$G^*_2(2)$-Structures on pseudo-Riemannian manifolds

I. Kath

Sfb 288 Preprint No. 203

Berlin, April 1996

The list of preprints of the Sonderforschungsbereich 288 is available at:
http://www-sfb288.math.tu-berlin.de
G^*_2-Structures on pseudo-Riemannian manifolds

I. Kath

April 15, 1996

Abstract

We will give the definition and basic properties of nearly-parallel G^*_2-structures on pseudo-Riemannian manifolds of signature $(4,3)$. In particular we explain the equivalence of their existence with that of Killing spinor fields. Furthermore, we will give first examples of pseudo-Riemannian manifolds of signature $(4,3)$ with Killing spinors.

Contents

1 Introduction 1

2 The exceptional non-compact group G^*_2 2

3 Killing spinors 15
 3.1 Geometrical and nearly parallel G^*_2-structures 17
 3.2 Examples of homogeneous spaces with Killing spinors 19
 3.3 Warped products with Killing spinors . 24

1 Introduction

This article relates to the paper [4] of Th. Friedrich and others on nearly parallel G_2-structures. G_2-structures are topological reductions of the frame bundle of a 7-dimensional manifold to the exceptional group G_2. They can be described by 3-forms of special algebraic type on the manifold. Since $G_2 \subset SO(7)$ such a structure induces a Riemannian metric and in particular a Levi-Civita connection ∇ on the manifold. It is called nearly parallel if the associated 3-form ω^3 satisfies $\nabla_Z \omega^3 = -2\lambda(Z \omega^3 \ast \omega^3)$. The existence of
such a 3-form is equivalent to the existence of a spin structure with a Killing spinor field.

Now we are interested in similar structures on pseudo-Riemannian manifolds, more exactly, on manifolds admitting a metric of signature (4,3). There are two real connected non-compact groups of type G_2. One of them denoted by $G^{*}_{2(2)}$ is a subgroup of $SO(4,3)$. $G^{*}_{2(2)}$ is one of the possible "exceptional" holonomy groups of non-symmetric irreducible pseudo-Riemannian manifolds [2].

The $Spin(4,3)$-representation $\Delta_{1,3}$ has some algebraic properties similar to those of the $Spin(7)$-representation Δ_7. In particular, both are real. Furthermore, while $Spin(7)$ acts transitively on the sphere S^7 with isotropy group G_2 the action of the connected component $Spin^+(4,3)$ of $Spin(4,3)$ on the pseudo-sphere in $\Delta_{1,3}$ is transitive with isotropy group $G^{*}_{2(2)}$. For a fixed spinor $\psi \neq 0$ in Δ_7 the Clifford multiplication $X \mapsto X \cdot \psi$ is an isomorphism from \mathbb{R}^7 to the orthogonal complement of ψ. The same is true in $\Delta_{1,3}$ for any non-isotropic spinor ψ.

These properties will allow us to translate several results from the Riemannian case to signature (4,3). We will give the definition and basic properties of nearly-parallel $G^{*}_{2(2)}$-structures. In particular we explain the equivalence of their existence with that of Killing spinor fields. Furthermore, we will give first examples of pseudo-Riemannian manifolds of signature (4,3) with Killing spinors.

2 The exceptional non-compact group $G^{*}_{2(2)}$

Let $g_{1,3}$ be the symmetric bilinear form on \mathbb{R}^7 which is given by $g_{1,3} = \text{diag} (-1, -1, -1, -1, 1, 1, 1)$ with respect to the standard basis $e_1, e_2, ..., e_7$ of \mathbb{R}^7.

Define e_i by $g_{1,3} = g_{1,3}(e_i, e_j)$. The real Clifford algebra $C_{1,3} = \text{Cliff}(\mathbb{R}^7, -g_{1,3})$ is the algebra generated by $e_1, e_2, ..., e_7$ with the relations $e_i^2 = -e_i$, $e_ie_j + e_je_i = 0$ if $i \neq j$. It is isomorphic to the direct sum $\mathbb{R}(8) \oplus \mathbb{R}(8)$ of algebras of matrices. We will use the isomorphism which is defined by

\[
\begin{align*}
 e_1 &= (\varepsilon \otimes \varepsilon \otimes \sigma, \varepsilon \otimes \varepsilon \otimes \sigma) \\
 e_2 &= (-\sigma \otimes \sigma \otimes \tau, -\sigma \otimes \sigma \otimes \tau) \\
 e_3 &= (-\sigma \otimes I \otimes \sigma, -\sigma \otimes I \otimes \sigma) \\
 e_4 &= (\sigma \otimes \tau \otimes \tau, \sigma \otimes \tau \otimes \tau) \\
 e_5 &= (-I \otimes \varepsilon \otimes \tau, -I \otimes \varepsilon \otimes \tau)
\end{align*}
\]
\[
\begin{align*}
 c_6 &= (-\tau \otimes \varepsilon \otimes \sigma, -\tau \otimes \varepsilon \otimes \sigma) \\
 c_7 &= (I \otimes I \otimes \varepsilon, -I \otimes I \otimes \varepsilon).
\end{align*}
\]

where
\[
 I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \tau = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.
\]

The projection of this isomorphism onto the first component restricted to Spin(4,3) \(\subset C_{4,3}\) yields the Spin(4,3)-representation on \(\mathbb{R}^8 =: \Delta_{4,3}\). Furthermore this projection defines the Clifford multiplication of a vector \(X \in \mathbb{R}^7 \subset C_{4,3}\) with a spinor \(\psi \in \Delta_{4,3}\) which we will denote by \(X \cdot \psi\). Denote by
\[
 \psi_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \psi_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \psi_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \psi_4 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \psi_5 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \psi_6 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \psi_7 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \psi_8 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \psi_9 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},
\]

