The experimental results for ^{110}Ag will be the subject of a future publication.

The low detection efficiency (due to absorption in the CsI(Tl) particle detectors) and high internal conversion probability for the known 44.7 keV $9/2^+ \rightarrow 7/2^+$ decay [35] prevented
its detection in the Chalk River experiment, making it unclear whether the 798.0 and 640.6 keV transitions feed the $9/2^+$ or $7/2^+$ state. To resolve this and thereby firmly determine the yrast level scheme of ^{109}Ag, an additional experiment was performed to look for the 798.0 – 44.7 keV coincidence. In order to reduce interference from light Ag isotopes, the alternate reaction $^{100}\text{Mo}^{(13}\text{C},p3n)^{109}\text{Ag}$ was chosen, which made use of the much higher isotopic enrichment of the ^{100}Mo target. The high resolution of the LEPS detector together with the lack of competing transitions near 45 keV obviated the need for channel selection.

Singles and 798.0 keV Ge-gated LEPS spectra are shown in Fig. 10. It is clear that the 798.0 keV line occurs in coincidence with the ≈ 44.7 keV $9/2^+ \rightarrow 7/2^+$ decay. Since a thin target was used, a correction for Doppler-shift was made in determining the energy of this transition. Since the LEPS detector was centered at $\theta = 90^\circ$, the correction would normally be quite small. However, the displacement of the recoiling nucleus during (and prior to) the 2.6 ns isomeric decay is substantial ($v_{\text{recoil}} \times t^*_1 \approx 0.8$ cm). After correcting for the Doppler shift, a fit to the LEPS singles spectrum gives an energy of 44.8 ± 0.1 keV for the decay, compared to an adopted value of 44.7 ± 0.2 keV [36].

The measured 798.0 – 44.8 keV coincidence intensity is a sensitive function of the $E2/M1$ mixing ratio of the 44.8 keV decay, since the internal conversion coefficients for $E2$ and $M1$ radiation at this energy are 26 and 4.3, respectively. Unfortunately, this sensitivity is somewhat washed out by angular correlation effects in the geometry chosen, especially when the recoil displacement is considered. A fit to the coincidence intensity assuming a $13/2 \rightarrow 9/2 \rightarrow 7/2$ decay pattern and an initial substate alignment of 0.45 yields a mixing ratio of $|\delta_{E2/M1}| = 0.35 \pm 0.15$. This is in very good agreement with an estimate of 0.30 ± 0.12 based on intensity balance arguments which use $^{109}\text{Pd} \beta^-$ decay data [36].

The resulting ^{109}Ag high-spin level scheme is qualitatively quite similar to those of the lighter silver isotopes $^{105,107}\text{Ag}$ [10,11]. At low energies, the dominant features are the two positive-parity signature-partner bands built on the $9/2^+$ isomer. The moderate signature splitting for these bands gives way to a strongly-coupled $\Delta I = 1$ band (labeled band 1 in fig. 7) above $21/2h$ as with $^{105,107}\text{Ag}$. Unlike the lighter isotopes, no $E2$ cross-over transitions
were seen above this state in 109Ag. This is probably due to low statistics; lower limits on the $B(M1)/B(E2)$ ratios for band 1 above $21/2^+$ are generally consistent with the corresponding transition-strength ratios found in 105,107Ag.

Two strongly-coupled negative-parity bands were also seen. Again, while no $E2$ crossovers were found, the lower limits on the $B(M1)/B(E2)$ ratios are consistent with the ratios reported for the negative-parity bands in 105,107Ag [10,11]. The ordering of bands 2 and 3 in fig. 7 is based on intensities in coincidence with the 213.5 and 1275.7 keV lines, while the intensities listed in Table III are from a gate on the 798 keV line. Band 3 decays into the $15/2^-$ state through a 273.4 keV γ-ray. However, the energy and intensity of the ≈ 88 keV linking transition could not be determined due to the high γ-ray attenuation at low energies in the particle-detector array, and it is possible that the 273.4 keV transition depopulates the $19/2^-$ state rather than feeding the $15/2^-$ state as shown in Fig. 8. Several of the lowest states in these bands (2206.5, 2568.4, 2660.5 keV, as well as the 2567.5 keV $19/2^+$ state) are consistent with states reported in 107Ag(t,p) [34], although the precision of the direct-reaction measurements was only about 10 keV.

IV. DISCUSSION AND MODEL COMPARISONS

Although the nuclides in this mass region are known to have low-energy states which are vibrational in nature, the deformed rotor formalism has proven extremely successful in predicting their high-spin behavior. In particular, cranked shell model (CSM) calculations with BCS pairing [37] have been found to provide useful interpretations of the collective bands and band crossings of these nuclides. The nuclides studied here are predicted by Total Routhian surface (TRS) calculations [38] to have somewhat larger and more stable deformations than the cadmium and light palladium isotopes previously interpreted with the CSM model ($\beta \approx +0.17$ compared to 0.10-0.15 for $^{106-110}$Cd and $^{104-106}$Pd) and should provide good tests for CSM predictions.

For all three nuclides, the adapted g-reference described by Bengtsson et al. [37] based
on the 108Pd s-band was used to choose the Harris reference parameters $J_0 = \frac{6h^2}{\text{MeV}}$ and $J_1 = \frac{20h^4}{\text{MeV}^3}$. Pairing strength energies were chosen based on experimental odd-even mass differences. At zero frequency, strengths of $\Delta_r = 1.2$ MeV and $\Delta_\nu = 1.5$ MeV were used, with both decreasing to 50\% of these values by $\hbar \omega = 0.8$ MeV.

TRS calculations for the vacuum configuration in 108Pd are shown in Fig. 11. For rotational frequencies below 0.7 MeV, the energy surfaces show a prolate minimum at $\beta_2 = 0.17$–0.21 and $\gamma \approx -5^\circ$. (The static quadrupole moment of the 108Pd 2^+ state is -0.58 eb [26], corresponding to a prolate rotor with $\beta_2 = 0.17$.) Similar minima are calculated for likely configurations of 107Pd and 109Ag, with $\beta_2 \approx 0.17$. Accordingly, deformations of 0.18 were chosen for use in CSM calculations for all three nuclides. The extreme γ-softness of these minima suggests some freedom in choosing the triaxiality parameter in the CSM calculations, and axial symmetry ($\gamma = 0^\circ$) was generally used. The hexadecapole parameter β_4 was set to zero for all calculations. Calculated quasi-particle Routhians for 108Pd using these parameters are shown in Fig. 12. There are no significant differences between the Routhians for 108Pd and those calculated for 107Pd and 109Ag. A list of the active neutron and proton orbitals is given in Table IV.

A. 108Pd

The low-lying states of 108Pd behave much like “classic” vibrational states. For instance, an $I=0,2,4$ triplet lies at about 1 MeV, 2.3 times the 2^+_1 energy, and the $B(E2; 4 \rightarrow 2)$ and $B(E2; 2' \rightarrow 2)$ are almost twice the $B(E2; 2 \rightarrow 0)$ [26]. Although lifetimes are not available for higher states, it is clear from the level spacings that this near-vibrational trend continues through the 8^+ state. Above the 8^+ state, though, the ground-band is crossed by a band with rotational energy spacings, while the original “vibrational” sequence appears to continue up to spins of 14^+ as the non-yrast band 1.

A plot of the aligned angular momentum (i_z) for the two positive parity bands is shown in Fig. 13. The first band crossing occurs at a frequency of $\hbar \omega \approx 0.33$ MeV and the yrast
band gains almost $10\hbar$ of aligned angular momentum through the crossing. By comparison, the predicted quasi-neutron Routhian indicates a configuration change at about the same frequency due to the neutron $\hbar^2_2 (AB)$ crossing, with an increase of $9.2\hbar$ in i_x. The shape-polarizing property of the low-K $h_{11/2}$ pair is expected to stabilize the prolate minimum; this is indicated in the TRS calculation by a much deeper minimum along the β axis above the crossing frequency (see Fig. 11.) By contrast, TRS calculations for the AB configuration above the first crossing (not shown) predict prolate first minima which are very soft along both the β and γ axes. This 2-quasineutron configuration corresponds to the continuation of the ground-state configuration above the first crossing. The softness of the predicted minimum indicates continued vibrational behavior for the extension of the ground-state collective band above the crossing and reinforces the interpretation of band 1 as a vibrational structure.

