The MACHO Project: Limits on Planetary Mass Dark Matter in the Galactic Halo from Gravitational Microlensing

C. Alcock\(^1\), R.A. Allsman\(^3\), D. Alves\(^1,4\), T.S. Axelrod\(^5\), A. Becker\(^6\), D.P. Bennett\(^{1,2}\), K.H. Cook\(^{1,2}\), K.C. Freeman\(^5\), K. Griest\(^{2,7}\), J. Guern\(^{2,7}\), M.J. Lehner\(^{2,7}\), S.L. Marshall\(^{1,2}\), B.A. Peterson\(^9\), M.R. Pratt\(^{2,6,8}\), P.J. Quim\(^5\), A.W. Rodgers\(^5\), C.W. Stubbs\(^{2,5,6,8}\), W. Sutherland\(^9\)

(The MACHO Collaboration)

ABSTRACT

The MACHO project has been monitoring about ten million stars in the Large Magellanic Cloud in the search for gravitational microlensing events caused by massive compact halo objects (Machos) in the halo of the Milky Way. In our standard analysis, we have searched this data set for well sampled, long duration microlensing lightcurves, detected several microlensing events consistent with Machos in the \(0.1 M_\odot \lesssim m \lesssim 1.0 M_\odot\) mass range, and set limits on the abundance of objects with masses \(10^{-5} M_\odot \lesssim m \lesssim 10^{-1} M_\odot\). In

\(^{1}\)Lawrence Livermore National Laboratory, Livermore, CA 94550
Email: alcock, alves, bennett, kcook, stuart@igpp.llnl.gov

\(^{2}\)Center for Particle Astrophysics, University of California, Berkeley, CA 94720

\(^{3}\)Supercomputing Facility, Australian National University, Canberra, ACT 0200, Australia
Email: robyn@macho.anu.edu.au

\(^{4}\)Department of Physics, University of California, Davis, CA 95616

\(^{5}\)Mt. Stromlo and Siding Spring Observatories, Australian National University, Weston, ACT 2611, Australia
Email: tsa, kcf, peterson, pjq, alex@merlin.anu.edu.au

\(^{6}\)Departments of Astronomy and Physics, University of Washington, Seattle, WA 98195
Email: becker, mrp, stubbs@astro.washington.edu

\(^{7}\)Department of Physics, University of California, San Diego, CA 92039
Email: kgriest, jguern, mlehner@ucsd.edu

\(^{8}\)Department of Physics, University of California, Santa Barbara, CA 93106

\(^{9}\)Department of Physics, University of Oxford, Oxford OX1 3RH, U.K.
Email: w.sutherland@physics.ox.ac.uk
In this paper, we present a different type of analysis involving the search for very short time scale brightenings of stars which is used to set strong limits on the abundance of lower mass Machos. Our analysis of the first two years of data toward the LMC indicates that Machos with masses in the range $2.5 \times 10^{-7} \, M_\odot < m < 5.2 \times 10^{-4} \, M_\odot$ cannot make up the entire mass of a standard spherical dark halo. Combining these results with those from the standard analysis, we find that the halo dark matter may not be comprised of objects with masses $2.5 \times 10^{-7} \, M_\odot < m < 8.1 \times 10^{-2} \, M_\odot$.

Subject headings: dark matter - gravitational lensing - Stars: low-mass, brown dwarfs

1. Introduction

If a significant fraction of the dark halo of the Milky Way is made up of Machos (MAssive Compact Halo Objects), it should be possible to detect them by searching for gravitational microlensing (Paczyński 1986; Petrou 1981). As a Macho passes near the line of sight to a background star, the star appears to be magnified by a factor

$$A = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$ \hspace{1cm} (1)

where $u = b/r_E$, b is the distance from the Macho to the line of sight, and the Einstein ring radius r_E is given by

$$r_E = \sqrt{\frac{4GmLx(1-x)}{c^2}}$$ \hspace{1cm} (2)

where m is the mass of the Macho, L is the observer-star distance, and x is the ratio of the observer-lens and observer-star distances.

Since Machos are in motion ($v \sim v_\odot = 220 \text{km/sec}$) relative to the line of sight, this magnification is time dependent, with $A(t) = A(u(t))$, where

$$u(t) = \left[u_{\text{min}}^2 + \left(\frac{2(t-t_0)}{\hat{t}}\right)^2\right]^{1/2}. $$ \hspace{1cm} (3)

Here t_0 is the time of peak magnification, and \hat{t} is the event duration, which can be written

$$\hat{t} = 2r_E/v_\perp \sim 130\sqrt{m/M_\odot} \text{ days}, $$ \hspace{1cm} (4)
where v_\perp is the Macho velocity relative to the line-of-sight. For more detailed information, see Paczyński (1986) and Griest (1991).

If the halo consisted entirely of objects with masses under about $10^{-4} \, M_\odot$ the average duration of microlensing would be less than 1.5 days, and the events would last only about three hours if the halo were made of $10^{-6} \, M_\odot$ objects. In order to clearly see the shape of the microlensing curve for such low mass lenses, images of a lensed star must be taken in rapid succession during the event. Such an experiment was undertaken by the EROS collaboration (Aubourg et al. 1995), in which a total of about 82,000 stars were imaged up to 46 times per night for several months. No microlensing events were found, and it was reported that objects with masses $5 \times 10^{-8} \, M_\odot < m < 5 \times 10^{-4} \, M_\odot$ can not comprise the entire Galactic Halo at the 90% c.l. We have not followed this approach, but we have used a different technique also capable of setting limits on low mass Machos.