the standard basis of \(\mathbb{R}^8\). We identify the Lie algebra of Spin(4,3) with spin(4,3) = \(\{\omega = \sum_{i<j} \omega_{ij} c_i c_j | \omega_{ij} \in \mathbb{R}\} \subset C_{4,3}\). We will need the following formulae for the action of spin(4,3) on \(\Delta_{4,3}\) which follow from (1). Let \(D_{ij}\) be the 8 \(\times\) 8 matrix whose \((i, j)\)-entry is 1 and all of whose other entries are 0. We set \(E_{ij} = -D_{ij} + D_{ji}\) and \(A_{ij} = D_{ij} + D_{ji}\). Then we have
\[
\begin{align*}
 c_1 c_2 &= -E_{12} + E_{34} + E_{56} - E_{78} \\
 c_1 c_3 &= -E_{13} + E_{24} - E_{57} - E_{68} \\
 c_1 c_4 &= -E_{14} + E_{23} + E_{58} - E_{67} \\
 c_1 c_5 &= A_{16} - A_{25} + A_{38} - A_{47} \\
 c_1 c_6 &= A_{15} + A_{26} + A_{37} + A_{48} \\
 c_1 c_7 &= A_{17} - A_{28} - A_{35} + A_{46} \\
 c_1 c_8 &= -E_{14} + E_{23} - E_{58} + E_{67} \\
 c_2 c_4 &= -E_{13} - E_{24} - E_{57} - E_{68} \\
 c_2 c_5 &= A_{17} + A_{26} - A_{35} + A_{48} \\
 c_2 c_6 &= -A_{16} + A_{25} + A_{38} - A_{47} \\
 c_2 c_7 &= A_{18} + A_{27} - A_{36} + A_{45} \\
 c_2 c_8 &= -E_{12} + E_{14} - E_{56} + E_{78} \\
 c_3 c_4 &= A_{18} - A_{27} - A_{36} + A_{45} \\
 c_3 c_5 &= A_{15} + A_{26} - A_{37} + A_{48} \\
 c_3 c_6 &= A_{17} - A_{28} - A_{35} + A_{46} \quad (2)
\end{align*}
\]
\begin{align*}
\epsilon_7 e_7 &= -A_{15} + A_{26} - A_{37} + A_{48} \\
\epsilon_5 e_5 &= A_{17} + A_{28} + A_{35} + A_{46} \\
\epsilon_6 e_6 &= -A_{18} + A_{27} - A_{36} + A_{45} \\
\epsilon_7 e_7 &= -A_{16} - A_{25} + A_{38} + A_{47} \\
\epsilon_5 e_6 &= E_{12} + E_{34} - E_{56} - E_{78} \\
\epsilon_7 e_5 &= E_{11} + E_{23} + E_{38} + E_{67} \\
\epsilon_6 e_7 &= -E_{13} + E_{24} + E_{57} - E_{68}
\end{align*}

The following two bilinear forms on $\Delta_{1,3}$ are related to the $\text{Spin}(4,3)$-representation. On one hand we have the standard inner product of \mathbb{R}^8 which we denote by (\cdot, \cdot). It is invariant with respect to the maximal compact subgroup $((\text{Pin}(4) \times \text{Pin}(3))/\mathbb{Z}_2) \cap \text{Spin}(4,3)$ of $\text{Spin}(4,3)$ and admits the property $(X \cdot \varphi, \psi) + (\varphi, \theta(X) \cdot \psi) = 0$ for all $X \in \mathbb{R}^7$ and $\varphi, \psi \in \Delta_{1,3}$. Here $\theta : \mathbb{R}^7 \to \mathbb{R}^7$ denotes the reflection with respect to $\text{span}\{e_5, e_6, e_7\}$. On the other hand we consider the product $(\cdot, \cdot)_{\Delta}$ of signature $(4,4)$ defined by $(\varphi, \psi)_\Delta := (e_1 e_2, e_1 e_2 \varphi, \psi)$. It is invariant with respect to the connected component $\text{Spin}^+(4,3)$ of $1 \in \text{Spin}(4,3)$ and the equation $(X \cdot \varphi, \psi)_\Delta + (\varphi, X \cdot \psi)_\Delta = 0$ holds for all $X \in \mathbb{R}^7$ and $\varphi, \psi \in \Delta_{1,3}$. The matrix of $(\cdot, \cdot)_{\Delta}$ with respect to the standard basis $\psi_1, ..., \psi_8$ equals $\text{diag}(-1, -1, -1, -1, 1, 1, 1, 1)$. In particular, we obtain an embedding $\text{Spin}(4,3) \subset \text{SO}(4,4)$.

Because of the $\text{Spin}^+(4,3)$-invariance of $(\cdot, \cdot)_{\Delta}$ the group $\text{Spin}^+(4,3)$ acts on $M_c = \{ \psi \in \Delta_{1,3} \mid (\psi, \psi)_{\Delta} = c \}$, $c \in \mathbb{R}$. We will prove that this action is transitive for $c \neq 0$ and has two orbits for $c = 0$.

Proposition 2.1 The action of $\text{Spin}^+(4,3)$ on

$$ S_{1,1} := \{ \psi \in \Delta_{1,3} \mid (\psi, \psi)_{\Delta} = 1 \} $$

is transitive. The same is valid for

$$ H_{1,1} := \{ \psi \in \Delta_{1,3} \mid (\psi, \psi)_{\Delta} = -1 \} $$

The orbits of the $\text{Spin}(4,3)^+$ action on

$$ C := \{ \psi \in \Delta_{1,3} \mid (\psi, \psi)_{\Delta} = 0 \} $$

are $\{0\}$ and $C \setminus \{0\}$.
Proof. We consider the subalgebra $\mathfrak{spin}(4, 0) = \mathfrak{su}(2) \oplus \mathfrak{su}(2)$ of $\mathfrak{spin}(4, 3)$. It is spanned by

\begin{align*}
e_1e_2 + c_3c_4 &= 2(-E_{12} + E_{34}) & e_1e_2 - c_3c_4 &= 2(E_{56} - E_{78}) \\
e_1c_3 - c_2c_4 &= 2(E_{13} + E_{24}) & e_1c_3 + c_2c_4 &= -2(E_{57} + E_{68}) \quad (3) \\
e_1e_4 - c_2c_3 &= 2(-E_{14} + E_{23}) & e_1e_4 + c_2c_3 &= 2(E_{58} - E_{67})
\end{align*}

(see (2). Thus, $\mathfrak{spin}(4, 0) \hookrightarrow \mathfrak{so}(\Delta_{4, 3}) = \mathfrak{so}(4, 4)$ equals the standard imbedding of $\mathfrak{su}(2) \oplus \mathfrak{su}(2)$ into $\mathfrak{so}(4, 4)$.) Consequently, given an element $\psi \in \Delta_{4, 3}$ we find an element g of $\mathfrak{spin}(4, 0) \subset \mathfrak{Spin}^+(4, 3)$ such that $g\psi = x_1\psi_1 + x_5\psi_5$. Let now $\psi = x_1\psi_1 + x_5\psi_5$ be an element of $\mathfrak{S}^{1,3}$, i.e. $-x_1^2 + x_5^2 = 1$. Then $(x_1e_1 - x_5e_6)e_6 \in \mathfrak{spin}^+(4, 3)$ and $(x_1e_1 - x_5e_6)e_6\psi_5 = x_1x_1\psi_1 + x_5x_5\psi_5$. Analogously, given a $\psi = x_1\psi_1 + x_5\psi_5 \in \mathfrak{H}^{1,3}$, i.e. $-x_1^2 + x_5^2 = -1$ we have $e_1(x_1e_1 + x_5e_6) \in \mathfrak{spin}^+(4, 3)$ and $e_1(x_1e_1 + x_5e_6)\psi_1 = x_1x_1\psi_1 + x_5x_5\psi_5$. This proves the transitivity of the $\mathfrak{Spin}^+(4, 3)$-action on $\mathfrak{S}^{1,3}$ and $\mathfrak{H}^{1,3}$, respectively. Now we consider the case $\psi = x_1\psi_1 + x_5\psi_5 \in \mathfrak{C} \setminus \{0\}$. First let ψ be equal to $x_1\psi_1 + x_5\psi_5$ ($x \neq 0$). Then

\[
e_1\left(\frac{x^2 + 1}{2x}e_1 + \frac{x^2 - 1}{2x}e_6\right) \in \mathfrak{Spin}^+(4, 3)
\]

and

\[
e_1\left(\frac{x^2 + 1}{2x}e_1 + \frac{x^2 - 1}{2x}e_6\right)(\psi_1 + \psi_5) = x_1\psi_1 + x_5\psi_5 = \psi
\]

For $\psi = x_1\psi_1 - x_5\psi_5$ the assertion follows from $-e_1e_2c_3e_4(\psi_1 + \psi_5) = \psi_1 - \psi_5$.