The aligned angular momentum of the yrast band in the isotone 110Cd is also shown in Fig. 13 for comparison. Note that while the 110Cd s-band crosses the ground-state band at nearly the same frequency and exhibits the same amount of alignment, the interaction strength $|V_I|$ is about twice as strong in 108Pd than in 110Cd. CSM calculations for the two nuclides fail to predict this difference. Juutinen et al. [8] have suggested that the weak interaction in 110Cd may be due to a shape difference between the two bands; the Routhian minimum is predicted to shift from $\beta_2 = 0.12$ to 0.17 through the crossing. This hypothesis is supported by the 108Pd results, for which the TRS calculations predict a much smaller deformation change. An extension of the 110Cd ground-state band above the first crossing is also shown in Fig. 13. It feeds into the yrast band at the 8^+ state, as with 108Pd, and is in turn fed by a quasi-rotational band (band 17 of Ref. [8]) above the 14^+ state. Lifetime measurements of the 10^+ and 12^+ states of this sequence indicate fast collective transitions with $B(E2) > 30$ W.u. [39] and the authors of Refs. [8] and [39] conclude that it is the vibrational continuation of the ground band above the crossing. The striking similarity between it and band 1 in 108Pd supports a vibrational picture in 108Pd as well.

The last point in the i_x plot for band 2 shows the beginning of another upbend near
\(h \omega = 0.55 \text{ MeV} \). This could be the alignment of the second \((CD)\) intruder neutron pair or the positive-parity \(EF\) neutron pair, both of which are predicted at around 0.65 MeV. However, in \(^{110}\text{Cd}\), where these neutron crossings should also occur near 0.65 MeV, two upbends are in fact seen close to the predicted frequencies. It therefore seems more likely that the observed upbend in \(^{108}\text{Pd}\) at 0.55 MeV is due to the alignment of the proton \(7^+_2[413]\) \((ab)\) pair, predicted to occur near 0.48 MeV. It is important to remember that the predicted crossing frequencies are sensitive functions of the pairing gap parameters. The neutron strength \(\Delta_n(\omega)\) is constrained by the observed \(AB\) crossing in \(^{108}\text{Pd}\) and in turn restricts the \(CD\) crossing to a narrow range of frequencies. The proton strength \(\Delta_p(\omega)\), though, is constrained only at \(\omega = 0\) by the odd-even mass difference; reasonable adjustments in the proton pairing strength parameters can delay the predicted \(ab\) crossing to above 0.5 MeV.

Negative-parity single-particle states in \(^{108}\text{Pd}\) are likely to arise from neutron \(h_{1/2}^{-1} \otimes d^{-1}_{5/2}\), neutron \(h_{1/2} \otimes d^{-1}_{5/2}\), proton \(g_{7/2} \otimes p^{-1}_{3/2}\), and proton \(g_{7/2} \otimes p^{-1}_{1/2}\) particle-hole states. These configurations have maximally aligned spins of \(8^-\) and \(9^-\) for the neutron states and \(5^-\) and \(6^-\) for the proton states, respectively. In this picture, the \(5^-\) and \(7^-\) states of band 3 would most likely be proton 1-particle 1-hole states. These negative-parity proton excitations should be largely insensitive to changes in neutron number, while the neutron excitations should drop in energy with increasing \(N\) as the neutron fermi level approaches the \(h_{1/2}\) shell. In fact, \(5^-\) states do appear at nearly constant energies in \(^{102-108}\text{Pd}\), but the \(7^-\) states drop by more than 400 keV over the range. Also, as pointed out by Grau [13], the branching ratio \(B(E2; 7^- \rightarrow 5^-) / B(E1; 7^- \rightarrow 6^+)\) drops by a factor of 33 from \(^{104}\text{Pd}\) to \(^{106}\text{Pd}\). (The \(^{108}\text{Pd}\) branching ratio is similar to the \(^{106}\text{Pd}\) result.) Lifetime measurements of negative-parity bands in \(^{110}\text{Cd}\) [39] indicate that the \(\nu h_{1/2} \otimes \nu d^{-1}_{5/2}\) structures are built on non-maximally aligned band heads, which has lead to speculation that they are semi-decoupled configurations with the \(d_{5/2}\) quasi-neutron deformation aligned. A similar situation may be occurring in \(^{108}\text{Pd}\), with the \(7^-\) state forming the band head of a semi-decoupled two quasi-neutron band.
B. \(^{107}\text{Pd}\)

As with other odd-\(N\) nuclides in this region, the yrast level-scheme of \(^{107}\text{Pd}\) is dominated by a decoupled rotational band built on a low-lying \(\nu h_{\frac{1}{2}}\) isomer. The aligned angular momentum of this band (band 1) in \(^{107}\text{Pd}\) is shown in Fig. 14. In contrast to the \(^{108}\text{Pd}\) yrast band, no crossing is seen near \(h\omega = 0.33\). Instead, the first alignment in \(^{107}\text{Pd}\) is delayed, occurring at \(h\omega \approx 0.48\) MeV. This is in good agreement with the CSM prediction, in which the odd quasi-neutron blocks the \(AB\) crossing, with the first crossing (\(BC\)) occurring at 0.45 MeV. The experimental alignment gain through the crossing is about 6.5\(\hbar\), also in good agreement with the predicted \(BC\) alignment gain of 6.3\(\hbar\). The quasi-proton \(ab\) crossing is also predicted near 0.48 MeV, though with an increase of \(i_x\) of only 4.7\(\hbar\). While the observed crossing occurs closer to the predicted proton configuration change, the alignment gain is more consistent with the predicted neutron alignment. The quasi-proton alignment should occur at the same rotational frequency in both \(^{107}\text{Pd}\) and \(^{108}\text{Pd}\), since the crossing frequency is reasonably insensitive to the predicted difference in deformations. The second upbend in the \(^{108}\text{Pd}\) yrast band (at \(h\omega \approx 0.55\) MeV) is interpreted as being caused by the proton \(ab\) crossing, so one would expect a similar crossing frequency for the \(^{107}\text{Pd}\) alignment. This implies that the \(^{107}\text{Pd}\) alignment at 0.48 MeV is quasi-neutron in nature, with the three quasi-neutron \(\nu \left(h_{\frac{1}{2}}\right)^3\) \(ABC\) configuration above the crossing.

This assignment is corroborated by the crossing frequencies of the neighboring odd-\(N\) nuclides \(^{105}\text{Pd}\) and \(^{109}\text{Cd}\). Due to its smaller deformation, the \(BC\) crossing in \(^{109}\text{Cd}\) is predicted to occur later than the \(BC\) crossing in \(^{107}\text{Pd}\). In \(^{105}\text{Pd}\), the corresponding crossing should occur at an even higher frequency since, in addition to the reduced deformation, the neutron \(h_{\frac{1}{2}}\) orbitals lie further from the fermi level. In fact, the measured crossings occur near 0.51 MeV in \(^{109}\text{Cd}\) [6] and 0.56 MeV in \(^{105}\text{Pd}\) [40], as expected.

Interpretation of the low-lying positive parity states in the context of the cranked shell model is difficult. The dominant configurations are predicted to be the Nilsson \(\frac{3}{2}^+\left[411\right]\) and \(\frac{5}{2}^+\left[413\right]\) orbitals of \(d_{\frac{5}{2}}\) and \(g_{\frac{5}{2}}\) parentage. The 5/2\(^+\) ground state of \(^{107}\text{Pd}\) has been assigned
$L = 2$ and the 312.0 keV $7/2^+$ state $L = 4$ from direct reaction data [30,31]. At deformations of $\beta_2 \lesssim 0.2$ these Nilsson basis states are strongly mixed, and the predicted quasi-neutron states are further mixed when the nucleus is “cranked”: a strong interaction is predicted near $\hbar \omega = 0.15$ MeV, with the predominantly $g_\frac{7}{2}$ Routhian dropping below the $d_\frac{5}{2}$. The picture is further complicated by the fact that the low-spin core excitations are vibrational, not rotational, in nature. In light of these difficulties, comparison of the low-energy states with rotational-model predictions does not seem fruitful at this time. (We note that similar states in lighter odd-A Pd nuclides have been interpreted in the context of a particle-core coupling model with much success [40-42]. These comparisons, however, rely heavily on detailed measurements of non-yrast states, which are typically not populated in heavy-ion fusion evaporation reactions.)