The MACHO collaboration has been monitoring the brightnesses of several million stars in the LMC, SMC, and Galactic Bulge since 1992 July using the 50’ telescope at Mt. Stromlo, Australia. A dichroic beamsplitter and filters are used to provide simultaneous measurements in red and blue passbands (Alcock et al. 1996b). The observing strategy for the first two years of LMC data was designed to be sensitive to objects with masses $m > 10^{-3} \, M_\odot$, so a typical LMC field was generally imaged at most once or twice per clear night. Therefore microlensing events with durations under a few days will have very few magnified points on their light curves and would show up in our data as upward excursions of one, two or three consecutive measurements, occurring on stars which otherwise appeared completely normal. In this paper we search specifically for such short duration “spike” events. Clearly, if any spikes are detected, no conclusion could be drawn regarding their origin since there would be insufficient detail in the lightcurves. Therefore, the technique described here is most useful when few if any spikes are found, in which case useful upper limits can be placed on the prevalence of low mass Machos. After applying selection criteria described below, we do not find any such spikes and so are able to strongly constrain the existence of low mass objects in the halo of the Milky Way.

2. Event Selection and Detection

The analysis reported here uses the first two years of LMC data (Alcock et al. 1995a; Alcock et al. 1996a; Alcock et al. 1996b). Twenty-two fields of 0.5 square degree each were monitored on every clear night from 1992 July 20 to 1994 October 26, for a total of 10827 observations. A total of about 8.5 million stars are used in this analysis. The images are taken with a refurbished telescope system (Hart et al. 1996) and a special purpose camera
system (Stubbs et al. 1993; Marshall et al. 1994), photometrically reduced using a special purpose code named Sodophot (Bennett et al. 1996), and assembled into time series for analysis. Each lightcurve consists of many measurements of the flux of a star in two filter bands (called “red” and “blue”), as well as estimated errors in the flux measurement and several quantities used to detect probable systematic error in the measurement. These quantities include the crowding, χ^2 of PSF fit, missing pixel fraction, cosmic ray flag, and sky background. As in the standard analysis these measures are used to remove suspect data before any further analysis is performed.

Also, as in the standard analysis, several properties of the expected microlensing signal are used to eliminate stars and events which are unlikely to arise from microlensing. After imposing such selection criteria, it is necessary to calculate the number of actual microlensing events which would have be removed by these cuts, and this detection efficiency calculation is discussed in the following sections.

Because this search is for short duration events, one of the most powerful signatures of microlensing, the shape of the lightcurve (eq’s [1] and [3]), cannot be used as a selection criterion. Since there are three free parameters for the microlensing lightcurve shape, we would need four or more observations during the event to get a meaningful fit. Therefore, any phenomenon which causes a significant upward excursion in one or two observations could be mistaken for very short duration microlensing. Looking through our data, we find many one-observation excursions. A partial list of causes includes satellite tracks and glints, telescope slips, and asteroids. In order to reduce this background, we consider only those instances where two or three exposures were taken of the same same star on the same night. Since each exposure gives both red and blue flux measurements, we define a “quad” as a sequence of 2 (or 3) exposures of a star which are on the same night. In the first two years of LMC data we have 1.44×10^8 quads with two measurements on the same night and 5.8×10^6 quads with three. We then require that all the measurements in the quad be significantly magnified, and we also make use of the fact that for very short duration microlensing, the measurements of the star on the previous and following nights should not have significant upward excursions. Thus each quad represents a potential detection of short duration microlensing events, and because the microlensing rate is proportional to $m^{-1/2}$ (Griest 1991) a substantial number of quads would be magnified if the Milky Way Halo were made of low mass Machos.

We define the magnification of a given measurement as

$$A = \frac{f}{\bar{f}},$$

where f is the flux of the measurement and \bar{f} is the median flux of all the points in the relevant pass band that pass the quality cuts described above. In order to reduce the
statistical probability of random fluctuations in measured flux giving false triggers, we require that all four (or all six) measurements have positive excursions of more than 4σ, where σ is set by the flux measurement error. That is, we require that the magnification be above a threshold magnification A_T, with $A_T - 1 = 4\sigma_{\text{max}}$, where σ_{max} is the largest magnification error of the four or six quad measurements. By using only these sets of measurements and setting a threshold proportional to the error, the probability of false event detection can be greatly reduced while still allowing a strong limit to be set. With a threshold $A_T - 1 = 4\sigma_{\text{max}}$ and a total of 1.5×10^8 quads, the expected number of false triggers from statistical fluctuations is $(3.2 \times 10^{-5})^4 \times 1.5 \times 10^8 = 1.6 \times 10^{-10}$. (This estimate assumes Gaussian errors, so realistically the non-Gaussian tails will increase this number substantially.) The $4\sigma_{\text{max}}$ threshold was chosen a priori because after investigation of several possible analysis methods on a small subset of the data, it appeared most likely to give few (if any) events and a significant detection efficiency.