Corollary 2.2

1. The isotropy group $H(\psi) = \{ h \in \mathfrak{Spin}^+(4, 3) | h\psi = \psi \}$ of a non-isotropic spinor $\psi \in \Delta_{4, 3}$ (i.e. $\langle \psi, \psi \rangle_\Delta \neq 0$) with respect to the $\mathfrak{Spin}^+(4, 3)$-action is a connected non-compact group of type G_2 with fundamental group \mathbb{Z}_2.

2. The Lie algebra of the isotropy group of an isotropic spinor is the semidirect sum of a 6-dimensional nilpotent algebra and $\mathfrak{sl}(3, \mathbb{R})$.

Proof. ad 1. Because of the transitivity of the $\mathfrak{Spin}^+(4, 3)$-action it suffices to prove that $H(\psi_1)$ has the required properties. We first consider the Lie algebra $\mathfrak{b}(\psi_1)$ of this group. Because of (2) it equals

\[
\mathfrak{b}(\psi_1) = \{ \sum_{i<j} \omega_{ij}c_ic_j | \begin{array}{l}
-\omega_{12} - \omega_{41} + \omega_{56} = 0 \\
-\omega_{14} - \omega_{21} - \omega_{35} = 0 \\
-\omega_{16} + \omega_{25} - \omega_{37} = 0 \\
-\omega_{15} - \omega_{26} - \omega_{47} = 0 \\
-\omega_{17} + \omega_{23} + \omega_{56} = 0 \\
\omega_{27} + \omega_{35} - \omega_{46} = 0
\end{array} \}
\]
It is spanned by $X_1 = e_1e_2 - e_3e_4$, $Y_1 = e_4e_1 + e_6e_6$, $X_2 = e_1e_3 + e_2e_4$, $Y_2 = e_2e_1 - e_6e_7$, $X_3 = e_1e_4 - e_2e_3$, $Y_3 = e_2e_3 + e_5e_7$, $X_4 = e_1e_6 - e_2e_5$, $Y_4 = e_1e_6 + e_3e_7$, $X_5 = e_2e_6 + e_3e_5$, $Y_5 = e_3e_6 - e_4e_7$, $X_6 = e_1e_7 - e_3e_6$, $Y_6 = e_1e_7 + e_4e_5$, $X_7 = e_2e_7 + e_4e_6$, and $Y_7 = e_2e_7 - e_3e_5$. Using the isomorphism of $\text{spin}(4,3)$ and $\mathfrak{so}(4,3)$, we see that the Killing form on $\mathfrak{h}(\psi_1)$ is non-degenerate and has index 6. Therefore, $\mathfrak{h}(\psi_1)$ is a non-compact real form of the semisimple Lie algebra $\mathfrak{h}(\psi_1)^\mathbb{C}$. Furthermore one reads from the relations

\[
\begin{align*}
[X_1, X_2] &= 4X_1, \quad [X_1, Y_2] = 2X_3, \\
[X_1, X_3] &= -4X_2, \quad [X_1, Y_3] = 2X_2, \\
[X_1, X_i] &= -2X_{i+1}, \quad [X_1, Y_i] = -2Y_{i+1} \quad (i = 4, 6), \\
[X_1, X_j] &= 2X_{j-1}, \quad [X_1, Y_j] = 2Y_{j-1} \quad (j = 5, 7), \\
[Y_1, X_2] &= -2X_3, \quad [Y_1, Y_2] = 4Y_3, \\
[Y_1, X_3] &= 2X_2, \quad [Y_1, Y_3] = -4Y_2.
\end{align*}
\]

that X_1 and Y_1 commute, but no element out of $\text{span}\{X_1, Y_1\}$ commutes with both X_1 and Y_1, i.e. $\mathfrak{h}(\psi_1)^\mathbb{C}$ has rank 2 and thus it must be simple. Since its dimension is 14 it is of type G_2. There is only one non-compact real form of the complex Lie algebra of type G_2 (see e.g. [8]). Now we determine $H(\psi_1)$. Recall that there are two non-compact connected groups of type G_2 (see [8]). The simply connected one has centre \mathbb{Z}_2. Because of the transitivity of the $\text{Spin}^+(4,3)$-action $H^{K,3}$ is diffeomorphic to the homogeneous space $\text{Spin}^+(4,3)/H(\psi_1)$. Using the exact homotopy sequence of this fibration we conclude from $\pi_2(H^{K,3}) = \pi_1(H^{K,3}) = \pi_0(H^{K,3}) = 0$ and from $\pi_1(\text{Spin}^+(4,3)) = \mathbb{Z}_2$, $\pi_0(\text{Spin}^+(4,3)) = 0$ that $H(\psi_1)$ is connected and admits fundamental group $\pi_1(H(\psi_1)) = \mathbb{Z}_2$.

ad 2. We calculate the Lie algebra $\mathfrak{h}(\psi_1 + \psi_3)$ of the isotropy group of $\psi_1 + \psi_3$ and obtain using (2)

\[
\mathfrak{h}(\psi_1 + \psi_3) = \left\{ \sum_{i<j} \omega_{i,j} e_i e_j \mid \begin{align*}
\omega_{11} + \omega_{22} - \omega_{33} &= 0, \\
\omega_{15} + \omega_{26} - \omega_{12} + \omega_{56} &= 0, \quad \omega_{34} - \omega_{17} &= 0, \\
\omega_{27} + \omega_{23} + \omega_{35} - \omega_{57} &= 0, \quad \omega_{14} + \omega_{16} &= 0, \\
\omega_{13} + \omega_{17} + \omega_{16} - \omega_{67} &= 0, \quad \omega_{24} + \omega_{45} &= 0
\end{align*} \right\}.
\]

Hence, $\mathfrak{h}(\psi_1 + \psi_3)$ is the semidirect sum of the null space \mathfrak{n} of its Killing form spanned by $e_3 e_3 + e_4 e_7$, $e_2 e_4 - e_3 e_5$, $e_1 e_4 - e_4 e_6$, $e_6 e_7 - e_1 e_3 + e_1 e_7 +$
(e_2 e_6, e_1 e_2 - e_5 e_6 + e_1 e_3 - e_2 e_6, e_2 e_3 - e_5 e_7 - e_2 e_5 + e_3 e_5) and the 8-dimensional subalgebra \(p \) spanned by \(e_1 e_6 + e_3 e_7, e_1 e_6 - e_2 e_3, e_1 e_2 + e_5 e_6, e_1 e_5 + e_2 e_6, e_1 e_3 + e_6 e_7, e_1 e_7 - e_3 e_6, e_2 e_3 + e_5 e_7, e_2 e_7 - e_4 e_5 \). Obviously, \(n \) is nilpotent. The Killing form restricted to \(p \) is non-degenerate and has index 3. Consequently, \(p \) equals \(\mathfrak{sl}(3, \mathbb{R}) \).