The theoretical interpretation of the high-energy states is clearer. The cranked shell model predicts that the bands built on both positive-parity configurations should undergo backbends near $\hbar \omega = 0.3$ MeV due to the alignment of the AB quasi-neutron pair. Since this rotational alignment is seen in both 106Pd [13] and 108Pd, one expects the $L \approx 6$-10 collective excitations of the 107Pd core to be sufficiently rotational for the alignment to be seen here as well. Indeed, the 107Pd positive parity bands undergo alignments at rotational frequencies of 0.25 – 0.33 MeV, as shown in Fig. 14. (For completeness, the 642.8, 721.5, and 696.9 keV lines are used in both the band 3 and band 4 plots, and band 2 is assumed to proceed through the 772.6 and 677.7 keV γ rays in the order shown in Fig. 5. $K = 5/2$ was used for all three bands.) The 108Pd ground-band is also shown for comparison.

Three important features of these plots should be noted. First, all three bands gain at least $8 \hbar$ of aligned angular momentum through the crossing. This gain in i_π is in good agreement with the CSM prediction for the quasi-neutron AB crossing, and is larger than the alignment gain predicted for any other crossing. Second, the 107Pd positive parity bands align at lower frequencies than the 108Pd ground-band (or the 106Pd ground-band, which aligns near 0.36 MeV [13].) Again, this is in good agreement with the predicted AB crossing. The unpaired neutron in 107Pd is expected to reduce the pairing strength, which
in turn allows the alignment to proceed at lower frequencies. Finally, all three bands appear to be undergoing the alignment as they begin. This feature is hard to interpret with the CSM model. One possible explanation is that since the CSM predicts the bands should interact strongly at low frequencies, the first few data points are perturbed. A more likely explanation is that the initial “upbending” is caused by a vibrational energy spacing.

Experimental Routhians for bands 1–4 are shown in Fig. 15. K values and level orderings were chosen in the same manner as for Fig. 14. Above the alignment, the $M1$ transitions linking bands 2 and 3 clearly indicate these bands constitute signature partners with band 2 favored. The signature splitting, $\Delta \varepsilon'$, is 0.2 MeV, with the favored signature, α_f, equal to $+1/2$, suggesting these bands are d_3 in nature. Band 4, with $\alpha = -1/2$, lies about 0.4 MeV above band 2. No candidate signature partner for band 4 was found. Since the usual assumption for heavy-ion fusion-evaporation reactions is that states closer to the yrast line are preferentially populated over states farther away, we conclude that the signature partner to band 4 is raised in energy by the signature splitting, and band 4 is favored.

These results are in disagreement with the axially-symmetric CSM calculations, in which the $\alpha = -1/2$ signature of the lowest positive-parity quasi-neutron Routhian pair $(E-F)$ lies about 200 keV lower than the $\alpha = +1/2$ signature. The next pair $(G-H)$ lies about 500 keV higher and has the $\alpha = +1/2$ signature lower than the $\alpha = -1/2$. If bands 2 and 3 correspond to the EAB and FAB configurations, and band 4 to HAB, then the experimental signature partners are “inverted” for both the $E-F$ and $G-H$ Routhians. On the other hand, if bands 2 and 3 are identified as GAB and HAB, the CSM incorrectly places the G and H Routhians ≈ 400 keV above the E and F states, rather than 400 keV below.

The failure of axially-symmetric CSM calculations to predict the observed structure is not surprising. The 107Pd results reported here are quite similar to published results for the corresponding three quasi-neutron bands in 109Cd [6,7], indicating this behavior is a general property of the $N = 61$ nuclides below the proton shell gap and is relatively insensitive to changes in the deformation or proton number. In Ref. [6], we interpreted the corresponding signature inversion in 109Cd as an indication of γ-softness or triaxiality. TRS predictions for
the two nuclides suggest that these configurations should be even more \(\gamma \)-soft for \(^{107}\)Pd.

The TRS surfaces shown in Fig. 11 predict minima at \(\gamma \approx -5^\circ \). Although CSM calculations for \(^{107}\)Pd with \(\gamma < 0^\circ \) fail to reproduce the observed ordering, calculations with \(\gamma \approx +20^\circ \) do show signature inversions for both the \(EF \) and \(GH \) pairs at \(\hbar \omega \lesssim 0.45 \) MeV, in good agreement with the observed results.

To further investigate the nature of these bands, one may turn to the transition strengths and mixing ratios. The semi-classical geometrical model [28] of Dönau and Frauendorf gives predictions for the \(B(M1; I \rightarrow I-1)/B(E2; I \rightarrow I-2) \) ratios and the \(E2/M1 \) mixing ratio. In an extension of this model published by D. C. Radford \textit{et al.} [43],

\[
B(M1; I \rightarrow I-1) = \frac{3}{8\pi I^2} \left\{ \sqrt{I^2 - K^2} \left[(1 \pm \frac{\Delta e'}{\hbar \omega}) \tilde{g}_1 K_1 + \tilde{g}_2 K_2 + \tilde{g}_3 K_3 + \ldots \right] - K[\tilde{g}_1 i_1 + \tilde{g}_2 i_2 + \tilde{g}_3 i_3 + \ldots] \right\} \mu_N^2
\]

(2)

where

\[
\tilde{g}_i = g_i - g_R
\]

(3)

and

\[
K = K_1 + K_2 + K_3 + \ldots
\]

(4)

Subscript 1 indicates the quasiparticle responsible for the observed signature pair while other subscripts refer to “spectator” quasiparticles. The plus sign in the signature-splitting term should be used for favored-to-unfavored transitions, and the minus for unfavored-to-favored.

A rigid rotor estimate for the \(B(E2) \) strength is used to predict the \(B(M1)/B(E2) \) ratio. In this model, the sign of the \(E2/M1 \) mixing ratio for the \(I \rightarrow I-1 \) transition is

\[
\text{sign} \left(\delta_{E2/M1} \right) = \text{sign} (Q_0) \times \text{sign} \left(\sqrt{I^2 - K^2} \left[(1 \pm \frac{\Delta e'}{\hbar \omega}) \tilde{g}_1 K_1 + \tilde{g}_2 K_2 + \tilde{g}_3 K_3 + \ldots \right] - K[\tilde{g}_1 i_1 + \tilde{g}_2 i_2 + \tilde{g}_3 i_3 + \ldots] \right)
\]

(5)

where \(Q_0 \) is positive for prolate shape. For the calculations described here, an intrinsic quadrupole moment of \(Q_0 = +2.1 \) eb, corresponding to \(\beta_2 \approx 0.17 \), was used and the collective
factor g_R was set to Z/A. Gyromagnetic factors, g_i, for the active states (taken from Ref. [44]) are listed in Table IV, and K was assumed to equal Ω for each orbital.

Experimental $B(M1)/B(E2)$ ratios for the high-spin states of band 3 are plotted in Fig. 16. Also shown are the geometrical model predictions for bands 2 and 3 assuming $\nu g_{\frac{3}{2}} \otimes \nu \left(h_{\frac{3}{2}}\right)^2$ (quasiparticle labels EAB and FAB) and $\nu d_{\frac{1}{2}} \otimes \nu \left(h_{\frac{1}{2}}\right)^2$ configurations (GAB and HAB). The data appear to be more consistent with the $g_{\frac{3}{2}}$ prediction. This is reinforced by the $E2/M1$ mixing ratios for the $I \rightarrow I-1$ decays, which are positive for the $27/2^+$ and $31/2^+$ decays, and consistent (at 1σ) with a positive sign for the $23/2^+$ decay. The geometrical model predicts positive mixing ratios for $\nu g_{\frac{3}{2}} \otimes \nu \left(h_{\frac{3}{2}}\right)^2$ and negative mixing ratios for $\nu d_{\frac{1}{2}} \otimes \nu \left(h_{\frac{1}{2}}\right)^2$. We conclude that bands 2 and 3 are predominantly $\nu g_{\frac{3}{2}} \otimes \nu \left(h_{\frac{1}{2}}\right)^2$ (EAB and FAB) above the $21/2^+$ state, with the signatures inverted (as compared to the axial CSM calculations.) Band 4 is then presumably the $\alpha = -1/2$ signature of the $\nu d_{\frac{1}{2}} \otimes \nu \left(h_{\frac{1}{2}}\right)^2$ configuration (HAB); again it appears likely that the experimental signatures for this configuration are inverted.