In addition to the above criteria, we demand that there be a reasonable number of high quality data points on the star in order to accurately determine the baseline flux. Thus we cut on the number of simultaneous red and blue data points and the average photometric error. In our data set we have found a large number of periodic and non-periodic variables which can be eliminated due to the fact that they vary continually, so we also demand that the lensed star not be flagged as a variable. Next, since microlensing is so rare, we do not expect more than one microlensing event to take place on a given star, so we can also eliminate stars in which two or more such events are found. Finally, since gravitational lensing should magnify all wavebands by the same amount, we can demand that the four or six spike points be achromatic within errors. Therefore we make the following set of cuts:

1) The star must have at least six observations in which both the red and blue data points pass the cuts in crowding, seeing, etc.

2) The star must have $V-R < 0.9$.

3) Both the red and blue points in the measurements in the quad, immediately before the quad, and immediately after the quad must pass the cuts in crowding, seeing, etc. and have a magnification error less than 0.5.

4) The “robust” χ^2 (that is, a χ^2 fit with the highest and lowest ten percent of the data excluded) of a fit to a constant flux must be less than 0.9 in both red and blue.

5) $A - 1 > 4\sigma_{\text{max}}$ for all points in the quad, where σ_{max} is the maximum error of the measurements in the quad.

6) $A - 1 < 4\sigma_{\text{max}}$ for the red and blue points in the measurement previous to the quad.
and the measurement following the quad.

7) the measurements in the quad must be achromatic within errors, that is \(\Delta < 2\sigma_e \), where \(\Delta = |A_r/A_b - 1| \).

8) There may be at most one event per star.

Cuts 1, 2, 4, and 8 are for the elimination of false events caused by variable stars, cuts 1 and 3 are to eliminate background caused by poor photometry, cut 5 is to reduce the chance of statistical fluctuations or single-observation glitches causing an event, and cut 6 is to eliminate longer duration events. See Figure 1 for an example of our data and a Monte Carlo event which passes these cuts.

These cuts were run on the first two years of LMC data, and no events were found. To test the robustness of these cuts, the analysis was run with thresholds varying between \(3\sigma_{\text{max}} \) and \(5\sigma_{\text{max}} \). While a few events were found at thresholds below \(4\sigma_{\text{max}} \), none were found at the a priori threshold of \(4\sigma_{\text{max}} \). This will be discussed further in Section 6.

3. Theoretical Event Rates

In order to use our non-detection of spike events to make a statement about the content of the Milky Way halo, we need to predict the number of events we would have expected to find if the halo is made of low mass Machos. Thus we need to know the efficiency with which our experiment, in combination with the above selection criteria, would have detected short duration microlensing events if in fact such events occurred. The search for spike events is sensitive only to durations of about 0.1 to 4 days, corresponding to masses of about \(10^{-6} \) to \(10^{-3} M_\odot \) (see eq. [4]), and we need to use a halo model to make a connection between event duration, rate, and Macho mass.

We first consider a simple spherical halo model with mass density

\[
\rho(r) = \rho_0 \frac{R_0^2 + a^2}{r^2 + a^2}
\]

where \(\rho_0 = 0.008 M_\odot \text{pc}^{-3} \) is the local dark matter mass density, \(r \) is the distance to the center of the Galaxy, \(R_0 = 8.5 \text{kpc} \) is the distance of the sun from the Galactic center, and \(a = 5 \text{kpc} \) is the Galactic core radius. Griest (1991) showed that the microlensing rate of a \(\delta \)-function mass distribution is given by

\[
\Gamma = 1.60 \times 10^{-6} u_T/\sqrt{m/M_\odot} \text{events/year},
\]

where \(u_T = u(A_T) \), and \(A_T \) is the magnification threshold for an event. (The expression for \(\Gamma \) is slightly different from that given in Griest (1991) because we use 50 kpc for the
Fig. 1.— A typical Monte Carlo event which passes the cuts used in this analysis. The top two curves are an expanded view of the quad in which the event occurred. Note that the points in the quad are above the threshold of 1.204, and the previous and following measurements are below it. The solid line is the theoretical microlensing curve added to the data. On the bottom are the entire year 2 lightcurves for the same event. The magnified quad points are clearly visible at day 540.
distance to the LMC, rather than 55 kpc.) In an experiment the number of microlensing events which are expected to be detected is given by

\[N_{\text{exp}} = \Gamma E \mathcal{E} \tag{8} \]

where \(\Gamma \) is the microlensing rate (in event/year/star), \(E \) is the effective exposure (in star-years) and \(\mathcal{E} \) is the average detection efficiency.