Definition 2.3 \(G_{2(2)} := H(\psi_1) \)

Remark 2.4 In this notation \(H^{1,1} \) is diffeomorphic to \(\text{Spin}^+(4,3)/G_{2(2)}^\ast \).

Corollary 2.5 For a fixed spinor \(\psi \in \Delta_{1,3} \) the kernel of the homomorphism

\[
\mathbb{R}^7 \to \{\psi\}^\perp \subset \Delta_{1,3} \\
X \mapsto X \cdot \psi
\]

(i) is trivial iff \(\psi \neq 0 \) is non-isotropic.

(ii) has dimension 3 iff \(\psi \neq 0 \) is isotropic.

Proof. Using (1) the assertions (i) and (ii) can be easily verified for \(\psi = \psi_1 \) and \(\psi = \psi_1 + \psi_5 \), respectively. Hence, they hold for any \(\psi \neq 0 \).

Now we consider the universal covering \(\lambda : \text{Spin}(4,3) \to SO(4,3) \). Because of \(-1 \notin G_{2(2)}\), there is an isomorphism from \(G_{2(2)}^\ast \) onto a subgroup of \(SO(4,3) \), which we also denote by \(G_{2(2)}^\ast \). We now describe this group using 3-forms on \(\mathbb{R}^7 \). The key point is a special relation between non-isotropic spinors in \(\Delta_{1,3} \) and generic 3-forms in \(\Lambda^3(\mathbb{R}^7) \).

Let \(\psi \in \Delta_{1,3} \) be a fixed non-isotropic spinor. Then the map

\[
\mathbb{R}^7 \ni X \mapsto X \psi \in \Delta_{1,3}
\]

is an isomorphism because of the orthogonality of \(X \psi \) and \(\psi \) and since \(\text{dim}_{\mathbb{R}} \Delta_{1,3} = 8 \). We observe now that for \(X, Y \in \mathbb{R}^7 \) the spinors \(\psi \) and \(Y X \psi + g_{4,3}(X,Y) \psi \) are orthogonal to each other. Therefore we can define a \((2,1)\)-tensor \(A_\psi \) by

\[
Y X \psi + g_{4,3}(X,Y) \psi = A_\psi(Y,X) \psi.
\]

\(A_\psi \) has the following properties

1. \(A_\psi(X,Y) = -A_\psi(Y,X) \)
2. $g_{A,3}(Y, A_c(Y, X)) = 0$

3. $A_c(Y, A_c(Y, X)) = -\|Y\|^2_{g_{1,3}} X + g_{A,3}(X, Y) Y$.

It defines a 3-form ω^3_ψ by $\omega^3_\psi(X, Y, Z) = g_{A,3}(X, A_c(Y, Z))$.

Clearly,

$$\omega^3_{\alpha c} = \omega^3_\psi$$

$$\alpha \in \mathbb{R}, \alpha \neq 0.$$ \hspace{1cm} (7)

In particular, if $\psi = \psi_1$ then a direct calculation yields $\omega^3_{\psi_1} = \omega^3_0$, where ω^3_0 is given by

$$\omega^3_0 = -e_1 \wedge e_2 \wedge e_7 - e_1 \wedge e_3 \wedge e_5 + e_1 \wedge e_4 \wedge e_6$$

$$+ e_2 \wedge e_3 \wedge e_6 + e_2 \wedge e_4 \wedge e_5 - e_3 \wedge e_4 \wedge e_7 + e_5 \wedge e_6 \wedge e_7.$$ \hspace{1cm} (8)

Definition 2.6 Let ω^3 be a 3-form on \mathbb{R}^7. Furthermore let $X_1, ..., X_7$ be an arbitrary pseudo-orthonormal basis of $(\mathbb{R}^7, g_{1,3})$. We define a 4-form σ^4 by

$$\sigma^4 = -\sum_{i=1}^7 (X_i \wedge \omega^3) \wedge (X_i \wedge \omega^3) + \sum_{i=1}^7 (X_i \wedge \omega^3) \wedge (X_i \wedge \omega^3)$$

which does not depend on the chosen basis. We will say that ω^3 defines the orientation of \mathbb{R}^7 if $\omega^3 \wedge \sigma^4$ is a positive multiple of the volume form of \mathbb{R}^7. Furthermore we will say that ω^3 defines the space and time orientation of $(\mathbb{R}^7, g_{1,3})$ if it defines the orientation of \mathbb{R}^7 and if $\omega^3(X_5, X_6, X_7) > 0$ for any positively oriented pseudo-orthonormal basis $X_1, ..., X_7$.

Now let $\psi \neq 0$ be a fixed non-isotropic spinor and ω^3_ψ the associated 3-form. With the same notation as above we obtain $\omega^3 \wedge \sigma^4 = 42e_1 \wedge ... \wedge e_7$. Hence, ω^3_ψ defines the orientation of \mathbb{R}^7.

Now fix a spinor ψ with $(\psi, \psi)_A = -1$ and let $X_1, ..., X_7$ be a positively oriented pseudo-orthonormal basis. From the definition of A_ψ we know that $g_{1,3}(A_\psi(X_5, X_6), A_\psi(X_5, X_6)) = 1$ and therefore

$A_\psi(X_5, X_6) \notin \{X_5, X_6, X_7\}$. Since, however, $A_\psi(X_5, X_6) \perp X_5, X_6$ the vectors $A_\psi(X_5, X_6)$ and X_7 can not be orthogonal. Hence, $\omega^3_\psi(X_5, X_6, X_7) \neq 0$. Since on the other hand $\omega^3_\psi(e_5, e_6, e_7) = 1$ we obtain $\omega^3_\psi(X_5, X_6, X_7) > 0$. Hence ω^3_ψ defines the space and time orientation of $(\mathbb{R}^7, g_{1,3})$.