C. 109Ag

The decay scheme of 109Ag reported here is quite similar to the previously reported [10,11] schemes of 105,107Ag. At low energies, the yrast cascades of all three nuclides (and 111Ag [45]) are found to consist of positive-parity intermediate-coupled signature partners with moderate signature splitting. Popli et al. [46] have shown, using quasiparticle-plus-rotor calculations, that the 105,107Ag bands are consistent with a $g_{\frac{3}{2}}$ quasi-proton assignment, as expected for $Z = 47$ at intermediate prolate deformations. Since the neutron number should influence these states only indirectly (through the core deformation) the similarity of these bands in the three nuclides suggests a similar configuration assignment for 109Ag. The energies of these yrast bands in 105Ag and 107Ag are virtually identical [10,11]. In comparison, the 109Ag level spacings are compressed by about 10% from the lighter isotopes, and the 111Ag $13/2^+ - 9/2^+$ spacing is compressed by 20% [45], suggesting progressively larger core deformations.
as predicted by TRS calculations.

The theoretical quasi-proton Routhians shown in Fig. 12(b) show the positive-parity positive-signature $\pi g_{\frac{3}{2}}$ Routhian a as energetically favored. The observed signature splitting of $0.2 - 0.3$ MeV near $\hbar \omega = 0.4$ MeV lies between the predicted ab splitting of ≈ 0.1 MeV and the predicted cd splitting of ≈ 0.4 MeV.

As with the lighter isotopes, both signatures of band 1 undergo large alignments near the $21/2^+$ state, as shown in Fig. 17. The crossing occurs near $\hbar \omega = 0.33$ MeV, as expected for a neutron $\left(h_{\frac{3}{2}} \right)^2$ alignment. The large gain in aligned angular momentum is also consistent with the predicted quasi-neutron alignment. Above the crossing, the signature splitting disappears. This is reasonably consistent with the aAB and bAB configurations, but not the cAB and dAB configurations, which are predicted to have a significant signature splitting for $\hbar \omega > 0.2$ MeV.

In the one-quasiparticle-plus-rotor calculations of Popli et al. [46], the yrast bands of 105,107Ag are predominantly $K \approx 7/2 - 9/2$ near the band head, with the Coriolis force mixing in progressively more low-K components as the core rotation increases. The experimentally determined $B(M1)/B(E2)$ ratios (including limits for unobserved transitions) both below and above the $\nu \left(h_{\frac{3}{2}} \right)^2$ alignment are plotted in Fig. 18. Geometrical model predictions for $K = 5/2, 7/2,$ and $9/2$ are also plotted. In all cases, the signature splitting below the alignment induces very large oscillations (of order 10 to 1) in the predicted ratios which are absent in the experimental data. In order to compare the average magnitude of the transition-strength ratios, we have therefore arbitrarily set the signature splitting term in the model prediction to zero. Below the quasi-neutron alignment, the experimental ratios are less than $6 \mu_2^2/(eb)^2$ and appear to decrease with increasing spin. This is consistent with the model predictions assuming $K = 7/2$ or $5/2$, especially given the prediction of Popli, et al., that the contribution of the lower-K orbitals should increase with increasing spin. The $K = 9/2$ prediction of large ($> 15 \mu_2^2/(eb)^2$) ratios is inconsistent with the experimental results. Above the alignment, the lower limits on the experimental ratios are consistent with the $K = 9/2$ or $7/2$ prediction, but not with the $K = 5/2$ prediction.
Bands 2 and 3 are strongly-coupled negative-parity bands whose Routhians lie about 1.5 MeV above that of the one quasi-proton positive-parity band. Bands with decay properties similar to band 2 have been reported in 105,107Ag [10,11].

The lowest-lying theoretical negative-parity proton Routhians are the e-f pair originating from the $p_{\frac{3}{2}}$ orbital. These are predicted to lie about 0.5 MeV above the a and b Routhians, with a large (> 0.2 MeV) signature splitting, small i_x, and weak M1 transitions. The experimentally observed bands are clearly inconsistent with all these properties and are therefore almost certainly three quasiparticle bands. The most likely configurations are one quasi-proton (a or b) coupled to two quasi-neutrons (AE or AF), i.e. $\pi g_{\frac{5}{2}} \otimes \nu h_{\frac{11}{2}} \otimes \nu g_{\frac{7}{2}}$ or $\pi g_{\frac{3}{2}} \otimes \nu h_{\frac{11}{2}} \otimes \nu d_{\frac{1}{2}}$. These are predicted to lie 1 - 2 MeV above the one quasi-proton band with $i_x \approx 8$, in good agreement with the experimental results. Geometrical model $B(M1)/B(E2)$ ratios for these bands are very large at the spins observed, which is consistent with the non-observation of crossover transitions. The possible observation of some of these states in 107Ag(t,p) [34] is puzzling, and may be a coincidence. (The uncertainty in the (t,p) excitation energies is approximately 10 keV.) If these states were observed in the transfer reaction, they would have to contain significant $\pi p_{\frac{3}{2}} \otimes (\nu)^2$ components, possibly eAB and fAB or eEF and fEF. These should lie much higher, though, and have large signature splittings. Another possibility is that these bands represent the three quasi-proton configurations abe and abf. These, however, should also exhibit a large signature splitting and weak M1 transitions.

V. SUMMARY AND CONCLUSIONS

High-spin states in 107,108Pd and 109Ag have been investigated using charged-particle-γ, γ-γ, and charged-particle-γ-γ coincidence methods. These measurements provide the first data on high-spin states in 109Ag, while the yrast decay schemes of 107Pd and 108Pd have been substantially extended. The technique of charged-particle-γ-γ coincidence measurement is found to be particularly effective for selectively analyzing weak charged-particle evaporation channels in a neutron-rich fusion-evaporation reaction.
All three nuclides studied are found to have yrast collective bands with properties consistent with predictions for moderately-deformed prolate rotors. While the detailed structures of each are different, all are found to be strongly influenced by the presence of the deformation-driving neutron $h_{\frac{1}{2}}$ low-K intruder orbitals.

In the even-even nuclide 108Pd, the ground band has been extended to $I^\pi = 18^+$, with new positive- and negative-parity side bands observed to 14^+ and 13^-. The vibrational band built on the ground state is crossed by a rotational sequence near $I = 8\hbar$. The crossing frequency and aligned angular momentum are similar to those of the corresponding band in the isotope 110Cd, and are consistent with CSM and TRS predictions for a $\nu \left(h_{\frac{1}{2}} \right)^2$ configuration at $\beta_2 \approx 0.18, \gamma = 0^\circ$. Evidence is also seen for the beginning of a quasi-proton alignment at higher frequencies. A positive-parity side band extending above the 8^+ state appears to be the continuation of the vibrational ground-band above the band crossing, while the negative-parity band may represent a semi-decoupled configuration with both deformation-aligned and rotation-aligned quasi-neutrons.

The $\nu h_{\frac{1}{2}}$ band in 107Pd has been extended through a band crossing to $51/2^-$. The band-crossing seen in 108Pd is not observed in this band, in good agreement with the quasi-neutron "blocking" predicted by the CSM model. An alignment seen at higher frequencies is interpreted as the predicted crossing with the $\nu \left(h_{\frac{1}{2}} \right)^3$ band. Three positive-parity bands are also found at spins above $21/2\hbar$. These are interpreted as a decoupled $\nu d_{\frac{3}{2}} \otimes \nu \left(h_{\frac{1}{2}} \right)^2$ band and both signatures of the $\nu g_{\frac{7}{2}} \otimes \nu \left(h_{\frac{1}{2}} \right)^2$ configuration, based on $E2/M1$ mixing ratios and transition-strength ratios. For both configurations, the experimental signatures are inverted, possibly due to γ-softness or triaxiality. Below the $21/2^+$ state, the positive-parity decay scheme lacks distinct rotational bands, possibly due to a relaxation to near-spherical vibrational modes. Such a transition would further highlight the "core-polarizing" role (seen in 108Pd) of the $h_{\frac{1}{2}}$ intruder as a principal cause of the nuclear deformation.