The probability of an event occurring with duration \(\hat{t}_{\text{min}} < \hat{t} < \hat{t}_{\text{max}} \) can be written

\[P = \frac{1}{\Gamma} \int_{\hat{t}_{\text{min}}}^{\hat{t}_{\text{max}}} \frac{d\Gamma}{d\hat{t}} d\hat{t}. \tag{9} \]

where, in the approximation of a stationary line of sight, the distribution of event durations is given by (Alcock et al. 1996b)

\[\frac{d\Gamma}{d\hat{t}} = \frac{32 u_T L \rho_0}{m v_0^2 \hat{t}^4} \int_0^1 dx \frac{r_E^2(x) A e^{-Q}}{A + B x + x^2} \tag{10} \]

where \(A = (R_0^2 + a^2)/L^2 \), \(B = -2r_0 \cos b \cos l/L \), \(b \) and \(l \) are the galactic coordinates of the source star, \(v_0 = 220 \text{ km/sec} \) is the solar circular velocity, and \(Q = 4r_E^2(x)/(v_0^2 \hat{t}^2) \). The probability that such an event is actually observed depends strongly on the duration, since the spike selection criteria above eliminate the possibility of detecting long duration events or events which last only an hour. We can thus define the average efficiency of observing such events as

\[\mathcal{E} = \frac{1}{\Gamma} \int_{\hat{t}_{\text{min}}}^{\hat{t}_{\text{max}}} \frac{d\Gamma}{d\hat{t}} \epsilon(\hat{t}) d\hat{t}. \tag{11} \]

where \(\epsilon(\hat{t}) \) is the detection efficiency as a function of event duration.

4. Finite Source Effects

When the impact parameter of the lens is comparable to the size of the lensed object, the magnification can differ significantly from the point source approximation given in equation (1). For a lensed star with radius \(R_\ast \), we define

\[U_\ast = \frac{R_\ast x}{r_E(x)} \tag{12} \]
as the “effective radius” of the star (the radius of the star normalized to the Einstein radius and scaled to the lens plane). The point source approximation will then break down completely for \(u \lesssim U^* \) because only the fraction of the surface of the star inside the Einstein ring radius will be significantly magnified. In the case of a star of constant surface brightness, we use (Witt & Mao 1994)

\[
A = \frac{2}{\pi U_*} + \frac{1 + U_*^2}{U_*^2} \left(\frac{\pi}{2} + \arcsin \frac{U_*^2 - 1}{U_*^2 + 1} \right)
\]

(13)

for \(u = U_* \), and

\[
A = \frac{2(u - U_*)^2}{\pi U_*^2(u + U_*)} \frac{1 + U_*^2}{\sqrt{4 + (u - U_*)^2}} \Pi \left(\frac{\pi}{2}, n, k \right)
\]

\[+ \frac{u + U_*}{2\pi U_*^2} \sqrt{4 + (u - U_*)^2} \ E \left(\frac{\pi}{2}, k \right) \]

\[- \frac{u - U_*}{2\pi U_*^2} \frac{8 + (u^2 - U_*^2)}{\sqrt{4 + (u - U_*)^2}} \ F \left(\frac{\pi}{2}, k \right) \]

(14)

for \(u \neq U_* \), where

\[
n = \frac{4uU_*}{(u + U_*)^2},
\]

\[
k = \sqrt{\frac{4n}{4 + (u - U_*)^2}},
\]

and \(F, E, \) and \(\Pi \) are elliptic integrals of the first, second, and third kind.

There are two effects from the finite source size. First, the maximum possible magnification

\[
A_{\text{max}} = \frac{\sqrt{4 + U_*^2}}{U_*}
\]

(15)

becomes very low for lower mass lenses. For a star with \(R = 10\,R_\odot \) and a lens at \(x = 0.5 \), we have \(A_{\text{max}} = 18.3 \) for a lens with \(m = 10^{-4}\,M_\odot \). However, with \(m = 10^{-6}\,M_\odot \) we have \(A_{\text{max}} = 2.08 \) and with \(m = 10^{-7}\,M_\odot \) we get \(A_{\text{max}} = 1.15 \). Because we are searching for significant magnifications, this effect would tend to lower the detection efficiency for lower mass lenses. The second effect of a finite source size is that the star is magnified for a longer period of time. This occurs because a fraction of the star can be close enough to the lens to be significantly magnified even if the lens is far from the center of the star (see Figure 2). This effect increases the detection efficiency for low mass lenses whose average event duration is shorter than the minimum detectable point source event time scale. These two
Fig. 2.— A plot of light curves for various source radii. For larger sources, the maximum magnification decreases, but the width of the curve increases.

\[m = 10^{-7} \, M_\odot \]
\[u_{\text{min}} = 0.01 \]
\[\hat{t} = 0.05 \, \text{days} \]
\[x = 0.2 \]

- \(r/R_\odot = 0 \)
 - \(A_{\text{max}} = 100.0 \)
- \(r/R_\odot = 3.0 \)
 - \(A_{\text{max}} = 2.17 \)
- \(r/R_\odot = 10.0 \)
 - \(A_{\text{max}} = 1.15 \)
effects mostly cancel each other out, with the detection efficiency increasing slightly for very low mass Machos.