Vice versa, let A be a (2,1)-tensor on \mathbb{R}^7 which has the properties 1., 2., 3. Then A defines a 3-form $\omega^3 = g_{A,4}(\cdot, A(\cdot, \cdot))$. We can define σ^4 in the same way as above. From the properties 1., 2., 3. we conclude $\omega^3 \wedge \sigma^4 \neq 0$. Suppose that ω^3 defines the orientation of \mathbb{R}^7. Furthermore from the properties 1., 2., 3 we deduce as above that $\omega^3(X_5, X_6, X_7) \neq 0$ for any oriented pseudo-orthonormal basis $X_1, ..., X_7$. Suppose that ω^3 defines the space and time orientation of $(\mathbb{R}^7, g_{1,3})$. Consider now the subspace

$$E = \{ \psi \in \Delta_{1,3} \mid XY \psi = -g_{1,3}(X, Y) \psi + A(X, Y) \psi \}.$$
Then E is 1-dimensional and spanned by a spinor ψ_0 with $\langle \psi_0, \psi_0 \rangle_\Delta = -1$. In particular, $\omega^3 = \omega_{c_0}$. We obtain

Theorem 2.7 There is a 1-1 correspondence between $S^{4,3}/\{1, -1\}$ and those $\omega^3 \in \Lambda^3(\mathbb{R}^7)$ which define the space and time orientation of $(\mathbb{R}^7, g_{4,3})$ and for which the bilinear map A defined by $\omega^3(X, Y, Z) = g_{4,3}(X, A(Y, Z))$ admits the properties 1.. 2.. 3.

Analogously, there is a 1-1 correspondence between $H^{4,3}/\{1, -1\}$ and those $\omega^3 \in \Lambda^3(\mathbb{R}^7)$ which define the inverse space and time orientation of $(\mathbb{R}^7, g_{4,3})$ and for which the bilinear map A defined by $\omega^3(X, Y, Z) = g_{4,3}(X, A(Y, Z))$ admits the properties 1.. 2.. 3.

In particular, since we have for $g \in Spin^+(4, 3)$

$$\omega^3_{gy} = (\lambda(g^{-1}))^* \omega_y,$$

we conclude

Corollary 2.8 The image of $G_{2(2)}^*$ with respect to $\lambda : Spin(4, 3) \hookrightarrow SO(4, 3)$ equals

$$G_{2(2)}^* = \{ A \in SO^+(4, 3) \mid A^* \omega_0 = \omega_0 \}.$$

Note that $A \in SO(4, 3)$ and $A^* \omega_0 = \omega_0$ imply $A \in SO^+(4, 3)$ since ω_0 defines a space and time orientation.

On the other hand the equation $A^* \omega_0^3 = \omega_0^3$ for $A \in GL(7)$ implies $A \in SO(4, 3)$. See for a proof in [2]. Consequently, we obtain

$$G_{2(2)}^* = \{ A \in GL(7) \mid A^* \omega_0^3 = \omega_0^3 \}.$$

Next we investigate in the same way as above the action of $Spin^+(4, 3)$ on some of the Stiefel manifolds

$$V(\varepsilon_1, ..., \varepsilon_l) = \{ (\varphi_1, ..., \varphi_l) \mid \varphi_i \in \Delta_{4,3}, \langle \varphi_i, \varphi_i \rangle_\Delta = \varepsilon_i \ (i = 1, ..., l), \langle \varphi_i, \varphi_j \rangle_\Delta = \varepsilon_i \ (i = 1, ..., l), \langle \varphi_i, \varphi_j \rangle_\Delta = 0 \text{ if } i \neq j \ (i, j = 1, ..., l) \},$$

where $\varepsilon_i = -1$ for $i = 1, ..., k \ (k \leq l)$ and $\varepsilon_i = 1$ for $i = k + 1, ..., l$.

Proposition 2.9 The action of $Spin^+(4, 3)$ on $V(-1, -1), V(-1, 1)$ and $V(1, 1)$ is transitive.
Proof. Since $e_1 e_5 \in \text{Spin}(4,3)$ maps $S^{1,3}$ one-to-one onto $H^{3,4}$ and

$$(e_1 e_5) \text{Spin}^+(4,3)(e_1 e_5)^{-1} = (e_1 e_5) \text{Spin}^+(4,3)(-e_5 e_1) = \text{Spin}^+(4,3)$$ \hspace{1cm} (9)$$

the situation on $V(-1,-1)$ and $V(1,1)$ is essentially the same.

We calculate the dimension of the isotropy group $H(\varphi_1, \varphi_2)$ of an arbitrary pair (φ_1, φ_2) with $\langle \varphi_1, \varphi_1 \rangle_{\Delta} = -1 \cdot \langle \varphi_1, \varphi_2 \rangle_{\Delta} = 0$ and $\varphi_2 \neq 0$. Clearly (see Proposition 2.1), we may assume $\varphi_1 = \psi_1$. Next we shall explain why we can assume furthermore $\varphi_2 = x_2 \psi_2 + x_5 \psi_5$. The isotropy group $G^*_{2(2)}$ of ψ_1 contains $SO(3)$ and $SU(2)$ as subgroups. The Lie algebra $\mathfrak{so}(3) \subset \mathfrak{so}(4,4)$ is spanned by $c_4 c_6 + c_6 c_8 = 2(E_{41} - E_{56})$, $c_2 c_4 - c_6 c_7 = 2(-E_{21} - E_{57})$, $c_2 c_3 + c_4 c_7 = 2(E_{23} + E_{57})$ and $\mathfrak{su}(2) \subset \mathfrak{so}(4,4)$ by $c_1 c_2 - c_3 c_4 = 2(E_{56} - E_{78})$, $c_1 c_3 + c_2 c_4 = -2(E_{57} + E_{68})$, $c_1 c_5 - c_2 c_3 = 2(E_{58} - E_{67})$. Therefore we can first achieve that $\varphi_2 = x_2 \psi_2 + x_5 \psi_5$ by fixing ψ_5, using the action of $SO(3) \subset G^*_{2(2)}$ and after that $\varphi_2 = x_2 \psi_2 + x_5 \psi_5$ using $SU(2)$.

Thus, let $\varphi_2 = x_2 \psi_2 + x_5 \psi_5$. The equations (2) imply that the Lie algebra $\mathfrak{h}(\psi_1, x_2 \psi_2 + x_5 \psi_5)$ of the isotropy group of $(\psi_1, x_2 \psi_2 + x_5 \psi_5)$ consists of all $\omega = \sum_{i,j} \omega_{ij} c_i c_j \in \mathfrak{spin}(4,3)$ satisfying

$$-\omega_{12} - \omega_{34} + \omega_{56} = 0 \hspace{1cm} \omega_{13} - \omega_{24} - \omega_{67} = 0 \hspace{1cm} \omega_{14} + \omega_{23} + \omega_{57} = 0$$

$$-\omega_{16} - \omega_{15} + \omega_{35} = 0 \hspace{1cm} \omega_{15} - \omega_{26} - \omega_{17} = 0 \hspace{1cm} \omega_{17} + \omega_{25} + \omega_{16} = 0$$

$$\omega_{27} + \omega_{35} - \omega_{16} = 0$$

$$x_2(\omega_{12} + \omega_{34} - \omega_{56}) + x_5(-\omega_{16} - \omega_{25} + \omega_{47}) = 0$$

$$x_2(\omega_{13} - \omega_{24} + \omega_{15}) + x_5(-\omega_{15} + \omega_{26} + \omega_{57}) = 0$$

$$x_2(\omega_{14} + \omega_{23} - \omega_{57}) + x_5(-\omega_{17} + \omega_{67} - \omega_{15}) = 0$$

$$x_2(-\omega_{16} + \omega_{15} + \omega_{25} + \omega_{47}) + x_5(-\omega_{15} + \omega_{26} - \omega_{17}) = 0$$

$$x_2(-\omega_{16} + \omega_{25} - \omega_{47}) + x_5(-\omega_{17} + \omega_{57} - \omega_{16}) = 0$$