The high-spin decay-scheme of 109Ag has been investigated for the first time. As with other odd-\(A\) Ag isotopes, at low energies the yrast structure is found to consist of intermediate-coupled signature partner bands produced by coupling collective core excita-
tions to a high-$K \frac{3}{2}^+$ proton. This is crossed by a strongly-coupled band with large \(i_x \) at the same rotational frequency as the \(^{108}\)Pd crossing. The alignment gain, crossing frequency, and reduction in signature splitting are all consistent with a CSM prediction of a quasi-neutron \(\left(\hbar \frac{3}{2} \right)^2 \) alignment. The increase in \(B(M1)/B(E2) \) ratios through the crossing is also consistent with geometrical model calculations for a 2 quasi-neutron alignment. Two strongly-coupled negative parity bands have also been identified. These may represent \(\pi g_\frac{3}{2} \otimes \nu h_{\frac{1}{2}} \otimes \nu g_{\frac{1}{2}} \) or \(\pi g_\frac{3}{2} \otimes \nu h_{\frac{1}{2}} \otimes \nu d_{\frac{3}{2}} \) configurations.

VI. ACKNOWLEDGMENTS

We thank Dr. R. Wadsworth for loaning us the \(^{96}\)Zr target used at Chalk River and Dr. R. Darlington for making the \(^{96}\)Zr and \(^{100}\)Mo targets used at the University of Pennsylvania. Thanks are also due Dr. D. Radford for providing the RADWARE data analysis software and Dr. R. A. Wyss for supplying the CSM and TRS codes. We appreciate the help given by J. Vasek and J. Middleton at the University of Pennsylvania, and G. Zwartz and J. L. Rodriguez in performing the experiment at Chalk River. We also thank Dr. D. Winchell for helpful discussions. This work was supported by the National Science Foundation, Atomic Energy of Canada Limited, and the Natural Sciences and Engineering Research Council (Canada).
REFERENCES

Present Address: National Air and Radiation Environmental Laboratory, 540 S Morris Ave., Montgomery, AL 36115-2601.

Present Address: Dept. of Physics, University of Surrey, Guildford, Surrey, GU2 5XH, UK.

Present Address: Centre de Recherches Nucléaire, Institut National de Physique Nucléaire et de Physique des Particules/Université Louis Pasteur, F-67037 Strasbourg Cedex, France.

[28] F. Dönau and S. Frauendorf in Proceedings of the Conference on High Angular Moment-

TABLES

TABLE I. Properties of γ rays placed in 108Pd.

<table>
<thead>
<tr>
<th>Energy (keV)</th>
<th>Relative Intensity</th>
<th>Anisotropy</th>
<th>$I_i^\pi \rightarrow I_f^\pi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>433.9 (1)</td>
<td>-</td>
<td>0.05 (6)</td>
<td>$2^+ \rightarrow 0^+$</td>
</tr>
<tr>
<td>437.4 (10)</td>
<td>15 (2)</td>
<td>-</td>
<td>$7(-) \rightarrow 5(-)$</td>
</tr>
<tr>
<td>518.4 (2)</td>
<td>29 (3)</td>
<td>0.13 (22)</td>
<td>$9(-) \rightarrow 7(-)$</td>
</tr>
<tr>
<td>540.9 (1)</td>
<td>31 (3)</td>
<td>0.12 (13)</td>
<td>$12^+ \rightarrow 10^+$</td>
</tr>
<tr>
<td>614.2 (1)</td>
<td>100 (5)</td>
<td>0.12 (7)</td>
<td>$4^+ \rightarrow 2^+$</td>
</tr>
<tr>
<td>626.3 (4)</td>
<td>23 (3)</td>
<td>0.61 (33)</td>
<td>$(8^+) \rightarrow 6^+$</td>
</tr>
<tr>
<td>682.2 (6)</td>
<td>25 (3)</td>
<td>0.09 (24)</td>
<td>$(11^-) \rightarrow 9(-)$</td>
</tr>
<tr>
<td>708.0 (1)</td>
<td>34 (4)</td>
<td>0.27 (13)</td>
<td>$10^+ \rightarrow 8^+$</td>
</tr>
<tr>
<td>723.1 (1)</td>
<td>85 (5)</td>
<td>0.24 (9)</td>
<td>$6^+ \rightarrow 4^+$</td>
</tr>
<tr>
<td>777.2 (1)</td>
<td>55 (4)</td>
<td>0.17 (10)</td>
<td>$8^+ \rightarrow 6^+$</td>
</tr>
<tr>
<td>802.1 (3)</td>
<td>24 (4)</td>
<td>0.43 (20)</td>
<td>$10^+ \rightarrow 8^+$</td>
</tr>
<tr>
<td>807.8 (9)</td>
<td>18 (4)</td>
<td>-</td>
<td>$(12^+) \rightarrow 10^+$</td>
</tr>
<tr>
<td>813.3 (4)</td>
<td>12 (5)</td>
<td>-</td>
<td>$(13^-) \rightarrow (11^-)$</td>
</tr>
<tr>
<td>818.4 (7)</td>
<td>< 5</td>
<td>-</td>
<td>$(14^+) \rightarrow (12^+)$</td>
</tr>
<tr>
<td>842.5 (4)</td>
<td>29 (3)</td>
<td>0.17 (17)</td>
<td>$14^+ \rightarrow 12^+$</td>
</tr>
<tr>
<td>991.0 (3)</td>
<td>27 (3)</td>
<td>-0.47 (23)</td>
<td>$7(-) \rightarrow 6^+$</td>
</tr>
<tr>
<td>1048.9 (7)</td>
<td>19 (3)</td>
<td>0.31 (28)</td>
<td>$16^+ \rightarrow 14^+$</td>
</tr>
<tr>
<td>1133.0 (2)</td>
<td>12 (3)</td>
<td>-</td>
<td>$(18^+) \rightarrow 16^+$</td>
</tr>
<tr>
<td>1276.7 (10)</td>
<td>13 (3)</td>
<td>-0.72 (42)</td>
<td>$5(-) \rightarrow 4^+$</td>
</tr>
</tbody>
</table>