It is clear that the shape of the light curve is strongly dependent on the lens distance x, so the detection efficiency is a function of both x and \hat{t}. Since \hat{t} is a function of both x and v_\perp, we use $\epsilon = \epsilon(x, v_\perp)$ in order to simplify the efficiency analysis. The average detection efficiency (eq. [11]) then becomes

$$\mathcal{E} = \frac{1}{\Gamma} \int_0^1 dx \int_0^{v_{\text{max}}} dv_\perp \frac{d\Gamma}{dx dv_\perp} \epsilon(x, v_\perp)$$

(16)

where v_{max} is some upper limit on the perpendicular velocity of the lens. The differential rate used in equation (16) can be found from equation (10) using a simple change of variables:

$$\frac{d\Gamma}{dx dv_\perp} = \frac{2u_T L \rho_0 v_\perp^3 \hat{t}}{mv_0^2} \left(\frac{Ae^{-v_\perp^2/v_0^2}}{A + Bx + x^2} \right)$$

(17)

5. Monte Carlo and Detection Efficiency

To measure the detection efficiency $\epsilon(x, v_\perp)$, a Monte Carlo simulation was performed in which randomly generated microlensing events were added to each star in the database. Then the same analysis used to search for spike events was performed on these simulated data sets. As a function of the lens position and perpendicular velocity of these events one can then find the fraction of simulated events which were recovered and define this as $\epsilon(x, v_\perp)$. From simple geometry one expects microlensing events to have a uniform distribution in minimum impact parameter u_{\min}. A minimum error of 0.014A is added to each data point, so the minimum $3\sigma_{\text{max}}$ threshold is given by $A_T = 1.042$, or $u_{\min} = 2.262$. (As stated previously, the analysis was run on several thresholds varying between $3\sigma_{\text{max}}$ and $5\sigma_{\text{max}}$, so the minimum threshold was used to set the upper limit of the u_{\min} distribution. This somewhat lowers the detection efficiency for higher thresholds, but the differential microlensing rate given in eq. [17] is correspondingly higher due to the factor of u_T and there is no net effect in the final result.) Therefore, in performing the Monte Carlo, the simulated microlensing events were added with a uniform distribution of u_{\min} from 0 to 2.262. To adequately sample the widest possible range of event durations and finite source lightcurve shapes, the events were generated using a distribution of x which was uniform over $0 < x < 1$, and a v_\perp distribution uniform over $0 < v_\perp < v_{\text{max}} = 667 \text{ km/sec}$. In order to improve statistics the simulated events were forced to peak during a quad (that is, t_0 between the time of measurements previous to and following a quad). The total exposure time used to calculate N_{exp} was adjusted accordingly by using the total “quad time” rather
than the length of the observing run. Thus no simulated events were added during weeks when the telescope was down.

The shape of the light curve is a function of the radius of the star for low mass Machos, and the radius of a star is correlated with its magnitude. Because brighter stars tend to give lower errors in measured magnification, it follows that the shape of a light curve is correlated with the event detection threshold. Therefore the radius of the source was estimated from its color and magnitude, and this radius was used in conjunction with the observer-lens distance x to determine the shape of the simulated light curves. Although limb darkening can change the shape of the light curve (Witt & Mao 1994), limb darkening coefficients are not well known for such a large sample of stars. An investigation into the effect of limb darkening has shown that the resulting uncertainties in magnification are much smaller than those caused by the uncertainty in the radius of the source star, so the effects of limb darkening are ignored in this analysis.

Since the detection threshold is proportional to the maximum error of the points in a quad, it is important to treat the errors correctly when adding a fake microlensing event to a light curve. The error of the magnification A can be approximated by

$$
\sigma = (\sigma_s^2 + (0.014f/\bar{f})^2 + f/\bar{f}^2)^{1/2}
$$

(18)

where σ_s is the error from sky background, f is the total measured flux of the star, and $0.014f/\bar{f}$ is the minimum error added after photometric analysis. The minimum error is also added in the standard analysis photometry (Alcock et al. 1993; Alcock et al. 1996b; Alcock et al. 1995b) in order to account for several sources of systematic error in the photometry. There are two limiting cases of the above formula: “sky-dominated” error and “flux-dominated” error. In the case where the error comes mostly from the sky subtraction, the error in the flux does not change significantly when flux is added to create a simulated microlensing event. On the other hand, when the error is dominated by the Poisson statistics of the flux, the error in the added flux should be scaled by \sqrt{f}. Because the flux error is larger, giving higher thresholds, this case was used in the Monte Carlo to get a conservative measure of the efficiency. (The minimum error was subtracted before the errors were adjusted and then added in again afterward, just as the minimum error is added in after the photometric reductions in the standard analysis.) The true efficiency is expected to be closer to the flux error case, because in general the sky error contributes significantly only to dim stars which already have a fairly low efficiency due to their large error bars (large threshold).

Because of our crowded fields and poor seeing, many of our photometric objects are actually blends of two or more stars. When a blended star is lensed, the measured
magnification can be significantly smaller than the true magnification. To quantify this effect, artificial stars were added to real images taken under a variety of observing conditions and the photometry code was run again. We thus created a series of response functions of recovered vs. added flux, and when a simulated microlensing event is generated the photometric object is matched to one of these response functions using the object’s magnitude. The observing conditions on each point in the light curve are then matched to similar conditions in the response function, and the recovered flux is added to the data. A detailed description of this analysis can be found in Alcock et al. (1996b).

The effects of blending on the detection efficiency are twofold. First, the lower measured magnification will lower the efficiency as fewer quads will be above the threshold magnification. However, if an object is a blend of two or more stars, then there are two or more stars that may be lensed. Thus the total number of stars in the data set is larger than the number of photometric objects, and our total exposure is significantly increased. A Monte Carlo event with a large blend fraction (and significant finite source effects) can be seen in Figure 3.