By simplifying these equations we obtain

$$\mathfrak{h}(\psi_1, x_2 \psi_2 + x_5 \psi_5) =$$

$$= \left\{ \sum_{i < j} \omega_{ij} c_i c_j \right\}$$

$$\begin{align*}
-\omega_{12} - \omega_{14} + \omega_{56} &= 0 \\
-\omega_{13} - \omega_{24} - \omega_{67} &= 0 \\
\omega_{14} + \omega_{23} + \omega_{57} &= 0 \\
-\omega_{16} - \omega_{25} + \omega_{47} &= 0 \\
\omega_{15} - \omega_{26} - \omega_{17} &= 0 \\
-\omega_{17} + \omega_{57} - \omega_{16} &= 0 \\
\omega_{27} + \omega_{35} - \omega_{16} &= 0
\end{align*}$$ \hspace{1cm} (10)
\[
\begin{align*}
\omega_{17} + \omega_{36} + \omega_{45} &= 0, \\
\omega_{27} + \omega_{35} - \omega_{46} &= 0, \\
x_{5}\omega_{47} &= 0, \\
x_2\omega_{47} &= 0, \\
x_2\omega_{57} - x_5\omega_{45} &= 0, \\
x_2\omega_{67} - x_5\omega_{46} &= 0, \\
x_5\omega_{34} + x_2\omega_{17} &= 0, \\
x_5\omega_{24} + x_2\omega_{17} &= 0, \\
x_5\omega_{14} + x_2\omega_{17} &= 0.
\end{align*}
\]

Since not \(x_2 = x_5 = 0 \) the dimension of the Lie algebra \(\mathfrak{h}(\varphi_1, \varphi_2) \) of \(H(\varphi_1, \varphi_2) \) equals 8 and the one of the orbit of \((\varphi_1, \varphi_2) \) equals 13. Hence, all orbits are open sets and the action of \(\text{Spin}^+(4,3) \) is transitive.

Corollary 2.10 The isotropy group of a pair \((\varphi_1, \varphi_2) \) of pseudo-orthonormal spinors with respect to the \(\text{Spin}^+(4,3) \)-action equals

1. \(SU(1,2) \) if \((\varphi_1, \varphi_2) \in V(-1, -1) \) or \(V(1,1) \)
2. \(SL(3, \mathbb{R}) \) if \((\varphi_1, \varphi_2) \in V(-1, 1) \).

Proof. The Lie algebra of \(H(\psi_1, \psi_2) \) equals

\[
\mathfrak{h}(\psi_1, \psi_2) = \{ \sum_{i<j} \omega_{ij}e_i e_j \mid -\omega_{12} - \omega_{34} + \omega_{56} = 0, \omega_{13} - \omega_{24} = 0, \omega_{14} + \omega_{23} = 0, \\
\omega_{16} + \omega_{15} = 0, \omega_{15} - \omega_{26} = 0, \\
\omega_{16} + \omega_{15} = 0, \omega_{15} - \omega_{26} = 0, \\
\omega_{17} = 0, i = 1, \ldots, 6 \}
\]

As a subalgebra of \(\mathfrak{so}(4,4) \) it is spanned by \(E_{34} - E_{78}, E_{56} - E_{178}, E_{57} + E_{68}, E_{58} - E_{67}, A_{37} + A_{18}, A_{38} - A_{17}, A_{15} + A_{46}, A_{36} - A_{45} \) and equals therefore \(\mathfrak{so}(1,2) \) where \(SU(1,2) \subset SU(2,2) \subset SO(4,4) \) is imbedded in the usual way. We conclude that the connected component of \(H(\psi_1, \psi_2) \) must be \(SU(1,2) \). On the other hand \(V(-1, -1) \) is simply connected. This follows from the exact homotopy sequence of the fibration \(SO^+(2,4) \rightarrow SO^+(4,4) \rightarrow V(-1, -1) \) since

\[
\ldots \rightarrow \pi_1(SO^+(2,4)) \rightarrow \pi_1(SO^+(4,4)) \rightarrow \pi_1(V(-1, -1)) \rightarrow \pi_0(SO^+(2,4), I) \rightarrow \ldots
\]

is the sequence of the following groups

\[
\ldots \rightarrow \mathbb{Z} \oplus \mathbb{Z}_2 \rightarrow \mathbb{Z} \oplus \mathbb{Z}_2 \rightarrow \pi_1(V(-1, -1)) \rightarrow 0 \rightarrow \ldots
\]
and \(i# \) sends \((1,1) \in \mathbb{Z} \oplus \mathbb{Z} \) to \((1,1) \in \mathbb{Z}_2 \oplus \mathbb{Z}_2 \) and is therefore surjective.

Using now the exact homotopy sequence of \(H(\psi_1, \psi_2) \to Spin^+(4,3) \to V(\mathbb{Z}) \)

\[\ldots \to \pi_1(V(-1,-1)) \to \pi_0(H(\psi_1, \psi_2),1) \to \pi_0(Spin^+(4,3),1) = 0 \]

we deduce from \(\pi_1(V(-1,-1)) = 0 \) that \(H(\psi_1, \psi_2) \) is connected. Thus \(H(\psi_1, \psi_2) = SU(1,2) \).

Now we turn to the Lie algebra of \(H(\psi_1, \psi_5) \). It is equal to

\[
h(\psi_1, \psi_5) = \{ \sum_{i<j} \omega_{ij} e_i e_j \mid \begin{array}{c}
-\omega_{16} - \omega_{25} + \omega_{17} = 0 \\
\omega_{12} - \omega_{56} = 0 \\
\omega_{13} - \omega_{67} = 0 \\
\omega_{23} - \omega_{57} = 0 \\
\omega_{15} - \omega_{26} = 0 \\
\omega_{17} + \omega_{36} = 0 \\
\omega_{27} + \omega_{35} = 0 \\
\omega_{i1} = 0, \ i = 1,2,3 \\
\omega_{i1} = 0, \ i = 5,6,7
\end{array} \}.
\] (12)