aIntensities taken from the 433.9 keV coincidence spectrum.
<table>
<thead>
<tr>
<th>Energy (keV)</th>
<th>Relative Intensity</th>
<th>Anisotropy</th>
<th>Alignment*</th>
<th>$\delta(E2/M1)$</th>
<th>$I^n_f \rightarrow I^f_f$</th>
</tr>
</thead>
<tbody>
<tr>
<td>258.0 (3)</td>
<td>0.5 (1)</td>
<td>-0.91 (90)</td>
<td>(0.5)</td>
<td>$\delta < 0.15$</td>
<td>$11/2^+ \rightarrow 9/2^+$</td>
</tr>
<tr>
<td>303.8 (2)b</td>
<td>4.0 (3)c</td>
<td>-0.56 (30)</td>
<td>(0.5)</td>
<td>-</td>
<td>$9/2^+ \rightarrow 7/2^+$</td>
</tr>
<tr>
<td>312.0 (1)</td>
<td>18.9 (3)</td>
<td>-0.51 (10)</td>
<td>(0.5)</td>
<td>$\delta < -0.2$</td>
<td>$7/2^+ \rightarrow 5/2^+$</td>
</tr>
<tr>
<td>330.8 (3)</td>
<td>4.0 (7)c</td>
<td>-0.28 (22)</td>
<td>(0.7)</td>
<td>-0.1 (2)</td>
<td>$23/2^+ \rightarrow 21/2^+$</td>
</tr>
<tr>
<td>368.2 (2)</td>
<td>1.6 (2)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$(15/2)^+ \rightarrow 13/2^+$</td>
</tr>
<tr>
<td>384.1 (1)</td>
<td>2.7 (6)c</td>
<td>-0.46 (18)</td>
<td>(0.5)</td>
<td>$\delta < -0.1$</td>
<td>$9/2^+ \rightarrow 7/2^+$</td>
</tr>
<tr>
<td>392.5 (1)b</td>
<td>8.8 (3)</td>
<td>-0.42 (17)</td>
<td>(0.5)</td>
<td>-</td>
<td>$7/2^+ \rightarrow 5/2^+$</td>
</tr>
<tr>
<td>403.4d</td>
<td>3.1 (2)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>410.8 (1)</td>
<td>14.2 (3)</td>
<td>0.18 (9)</td>
<td>0.39 (19)</td>
<td>-</td>
<td>$21/2^+ \rightarrow 17/2^+$</td>
</tr>
<tr>
<td>452.2 (1)</td>
<td>30.1 (3)</td>
<td>0.26 (7)</td>
<td>0.59 (15)</td>
<td>-</td>
<td>$25/2^+ \rightarrow 21/2^+$</td>
</tr>
<tr>
<td>472.2 (1)</td>
<td>100.0 (6)</td>
<td>0.23 (5)</td>
<td>0.47 (10)</td>
<td>-</td>
<td>$15/2^- \rightarrow 11/2^-$</td>
</tr>
<tr>
<td>495.9 (1)</td>
<td>9.5 (3)</td>
<td>0.16 (17)</td>
<td>(0.8)</td>
<td>0.30 (15)</td>
<td>$27/2^+ \rightarrow 25/2^+$</td>
</tr>
<tr>
<td>514.8 (2)</td>
<td>5.2 (8)c</td>
<td>0.54 (40)</td>
<td>-</td>
<td>-</td>
<td>$23/2^+ \rightarrow 19/2^+$</td>
</tr>
<tr>
<td>562.7 (5)</td>
<td>4.0 (2)c</td>
<td>0.85 (30)</td>
<td>-</td>
<td>-</td>
<td>$11/2^+ \rightarrow 7/2^+$</td>
</tr>
<tr>
<td>617.1 (1)</td>
<td>11.8 (8)</td>
<td>0.25 (17)</td>
<td>-</td>
<td>-</td>
<td>$27/2^+ \rightarrow 23/2^+$</td>
</tr>
<tr>
<td>626.2 (2)</td>
<td>4.4 (5)</td>
<td>0.62 (27)</td>
<td>(0.9)</td>
<td>0.45 < δ < 1.9</td>
<td>$31/2^+ \rightarrow 29/2^+$</td>
</tr>
<tr>
<td>642.8 (2)</td>
<td>14.4 (9)c</td>
<td>0.35 (11)</td>
<td>0.68 (21)</td>
<td>-</td>
<td>$11/2^+ \rightarrow 7/2^+$</td>
</tr>
<tr>
<td>644.2 (3)</td>
<td>5.5 (13)c</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$13/2^+ \rightarrow 9/2^+$</td>
</tr>
<tr>
<td>650.8 (3)</td>
<td>6.4 (8)</td>
<td>0.59 (26)</td>
<td>-</td>
<td>-</td>
<td>$27/2^+ \rightarrow 23/2^+$</td>
</tr>
<tr>
<td>661.1 (4)</td>
<td>4.3 (6)</td>
<td>-0.37 (33)</td>
<td>(0.7)</td>
<td>$-0.15^{+0.25}_{-0.35}$</td>
<td>$25/2^+ \rightarrow 23/2^-$</td>
</tr>
<tr>
<td>675.7 (3)</td>
<td>8.3 (14)c</td>
<td>0.33 (15)</td>
<td>-</td>
<td>-</td>
<td>$23/2^+ \rightarrow 19/2^+$</td>
</tr>
<tr>
<td>677.7 (2)</td>
<td>14.7 (16)c</td>
<td>0.39 (15)</td>
<td>0.79 (30)</td>
<td>-</td>
<td>$13/2^+ \rightarrow 9/2^+$</td>
</tr>
<tr>
<td>689.7 (7)</td>
<td>6.4 (23)c</td>
<td>-0.37 (34)</td>
<td>(0.8)</td>
<td>-0.13 (26)</td>
<td>$27/2^+ \rightarrow 25/2^+$</td>
</tr>
<tr>
<td>696.3 (4)</td>
<td>11.3 (30)c</td>
<td>0.23 (23)</td>
<td>-</td>
<td>-</td>
<td>$9/2^+ \rightarrow 5/2^+$</td>
</tr>
<tr>
<td>Energy (keV)</td>
<td>Intensity (a.u.)</td>
<td>Branching Ratio</td>
<td>Transition</td>
<td>Assignment</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>696.9 (2)</td>
<td>12.0 (20)</td>
<td>0.35 (19)</td>
<td>-</td>
<td>19/2⁺ → 15/2⁺</td>
<td></td>
</tr>
<tr>
<td>699.8 (1)</td>
<td>20.8 (41)</td>
<td>0.39 (14)</td>
<td>0.92 (33)</td>
<td>29/2⁺ → 25/2⁺</td>
<td></td>
</tr>
<tr>
<td>721.5 (1)</td>
<td>15.1 (10)</td>
<td>0.29 (13)</td>
<td>0.60 (27)</td>
<td>15/2⁺ → 11/2⁺</td>
<td></td>
</tr>
<tr>
<td>756.3 (1)</td>
<td>93.7 (6)</td>
<td>0.24 (5)</td>
<td>0.53 (11)</td>
<td>19/2⁻ → 15/2⁻</td>
<td></td>
</tr>
<tr>
<td>772.6 (3)</td>
<td>12.2 (17)</td>
<td>0.16 (12)</td>
<td>0.34 (26)</td>
<td>17/2⁺ → 13/2⁺</td>
<td></td>
</tr>
<tr>
<td>805.8 (7)</td>
<td>3.3 (10)</td>
<td>-</td>
<td>-</td>
<td>17/2⁺ → 13/2⁺</td>
<td></td>
</tr>
<tr>
<td>831.6 (4)</td>
<td>15.5 (40)</td>
<td>0.20 (18)</td>
<td>-</td>
<td>31/2⁺ → 27/2⁺</td>
<td></td>
</tr>
<tr>
<td>862.8 (1)</td>
<td>10.8 (4)</td>
<td>0.37 (19)</td>
<td>-</td>
<td>31/2⁺ → 27/2⁺</td>
<td></td>
</tr>
<tr>
<td>905.1 (1)</td>
<td>45.4 (6)</td>
<td>0.31 (7)</td>
<td>0.71 (16)</td>
<td>23/2⁻ → 19/2⁻</td>
<td></td>
</tr>
<tr>
<td>931.3 (8)</td>
<td>1.0 (7)</td>
<td>-</td>
<td>-</td>
<td>19/2⁺ → 19/2⁻</td>
<td></td>
</tr>
<tr>
<td>945.8 (1)</td>
<td>21.1 (8)</td>
<td>0.41 (13)</td>
<td>0.97 (32)</td>
<td>31/2⁻ → 27/2⁻</td>
<td></td>
</tr>
<tr>
<td>956.7 (1)</td>
<td>37.5 (8)</td>
<td>0.40 (10)</td>
<td>0.92 (24)</td>
<td>27/2⁻ → 23/2⁻</td>
<td></td>
</tr>
<tr>
<td>982.5 (2)</td>
<td>14.0 (15)</td>
<td>0.24 (15)</td>
<td>0.58 (36)</td>
<td>35/2⁻ → 31/2⁻</td>
<td></td>
</tr>
<tr>
<td>1026.3 (1)</td>
<td>11.3 (4)</td>
<td>0.33 (15)</td>
<td>-</td>
<td>33/2⁺ → 29/2⁺</td>
<td></td>
</tr>
<tr>
<td>1040.6 (2)</td>
<td>8.8 (4)</td>
<td>0.07 (21)</td>
<td>-</td>
<td>(35/2⁺) → 31/2⁺</td>
<td></td>
</tr>
<tr>
<td>1110.1 (3)</td>
<td>7.2 (15)</td>
<td>0.13 (22)</td>
<td>-</td>
<td>(39/2⁻) → 35/2⁻</td>
<td></td>
</tr>
<tr>
<td>1114.1 (1)</td>
<td>38.3 (14)</td>
<td>-0.23 (13)</td>
<td>(0.7)</td>
<td>-0.05 (11)</td>
<td></td>
</tr>
<tr>
<td>1276.6 (6)</td>
<td>6.1 (18)</td>
<td>0.89 (45)</td>
<td>-</td>
<td>(39/2⁺) → (35/2⁺)</td>
<td></td>
</tr>
<tr>
<td>1292.6 (3)</td>
<td>6.0 (5)</td>
<td>0.07 (23)</td>
<td>-</td>
<td>(43/2⁻) → (39/2⁻)</td>
<td></td>
</tr>
<tr>
<td>1445.6 (3)</td>
<td>5.8 (6)</td>
<td>0.18 (27)</td>
<td>-</td>
<td>(47/2⁻) → (43/2⁻)</td>
<td></td>
</tr>
<tr>
<td>1593.7 (3)</td>
<td>4.5 (22)</td>
<td>-</td>
<td>-</td>
<td>(51/2⁻) → (47/2⁻)</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Values in parentheses were determined from fit to quoted E2 substate alignments. Relative uncertainties in fitted substate alignments were taken to be 20%.