6. Results

Because the blending effects described above are a function of the magnitude of the lensed object, it follows that the detection efficiency depends on the magnitude of the source as well as the lens position and velocity. Using an infinitesimal bin width, the efficiency $\epsilon(x, v_\perp, M)$ can be written

$$\epsilon = \frac{dN_{\text{rec}}/dx dv_\perp dM}{dN_{\text{add}}/dx dv_\perp dM}$$

(19)

where M is the average of the red and blue magnitudes of the lensed star (this value is the unblended stellar magnitude which is determined by the blending response function), N_{add} is the number of fake events added to the data, and N_{rec} is the number of these events recovered by the analysis. To calculate the number of expected events, one must integrate the efficiency over the stellar luminosity function $n(M)$:

$$N_{\text{exp}} = \int dM \int_0^1 dx \int_0^{v_{\text{max}}} dv_\perp \int d\Gamma \frac{d\Gamma}{dx dv_\perp} \epsilon(x, v_\perp, M)n(M)T$$

(20)

where T is the effective exposure, or “quad time” of a given star. To calculate the efficiency, we have

$$\frac{dN_{\text{rec}}}{dx dv_\perp dM} = \sum_i \delta(x - x_i)\delta(v_\perp - v_{\perp i})\delta(M - M_i)$$

(21)
Fig. 3.— A Monte Carlo event with significant blending and finite source effects. The shape of the theoretical light curve differs from a simple point source light curve, and the magnified points are below the added magnification because only a fraction of the object is lensed. The event still passes the cuts, and the magnified quad can be seen at day 450 on the entire year 2 light curve.
where the sum is over all recovered events. Because we add one simulated event to each object in the database, we can write

\[
\frac{dN_{\text{add}}}{dM} = n_{\text{sod}}(M)
\]

(22)

where \(n_{\text{sod}}(M)\) is the Sodophot object luminosity function (that is, the luminosity distribution of objects recovered by the photometric reductions of the images). This function is used because the response function stellar magnitudes follow the Sodophot object distribution, and the response functions are chosen uniformly from this distribution (Alcock et al. 1996b). The events are added uniformly in \(x\) and \(v_\perp\), which gives

\[
\frac{dN_{\text{add}}}{dxdv_\perp dM} = \frac{d^2}{dxdv_\perp} n_{\text{sod}}(M) = \text{const.} \times n_{\text{sod}}(M) = \frac{n_{\text{sod}}(M)}{v_{\text{max}}}
\]

(23)

where the factor \(1/v_{\text{max}}\) is a normalization constant. The number of expected events then becomes

\[
N_{\text{exp}} = \sum_i \left. \frac{d\Gamma}{dxdv_\perp} \right|_{x_i, v_\perp_i} \frac{n(M_i)}{n_{\text{sod}}(M_i)} T_i v_{\text{max}}
\]

(24)

Approximately 6.5% of the stars used in this analysis can be found in more than one field (Alcock et al. 1996b), and we must scale the number of expected events accordingly. However, the possibility of double counting in this analysis occurs only when double or triple exposures are taken on overlapping fields on the same night. This only happens in about \(2/3\) of our quads, so we subtract 4.4% from our number of expected events rather than 6.5%.

A plot of \(N_{\text{exp}}\) vs mass for a \(\delta\)-function mass distribution is given in Figure 4. At the peak at \(10^{-5}M_\odot\), about 17 events would be expected to have been found if the halo is as modeled in equation (6), and consisted entirely of Machos of that mass. Equivalently, we may convert the number of expected events into upper limits on the allowed halo mass fraction that can be contributed from objects in the excluded mass range. Such a plot is given in Figure 5. Using the fact that no events were found we can place strong limits on the halo of the Milky Way. The 95\% Poisson c.l. when \(N_{\text{obs}} = 0\) is \(N_{\text{exp}} = 3\) events, so for the simple spherical halo model masses between \(2.5 \times 10^{-7} M_\odot\) and \(5.2 \times 10^{-4} M_\odot\) are ruled out at the 95\% c.l. Although these limits are for a \(\delta\)-function mass distribution, any model distribution containing a combination of masses in this range is also ruled out at the 95\% c.l. (Griest 1991; Alcock et al. 1996b).
Fig. 4.— A plot of the number of expected events vs mass for a δ-function mass distribution. With no events found the 95% c.l. upper limit is 3 events, and the region of the curve above this limit are excluded. Also shown is the number of expected events from the EROS CCD experiment.
Fig. 5.— A plot of allowed halo mass fraction vs mass for a δ-function mass distribution. The region above the solid line is excluded at the 95% c.l. Also shown is the halo fraction upper limit from the EROS CCD experiment.
Also shown in Figures 4 and 5 are the results from the EROS CCD experiment (Aubourg et al. 1995). Although they give a stronger limit for $m < 10^{-6} \, M_\odot$, the limits set by this analysis give the strongest limits to date for $10^{-6} \, M_\odot \lesssim m \lesssim 10^{-3} \, M_\odot$.