Using the isomorphism of \(spin(4,3) \) and \(so(4,3) \), we see that the Killing form on \(h(\psi_1, \psi_5) \) is non-degenerate and has index 3. Therefore, \(h(\psi_1, \psi_5) \) is a non-compact real form of the semisimple Lie algebra \(h(\psi_1, \psi_5)^\mathbb{C} \). Since, furthermore, \(h(\psi_1, \psi_5)^\mathbb{C} \) has dimension 8 it must be simple and therefore equal to \(sl(3,\mathbb{C}) \). The index of the Killing form distinguishes the various real forms of \(sl(3,\mathbb{C}) \). We conclude that \(h(\psi_1, \psi_5) \) equals \(sl(3,\mathbb{R}) \). Next we prove that \(H(\psi_1, \psi_5) \) is connected and has fundamental group \(\mathbb{Z}_2 \) what implies immediately \(H(\psi_1, \psi_5) = SL(3,\mathbb{R}) \) since the center of the universal covering of \(SL(3,\mathbb{R}) \) equals \(\mathbb{Z}_2 \). To begin with, we compute the first and second homotopy group of \(V(-1,1) \) using the exact homotopy sequence of the fibration \(SO^+(3,3) \to SO^+(4,4) \to V(-1,1) \). This sequence equals

\[
\ldots \to \pi_2(SO^+(4,4)) \to \pi_2(V(-1,1)) \to \pi_1(SO^+(3,3)) \to \pi_0(SO^+(3,3),I) \to \ldots
\]

and consists of the groups

\[
\ldots \to 0 \to \pi_2(V(-1,1)) \to \mathbb{Z}_2 \oplus \mathbb{Z}_2 \to \mathbb{Z}_2 \oplus \mathbb{Z}_2 \to \pi_1(V(-1,1)) \to 0 \to \ldots
\]

Since \(i# \) is an isomorphism we see that \(\pi_2(V(-1,1)) = \pi_1(V(-1,1)) = 0 \). A look at the exact homotopy sequence of the fibration \(H(\psi_1, \psi_5) \to \)}
\(\text{Spin}^+(4,3) \rightarrow V(-1,1) \) now shows that \(\pi_1(H(\psi_1, \psi_5)) = \pi_1(\text{Spin}^+(4,3)) = \mathbb{Z}_2 \) and \(\pi_0(H(\psi_1, \psi_5), 1) = 0. \)

Proposition 2.11 The action of \(\text{Spin}^+(4,3) \) on the Stiefel manifolds \(V(-1, -1, -1), V(-1, -1, 1), V(-1, 1, 1) \) and \(V(1, 1, 1) \) is transitive.

Proof. As in the proof of Proposition 2.9 it suffices to consider \(V(-1, -1, -1) \) and \(V(-1, -1, 1) \). Again we calculate the Lie algebras of the corresponding isotropy groups. Let \(\varphi_1, \varphi_2 \) and \(\varphi_3 \) pseudo-orthonormal spinors with \(\langle \varphi_1, \varphi_1 \rangle = \langle \varphi_2, \varphi_2 \rangle = -1 \). Because of Proposition 2.9 we may assume \(\varphi_1 = \psi_1 \) and \(\varphi_2 = \psi_2 \). Again the isotropy group of \((\psi_1, \psi_2) \) contains the same subgroup isomorphically to \(\text{SU}(2) \) as mentioned in the proof of Proposition 2.9 and the group \(\text{SO}(2) \subset \text{SO}(3) \) acting on \(\text{span}\{\psi_3, \psi_4\} \). Therefore we may set \(\varphi_3 = x_3\psi_3 + x_5\psi_5 \). Then the isotropy group of \((\varphi_1, \varphi_2, \varphi_3) \) has the Lie algebra

\[
\mathfrak{h}(\psi_1, \psi_2, x_3\psi_3 + x_5\psi_5) = \{ \sum_{i<j} \omega_{ij} e_i e_j | -\omega_{12} - \omega_{14} + \omega_{56} = 0 , \omega_{13} - \omega_{24} = 0 , \omega_{14} + \omega_{23} = 0 , \omega_{16} + \omega_{25} = 0 , \omega_{15} - \omega_{26} = 0 , \omega_{36} + \omega_{15} = 0 , \omega_{14} - \omega_{46} = 0 , x_3 \omega_{56} - x_5 \omega_{15} = 0 , x_3 \omega_{34} + x_4 \omega_{14} = 0 , x_5 \omega_{24} + x_4 \omega_{26} = 0 , x_5 \omega_{14} + x_4 \omega_{16} = 0 , x_5 \omega_{14} = 0 , x_4 \omega_{14} = 0 , \omega_{17} = 0 , i = 1, \ldots, 6 \}.
\]

Since not \(x_3 = x_5 = 0 \), the dimension of \(\mathfrak{h}(\varphi_1, \varphi_2, \varphi_3) \) equals 3 and the action is transitive.

Corollary 2.12 The isotropy group of a triple \((\varphi_1, \varphi_2, \varphi_3) \) of pseudo-orthonormal spinors with respect to the \(\text{Spin}^+(4,3) \)-action equals

1. \(\text{SU}(2) \) if \((\varphi_1, \varphi_2, \varphi_3) \in V(-1, -1, -1) \) or \(V(1, 1, 1) \)

2. \(\text{SL}(2, \mathbb{R}) \) if \((\varphi_1, \varphi_2, \varphi_3) \in V(-1, -1, 1) \) or \(V(-1, 1, 1) \).

Proof. The Lie algebra of the isotropy group \(H(\psi_1, \psi_2, \psi_3) \) of \((\psi_1, \psi_2, \psi_3) \) equals

\[
\mathfrak{h}(\psi_1, \psi_2, \psi_3) = \{ \sum_{i<j} \omega_{ij} e_i e_j | \omega_{12} + \omega_{34} = 0 , \omega_{13} - \omega_{24} = 0 , \omega_{14} + \omega_{23} = 0 , \omega_{15} = \omega_{16} = \omega_{17} = 0 \}.
\]

13
As a subalgebra of $\mathfrak{so}(4,4)$ it is spanned by $E_{56} - E_{78}$, $E_{57} + E_{68}$ and $E_{58} - E_{67}$ and equals therefore $\mathfrak{su}(2)$ where $SU(2) \subset SU(2,2) \subset SO(4,4)$ is imbedded in the usual way. In particular, the connected component of the unity of $H(\psi_1, \psi_2, \psi_3)$ is isomorphic to $SU(2)$. It remains to prove that $H(\psi_1, \psi_2, \psi_3)$ is connected. A look at the exact homotopy sequence of the fibration $H(\psi_1, \psi_2, \psi_3) \to Spin^+(4,3) \to V(-1, -1, -1)$ shows that

$$
\ldots \to \pi_1(H(\psi_1, \psi_2, \psi_3), 1) \to \mathbb{Z}_2 \to \pi_1(V(-1, -1, -1)) \to \\
\quad \to \pi_0(H(\psi_1, \psi_2, \psi_3)) \to 0 \to \ldots
$$

is exact. Since $\pi_1(H(\psi_1, \psi_2, \psi_3), 1) = \pi_1(SU(2)) = 0$ it suffices to prove that $\pi_1(V(-1, -1, -1))$ equals \mathbb{Z}_2. But this is clear from the homotopy sequence of $SO^+(1,4) \to SO^+(4,4) \to V(-1, -1, -1)$. Indeed,

$$
\ldots \to \pi_1(SO^+(1,4)) \xrightarrow{i_*} \pi_1(SO^+(4,4)) \to \pi_1(V(-1, -1, -1)) \to \\
\quad \to \pi_0(SO^+(1,4), I) \to \ldots
$$

is the sequence of the following groups

$$
\ldots \to \mathbb{Z}_2 \xrightarrow{i_*} \mathbb{Z}_2 \oplus \mathbb{Z}_2 \to \pi_1(V(-1, -1, -1)) \to 0 \to \ldots
$$

where i_* sends $1 \in \mathbb{Z}_2$ to $(0,1) \in \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