\(^b\)The 303.8–392.5 keV coincident pair may be contaminated with a competing 302.8–393.5 keV pair. See text for details.

\(^c\)Intensity taken from coincidence data.
Unresolved doublet. The average energy and summed intensity of the γ-rays are quoted.
TABLE III. Properties of γ rays placed in 199Ag.

<table>
<thead>
<tr>
<th>Energy (keV)</th>
<th>Relative Intensity</th>
<th>Anisotropy</th>
<th>Alignmenta</th>
<th>$\delta(E2/M1)$</th>
<th>$I_f^+ \rightarrow I_i^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.8 (1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±0.35 (15)</td>
<td>9/2$^+ \rightarrow 7/2^+$</td>
</tr>
<tr>
<td>148.4 (1)</td>
<td>9 (1)</td>
<td>-0.16 (19)</td>
<td>(0.90)</td>
<td>+0.05 (11)</td>
<td>19/2$^- \rightarrow 17/2^-$</td>
</tr>
<tr>
<td>157.3 (1)</td>
<td>8 (1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13/2$^+ \rightarrow 11/2^+$</td>
</tr>
<tr>
<td>172.2 (1)</td>
<td>18 (3)b</td>
<td>-0.23 (14)</td>
<td>(0.95)</td>
<td>+0.01 (8)</td>
<td>21/2$^- \rightarrow 19/2^-$</td>
</tr>
<tr>
<td>186.2 (1)</td>
<td>34 (1)</td>
<td>-0.31 (10)</td>
<td>(0.95)</td>
<td>-0.05 (5)</td>
<td>25/2$^+ \rightarrow 23/2^+$</td>
</tr>
<tr>
<td>213.5 (1)</td>
<td>17 (2)b</td>
<td>-0.36 (12)</td>
<td>(0.85)</td>
<td>-0.09 (8)</td>
<td>17/2$^- \rightarrow 15/2^-$</td>
</tr>
<tr>
<td>240.5 (2)</td>
<td>8 (2)b</td>
<td>-0.31 (16)</td>
<td>(0.90)</td>
<td>-0.05 (9)</td>
<td>19/2$^- \rightarrow 17/2^-$</td>
</tr>
<tr>
<td>248.1 (1)</td>
<td>18 (4)b</td>
<td>-0.20 (12)</td>
<td>(0.95)</td>
<td>+0.02 (8)</td>
<td>23/2$^- \rightarrow 21/2^-$</td>
</tr>
<tr>
<td>249.4 (1)</td>
<td>49 (5)b</td>
<td>-0.16 (7)</td>
<td>(0.95)</td>
<td>+0.05 (4)</td>
<td>23/2$^+ \rightarrow 21/2^+$</td>
</tr>
<tr>
<td>263.3 (2)</td>
<td>8 (3)b</td>
<td>-0.46 (16)</td>
<td>(0.95)</td>
<td>-0.14 (9)</td>
<td>$(23/2^-) \rightarrow (21/2^-)$</td>
</tr>
<tr>
<td>273.4 (3)</td>
<td>9 (3)b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$(17/2^-) \rightarrow 15/2^-$</td>
</tr>
<tr>
<td>273.5 (1)</td>
<td>15 (2)b</td>
<td>-0.18 (13)</td>
<td>(0.92)</td>
<td>+0.03 (8)</td>
<td>21/2$^+ \rightarrow 19/2^+$</td>
</tr>
<tr>
<td>279.7 (2)</td>
<td>9 (2)b</td>
<td>-0.02 (15)</td>
<td>(0.95)</td>
<td>+0.13 (9)</td>
<td>$(21/2^-) \rightarrow 19/2^-$</td>
</tr>
<tr>
<td>298.8 (1)</td>
<td>33 (1)</td>
<td>-0.35 (9)</td>
<td>(0.95)</td>
<td>-0.07 (5)</td>
<td>27/2$^+ \rightarrow 25/2^+$</td>
</tr>
<tr>
<td>328.0 (1)</td>
<td>11 (3)b</td>
<td>-0.13 (13)</td>
<td>(0.95)</td>
<td>+0.06 (8)</td>
<td>25/2$^- \rightarrow 23/2^-$</td>
</tr>
<tr>
<td>393.5 (1)</td>
<td>29 (1)</td>
<td>-0.13 (10)</td>
<td>(0.95)</td>
<td>+0.06 (4)</td>
<td>29/2$^+ \rightarrow 27/2^+$</td>
</tr>
<tr>
<td>407.1 (1)</td>
<td>21 (2)b</td>
<td>-0.22 (11)</td>
<td>(0.95)</td>
<td>0.00 (6)</td>
<td>31/2$^+ \rightarrow 29/2^+$</td>
</tr>
<tr>
<td>510.6 (2)</td>
<td>15 (2)b</td>
<td>-0.46 (15)</td>
<td>(0.95)</td>
<td>-0.14 (8)</td>
<td>33/2$^+ \rightarrow 31/2^+$</td>
</tr>
<tr>
<td>528.1 (3)</td>
<td>11 (2)b</td>
<td>0.10 (19)</td>
<td>(0.95)</td>
<td>+0.20 (14)</td>
<td>$(35/2^+) \rightarrow 33/2^+$</td>
</tr>
<tr>
<td>640.6 (2)</td>
<td>24 (1)</td>
<td>0.30 (9)</td>
<td>(0.50)</td>
<td>+0.3 < δ</td>
<td>11/2$^+ \rightarrow 9/2^+$</td>
</tr>
<tr>
<td>673.4 (2)</td>
<td>12 (3)b</td>
<td>0.20 (19)</td>
<td>(0.85)</td>
<td>+0.31 (20)</td>
<td>19/2$^+ \rightarrow 17/2^+$</td>
</tr>
<tr>
<td>772.3 (3)</td>
<td>32 (5)b</td>
<td>0.50 (21)</td>
<td>(0.70)</td>
<td>$+1.0^{+1.0}_{-0.5}$</td>
<td>15/2$^+ \rightarrow 13/2^+$</td>
</tr>
<tr>
<td>798.0 (1)</td>
<td>100 (1)</td>
<td>0.22 (6)</td>
<td>0.44 (13)</td>
<td>-</td>
<td>13/2$^+ \rightarrow 9/2^+$</td>
</tr>
<tr>
<td>864.9 (4)</td>
<td>13 (4)b</td>
<td>0.61 (29)</td>
<td>-</td>
<td>-</td>
<td>19/2$^+ \rightarrow 15/2^+$</td>
</tr>
<tr>
<td>Energy</td>
<td>Intensity</td>
<td>E2 (1)</td>
<td>E2 (2)</td>
<td>E2 (3)</td>
<td>E2 (4)</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>930.6</td>
<td>8 (3)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15/2^+ → 11/2^+</td>
</tr>
<tr>
<td>946.4</td>
<td>35 (1)</td>
<td>0.34 (11)</td>
<td>0.76 (24)</td>
<td>-</td>
<td>21/2^+ → 17/2^+</td>
</tr>
<tr>
<td>963.5</td>
<td>60 (1)</td>
<td>0.43 (9)</td>
<td>0.90 (17)</td>
<td>-</td>
<td>17/2^+ → 13/2^+</td>
</tr>
<tr>
<td>1275.7</td>
<td>29 (1)</td>
<td>-0.21 (12)</td>
<td>(0.90)</td>
<td>+0.02 (8)^c</td>
<td>15/2^- → 13/2^+</td>
</tr>
</tbody>
</table>

^aValues in parentheses were determined from fit to quoted E2 substate alignments. Uncertainties were taken to range from ±0.1 (at α = 0.5) to ±0.05 (at α = 0.95).