As mentioned previously, the analysis was run with thresholds varying from $3\sigma_{\max}$ to $5\sigma_{\max}$ in order to determine the robustness of the analysis. A plot of the number of expected and observed events as a function of threshold can be found in Figure 6, and the corresponding plot of halo fraction upper limit vs. threshold can be found in Figure 7. A total of 11 events were found which passed various thresholds between $3\sigma_{\max}$ and $3.75\sigma_{\max}$, but no events were found at thresholds of $4\sigma_{\max}$ and higher. Of the 11 events found, 8 were on stars with $V < 17.5$ and are likely low level variables which fell through the variable star cuts. Of the three remaining events, two occurred in the same field on the same night which indicates possible problems with the observations, and inspection of the second image in the quad shows a likely telescope slip during the exposure. The remaining event passes only the $3\sigma_{\max}$ threshold cut. In order to reduce these backgrounds in future analysis runs, stars with $V < 17.5$ will be cut as will images with more than one event, and it has been determined that these cuts will reduce the number of expected events by about 20%. However, because neither the number of expected events or the number of observed events varies drastically with threshold, the analysis using the a priori $4\sigma_{\max}$ threshold is robust and the limits set on the abundance of low mass Machos are valid.

7. Combined Analyses

The standard analysis method of fitting microlensing curves to the data is sensitive to Machos of masses $10^{-5} \, M_\odot < m < 1 \, M_\odot$, and it would be useful to combine the results of the two types of analyses. To avoid double counting of events which could pass both the spike and standard cuts, we ran the standard analysis cuts on any simulated events passing the spike event cuts, and any events passing both sets of cuts are so flagged. The efficiency is then recalculated with the flagged events considered as failing the cuts, and the number of expected events can then be added to the number of expected events from the standard analysis. However, when adding the number of expected events the number of observed events must also be added. The standard analysis of the first two years of LMC data yields eight likely microlensing events (Alcock et al. 1996a) which would make the combined limit on halo fraction very weak. However, the eight events all have durations $\hat{t} > 34$ days, and it is very unlikely that these events were caused by machos with $m < 0.1 \, M_\odot$. Therefore the standard analysis efficiency was recalculated with a cut such that the event duration must be shorter than 20 days. (20 days was chosen in order to be conservative.) The number
Fig. 6.— Number of expected events as a function of threshold for three values of Macho mass. Also shown are the number of observed events as a function of threshold.
Fig. 7.— Halo fraction upper limit (95% c.l.) as a function of threshold for three values of lens mass. The upper limit rises at lower thresholds because events are detected at these thresholds and the 95% c.l. upper limit on \(N_{\text{exp}} \) increases accordingly.
of expected events thus drops significantly at $m > 0.1 M_\odot$, but we also have no observed events and are able to place strong limits on lower mass objects. The number of expected events and halo fraction vs lens mass can be found in Figures 8 and 9. Here it can be seen that Machos of masses $2.5 \times 10^{-7} M_\odot < m < 8.1 \times 10^{-2} M_\odot$ cannot make up the entire halo mass, and lenses in the range $1.88 \times 10^{-6} M_\odot < m < 2.5 \times 10^{-2} M_\odot$ comprise at most 20% of the halo dark matter.

8. Power Law Halo Models

The halo models of Evans (Evans 1994; Evans & Jijina 1994) allow for rising or falling rotation curves, flattened halos, and various disk contributions to the total galactic mass. These models are also called “power law” models because at large galactic radii R, the circular velocity $v_{\text{circ}} \propto R^{-\beta}$ for some model parameter β. The parameters used to describe the mass and velocity distributions in these models are as follows:

- β At large galactic radii, $\beta = 0$ gives a flat rotation curve, $\beta < 0$ gives rising curve, and $\beta > 0$ gives falling curve.
- q Halo flattening parameter. $q = 1$ gives spherical halo, $q = 0.7$ represents ellipticity of E6.
- v_0 Normalization velocity.
- R_c Galactic core radius. A large R_c gives a massive disk.
- R_0 Radius of solar orbit.

The differential event rate $d\Gamma/dx dv_\perp$ can be derived as a function of these parameters (Alcock et al. 1995c), and it is then straightforward to calculate the number of expected events using equation (24). Limits were calculated for the same models used in Alcock et al. (1996b), and the parameters used are found in Table 1. Also shown for each model in Table 1 is the total mass inside 50 kpc from the center of the Milky Way, which we call M_{50}.

Model S is the simple standard spherical halo described in Section 3, and model A is the power law model equivalent. Model B has a rising rotation curve and a more massive halo, while model C has a falling curve and a less massive halo. Model D has a flattened halo, and models E, F, and G have more massive disks. Model E has an extremely massive disk and a very light halo, and this model is probably inconsistent with estimates of the mass of the Milky Way.
Fig. 8.— Number of expected events as a function of Macho mass after combining the standard and spike analyses, with a cut on events with $\hat{t} > 20$ days. The spike result is plotted with the dotted line (with the double counted events subtracted), the standard result with the dashed line, and the combined result is shown with the solid line.
Fig. 9.— Halo fraction upper limit (95% c.l.) for the combined spike and standard analyses and with \(\hat{t} < 20 \) days.
The number of expected events was calculated for these models and then combined with the results from the standard analysis as described in Section 7. In Figure 10 we plot the resulting number of expected events as a function of lens mass for a δ-function mass distribution using the simple spherical halo model and the seven power law halo models described above. Figure 11 is a plot of allowed halo fraction vs mass for the same models. For the models with more massive halos, only about 30% of the halo can be comprised of Machos in the range of $9.5 \times 10^{-7} \text{M}_\odot < m < 2.9 \times 10^{-2} \text{M}_\odot$. The limits get weaker for less massive halos, and little useful parameter space can be excluded for the extreme “maximal disk” model E.