^bIntensity taken from coincidence data.

^cAssigned as E1.

TABLE IV. Active orbitals for β_2 ≈ 0.17.

<table>
<thead>
<tr>
<th>Particle</th>
<th>CSM label</th>
<th>Dominant Configuration</th>
<th>g-factor^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>A</td>
<td>h_{1/2}</td>
<td>1/2^- [550]</td>
</tr>
<tr>
<td>b</td>
<td>B</td>
<td>h_{1/2}</td>
<td>3/2^- [541]</td>
</tr>
<tr>
<td>c</td>
<td>C</td>
<td>g_{7/2}</td>
<td>5/2^- [413]^b</td>
</tr>
<tr>
<td>d</td>
<td>D</td>
<td>d_{3/2}</td>
<td>3/2^- [411]^b</td>
</tr>
<tr>
<td>e</td>
<td>E</td>
<td>g_{7/2}</td>
<td>7/2^- [413]</td>
</tr>
<tr>
<td>f</td>
<td>F</td>
<td>g_{5/2}</td>
<td>5/2^- [422]</td>
</tr>
<tr>
<td>g</td>
<td>G</td>
<td>p_{1/2}</td>
<td>1/2^- [310]</td>
</tr>
</tbody>
</table>

^aFrom Lönnroth et al. [44].

^bAt β_2 = 0.17, these states contain significant components other than the asymptotic orbital listed.
FIGURES

FIG. 1. Singles, proton-gated, and α-gated γ-ray spectra from the U. of Penn. 18O+96Zr experiment at $E_{\text{BEAM}} = 72$ MeV. The singles spectrum has been multiplied by one hundred to compensate for a hardware down-scale. The dotted lines indicate the strongest pxn and $alpha_n$ γ rays, which are obscured in the singles spectrum by γ rays from x channel products. Asterisks in the coincidence spectra mark peaks partially or wholly due to reactions on $^{90-94}$Zr.

FIG. 2. Calculated fully-aligned anisotropies of mixed $E2/M1$ decays. Initial and final state spins are: 10 \rightarrow 10 (dotted), 10 \rightarrow 9 (dashed), and 10 \rightarrow 8 (solid; pure $E2$). Anisotropies are reasonably insensitive to spin for initial state spins greater than 4h. The sign convention for $\delta_{E2/M1}$ is that of Ref. [28].

FIG. 3. Level scheme of 108Pd.

FIG. 4. The ground-state band of 108Pd. Gating transitions are marked with asterisks and contaminant lines are marked “c”.

FIG. 5. Level scheme of 107Pd.

FIG. 6. Sample 107Pd coincidence spectra. a) Gate on 312.0 keV line (band 4). Note that some band 2 and band 3 transitions are present due to the linking 384.1 keV γ ray. b) Sum of spectra gated on 945.8 and 956.7 keV lines (band 1). Contaminant lines are marked “c”.

FIG. 7. Excitation functions for γ-rays from the Penn 18O + 96Zr experiment. The 798 keV and 249 keV transitions placed in 109Ag are shown with filled circles. 125 keV and 191 keV lines identified in 110Ag are shown with open squares. 523 keV (filled diamonds) and 335 keV (open triangles) lines in 109,110Cd, respectively, are shown for comparison. The cross sections are corrected for proton and γ-ray efficiencies.

FIG. 8. Level scheme of 109Ag.
FIG. 9. Sample coincidence spectra in 109Ag. a) Gate on the 298.8 keV line in band 1. b) Sum of spectra gated on the 1275.7 keV and 213.5 keV lines. A "c" indicates a contaminant line while a "?" indicates an unplaced 109Ag transition.

FIG. 10. LEPS spectra from the 13C + 100Mo experiment. (a) Singles down-scaled by 10. (b) Gate on 798.0 keV in the Ge detector.

FIG. 11. TRS calculations for the 108Pd vacuum. Contour lines are in 250 keV increments. a) $\hbar \omega = 0.195$ MeV: Minimum at $\beta_2 = 0.176$, $\gamma = -1^\circ$, $E' = -1.35$ MeV with $I_x = 1.1\hbar$; second minimum at $\beta_2 = 0.17$, $\gamma = -120^\circ$, $E' = -1.26$ MeV. b) $\hbar \omega = 0.326$ MeV: Minimum at $\beta_2 = 0.199$, $\gamma = -13^\circ$, $E' = -1.56$ MeV with $I_x = 2.9\hbar$. The second minimum now has $E' = -1.22$. c) $\hbar \omega = 0.456$ MeV: Minimum at $\beta_2 = 0.205$, $\gamma = -5^\circ$, $E' = -3.2$ MeV with $I_x = 13.2\hbar$. d) $\hbar \omega = 0.586$ MeV: Minimum at $\beta_2 = 0.172$, $\gamma = -8^\circ$, $E' = 5.55$ MeV with $I_x = 20.6\hbar$.

FIG. 12. Quasi-particle Routhians for a) neutrons and b) protons in 108Pd. Calculations are for $\beta_2 = 0.18$, $\beta_4 = 0$, and $\gamma = 0^\circ$. Pairing strengths of $\Delta_\nu = 1.5$ MeV and $\Delta_\tau = 1.2$ MeV were used at zero frequency, falling by 50% at $\hbar \omega = 0.8$ MeV. See Table IV for a list of the Routhian labels.

FIG. 13. Aligned angular momentum i_x for positive parity bands in 108Pd and 110Cd. Closed symbols are for 108Pd and open symbols are for 110Cd. Squares indicate the yrast band while triangles indicate the ground band above the first alignment.

FIG. 14. Aligned angular momentum i_x for 107Pd bands. $K = 1/2$ was used for band 1 (diamonds), $K = 5/2$ was used for bands 2 and 3 (triangles) and band 4 (squares). The yrast $7/2^+$, $11/2^+$, and $15/2^+$ states were included in the plots for both bands 3 and 4. Band 2 of 108Pd is shown for comparison.

FIG. 15. Experimental Routhians for 107Pd bands. The parameters were the same as for Fig. 14. The yrast $7/2^+$, $11/2^+$, and $15/2^+$ states were included in the plots for both bands 3 and 4.
FIG. 16. Transition strengths for 107Pd band 3 decays. Experimental $B(M1)/B(E2)$ ratios are shown as points. Geometrical model predictions assuming $\nu g_{\frac{5}{2}} \otimes \nu\left(h_{\frac{11}{2}}\right)^2$ (solid line) and $\nu d_{\frac{5}{2}} \otimes \nu\left(h_{\frac{11}{2}}\right)^2$ (dashed line) configurations are shown for comparison.

FIG. 17. Aligned angular momentum i_x for band 1 of 109Ag (triangles), assuming $K = 7/2$. Band 2 of 108Pd (circles) is shown for comparison.

FIG. 18. Transition strengths for 109Ag band 1 decays. Experimental $B(M1)/B(E2)$ ratios and 1σ limits are shown with error bars and arrows. Geometrical model predictions assuming $\pi g_{\frac{9}{2}}$ (below $I = 21/2\hbar$) and $\pi g_{\frac{9}{2}} \otimes \nu\left(h_{\frac{11}{2}}\right)^2$ (above $I = 21/2\hbar$) are also shown for proton K-values of 9/2 (solid lines), 7/2 (dashed lines), and 5/2 (dotted lines). The model calculations do not include the measured signature splittings, which induce very large fluctuations below $I = 21/2\hbar$.

40
\[^{107}\text{Pd} \]
a) 312.0 keV

b) 945.8 + 956.7 keV
\(\hbar \omega = 0.195 \)

\(\hbar \omega = 0.326 \)

\(\hbar \omega = 0.456 \)

\(\hbar \omega = 0.586 \)

\[X = \beta_2 \cos(\gamma + 30) \]

\[Y = \beta_2 \sin(\gamma + 30) \]