The differences between the limits among the various models is primarily because the number of expected events is directly proportional to M_{50}, or the number of Machos in the halo. We can get more model-independent limits by removing this factor and plotting the total allowed halo mass from Machos inside 50 kpc, rather than the halo mass fraction, as a function of mass. This plot is shown in Figure 12. Ignoring the unlikely model E we see that, independent of model, no more than 10^{11}M_\odot of the halo mass inside 50 kpc can come from objects of mass $1.85 \times 10^{-6} \text{M}_\odot < m < 6.5 \times 10^{-3} \text{M}_\odot$, and objects in the range $3.2 \times 10^{-7} \text{M}_\odot < m < 1.87 \times 10^{-2} \text{M}_\odot$ can not make up the entire canonical value of $4.1 \times 10^{11} \text{M}_\odot$.

9. Conclusion

We have extended the sensitivity of the MACHO experiment to two orders of magnitude lower in mass using existing data and without changing observing strategy. Objects with masses $2.5 \times 10^{-7} \text{M}_\odot < m < 8.1 \times 10^{-2} \text{M}_\odot$ (roughly one Mars mass to 80 Jupiter masses) can not comprise the entire standard spherical halo mass, and Machos in the range $1.88 \times 10^{-6} \text{M}_\odot < m < 2.5 \times 10^{-2} \text{M}_\odot$ make up less than 20% of the halo. Independent of halo model, objects in the range of $3.2 \times 10^{-7} \text{M}_\odot < m < 1.87 \times 10^{-2} \text{M}_\odot$ can not make up the canonical halo mass inside 50 kpc of $4.1 \times 10^{11} \text{M}_\odot$, and less than 10^{11}M_\odot of the halo is made from Machos with masses $1.85 \times 10^{-6} \text{M}_\odot < m < 6.5 \times 10^{-3} \text{M}_\odot$. These limits are the strongest published to date.

We are grateful for the support given our project by the technical staff at the Mt. Stromlo Observatory. Work performed at LLNL is supported by the DOE under contract W-7405-ENG-48. Work performed by the Center for Particle Astrophysics personnel is supported by the NSF through AST 9120005. The work at MSSSO is supported by the Australian Department of Industry, Science, and Technology. K.G. acknowledges support
Fig. 10.— A plot of the number of expected events vs mass for the standard model and seven power law halo models. The results shown are for the combined spike and standard analyses, and with $\hat{t} < 20$ days. The line at $N_{\text{exp}} = 3$ is the 95% c.l. upper limit, and the regions of the curves above this line are ruled out.
Fig. 11.— Upper limits on Macho fraction of the halo vs lens mass for the spherical and power law halo models (line coding is the same as in Figure 10). The results shown are for the combined spike and standard analyses, and with $t < 20$ days. The regions above the curves are ruled out at the 95% c.l.
Fig. 12.— Upper limits on the total mass of Machos interior to 50 kpc as a function of lens mass. The results shown are for the combined spike and standard analyses, and with $\dot{t} < 20$ days. The regions above the curves are ruled out at the 95 % c.l. Objects of mass $3.2 \times 10^{-7} M_\odot < m < 1.87 \times 10^{-2} M_\odot$ can not make up the canonical value of $4.1 \times 10^{11} M_\odot$, independent of the model used.
from DOE OJI, Alfred P. Sloan, and Cotrell Scholar awards. C.S. acknowledges the generous support of the Packard and Sloan Foundations. W.S. is supported by a PPARC Advanced fellowship. M.L. thanks Thor Vandehei for assistance in running the analysis.

REFERENCES

Petrou, M. 1981, University of Cambridge

This preprint was prepared with the AAS \TeX\ macros v4.0.
Table 1. Power Law Halo Model Parameters

<table>
<thead>
<tr>
<th>Model</th>
<th>β</th>
<th>q</th>
<th>v_0 (km/sec)</th>
<th>R_e (kpc)</th>
<th>R_0 (kpc)</th>
<th>M_{50} ($10^{11} M_\odot$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>8.5</td>
<td>4.13</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>8.5</td>
<td>4.62</td>
</tr>
<tr>
<td>B</td>
<td>-0.2</td>
<td>1</td>
<td>200</td>
<td>5</td>
<td>8.5</td>
<td>7.34</td>
</tr>
<tr>
<td>C</td>
<td>0.2</td>
<td>1</td>
<td>180</td>
<td>5</td>
<td>8.5</td>
<td>2.36</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0.71</td>
<td>200</td>
<td>5</td>
<td>8.5</td>
<td>3.74</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
<td>90</td>
<td>20</td>
<td>7.0</td>
<td>0.82</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>1</td>
<td>150</td>
<td>25</td>
<td>7.9</td>
<td>2.10</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>1</td>
<td>180</td>
<td>20</td>
<td>7.9</td>
<td>3.26</td>
</tr>
</tbody>
</table>