We now prove the second assertion in the same way. The Lie algebra of the isotropy group $H(\psi_1, \psi_2, \psi_3)$ is

$$
\mathfrak{b}(\psi_1, \psi_2, \psi_3) = \left\{ \sum_{i<j} \omega_{i,j} e_{i,j} \mid \begin{array}{c}
\omega_{12} - \omega_{66} = 0, \\
\omega_{16} + \omega_{23} = 0, \\
\omega_{15} - \omega_{26} = 0, \\
\omega_{14} = \omega_{17} = \omega_{18} = 0
\end{array} \right\}.
$$

As a subalgebra of $\mathfrak{so}(4,4)$ it is spanned by $E_{34} - E_{78}$, $A_{37} + A_{48}$ and $A_{38} - A_{47}$ and equals therefore $\mathfrak{su}(1,1)$ where $SU(1,1) \subset SU(2,2) \subset SO(4,4)$ is imbedded in the usual way. In particular, the connected component of $H(\psi_1, \psi_2, \psi_3)$ is isomorphic to $SU(2)$ which is on the other hand isomorphic to $SL(2; \mathbb{R})$. To show that $H(\psi_1, \psi_2, \psi_3)$ is connected it suffices to verify that the Stiefel manifold is simply connected. But this follows again from the exact homotopy sequence of the corresponding fibration $SO^+(3,2) \to SO^+(4,4) \to V(-1, -1, -1)$. Indeed,

$$
\ldots \to \pi_1(SO^+(3,2)) \xrightarrow{i_*} \pi_1(SO^+(4,4)) \to \pi_1(V(-1, -1, -1)) \to \\
\quad \to \pi_0(SO^+(3,2), I) \to \ldots
$$
is the sequence of the following groups

$$\ldots \longrightarrow \mathbb{Z}_2 \oplus \mathbb{Z} \xrightarrow{i_\#} \mathbb{Z}_2 \oplus \mathbb{Z}_2 \longrightarrow \pi_1(V(-1,1,1)) \longrightarrow 0 \longrightarrow \ldots$$

where $i_\#$ sends $(1,1) \in \mathbb{Z}_2 \oplus \mathbb{Z}$ to $(1,1) \in \mathbb{Z}_2 \oplus \mathbb{Z}_2$ and is therefore surjective.

The rest of this section is devoted to real representations of $G^*_2(2)$. Recall that all complex representations of $g_{2(2)}$ are of real type [8]. Therefore, the real irreducible representations of the universal covering $\tilde{G}_{2(2)}$ of $G^*_2(2)$ correspond to the real forms of the complex irreducible representations of $g_{2(2)}$. On the other hand the fundamental representations of $\tilde{G}_{2(2)}$, i.e. the standard representation on \mathbb{R}^7 and the adjoint representation are in fact representations of $G_{2(2)}$. Thus all representations of $\tilde{G}_{2(2)}$ are representations of $G_{2(2)}$. We conclude that the real irreducible representations of $G^*_2(2)$ correspond exactly to the complex irreducible representations of $g_{2(2)}$. In particular, the dimensions of the irreducible real representations are $1, 7, 14, 27, \ldots$. Furthermore the decomposition of $\Lambda^p(\mathbb{R}^7)$ into irreducible components of the $G^*_2(2)$ action is similar to that with respect to the action of the compact group G_2. Denote by $*$ the Hodge operator of the pseudo-Euclidean space $(\mathbb{R}^7, g_{1,3})$ and let ω_0^3 be the 3-form defined by (8). Then we have

Proposition 2.13

1. $R^7 = \Lambda^4(\mathbb{R}^7) =: \Lambda^4_1$ is irreducible.

2. $\Lambda^2(R^7) = \Lambda^2_7 \oplus \Lambda^2_{14}$, where

$$\Lambda^2_7 = \{ \alpha^2 \in \Lambda^2 \mid *(\omega_0^3 \wedge \alpha^2) = 2\alpha^2 \} = \{ X \cdot \omega_0^3 \mid X \in \mathbb{R}^7 \}$$

$$\Lambda^2_{14} = \{ \alpha^2 \in \Lambda^2 \mid *(\omega_0^3 \wedge \alpha^2) = -\alpha^2 \} = g_{2(2)}$$

3. $\Lambda^3(R^7) = \Lambda^3_1 \oplus \Lambda^3_7 \oplus \Lambda^3_{17}$, where

$$\Lambda^3_1 = \{ t \omega_0^3 \mid t \in \mathbb{R}^3 \}$$

$$\Lambda^3_7 = \{ *(\omega_0^3 \wedge \alpha^1) \mid \alpha^1 \in \Lambda^1_7 \}$$

$$\Lambda^3_{17} = \{ \alpha^3 \in \Lambda^3 \mid \alpha^3 \wedge \omega_0^3 = 0, \alpha^3 \wedge \ast \omega_0^3 = 0 \}$$

3 **Killing spinors**

Now let $(M^{4,3}, g_{1,3})$ be a 7-dimensional pseudo-Riemannian spin manifold of signature $(4,3)$ which is space and time oriented. Assume that $M^{4,3}$ admits a spin structure $Q(M^{4,3})$. This is a $Spin^+(4,3)$-reduction of the bundle
$R(M^{4,3})$ of all space and time oriented pseudo-orthonormal frames. Then the spinor bundle S of $M^{4,3}$ is the associated bundle $Q(M^{4,3}) \times_{Spin^+(4,3)} \Delta_{4,3}$. Furthermore ∇ denotes the Levi-Civita-connection on the tangent bundle $TM^{4,3}$ as well as the induced covariant derivative on S. The pseudo-Euclidean product $(\cdot, \cdot)_\Delta$ on $\Delta_{4,3}$ induces a product of signature $(4,4)$ on S.

Definition 3.1 A section $\psi \in \Gamma(S)$ is called Killing spinor if there is a real number $\lambda \neq 0$ such that the differential equation

$$\nabla_X \psi = \lambda X \cdot \psi$$

is satisfied for all vector fields $X \in \mathfrak{X}(M^{4,3})$. We call λ the Killing number of ψ.

The following properties of Killing spinors are well known [1]. Let $\psi \in \Gamma(S)$ be a Killing spinor on $M^{4,3}$ with Killing number λ. Then $(\psi, \phi)_\Delta$ is constant on $M^{4,3}$. For the Ricci map $Ric : TM^{4,3} \to TM^{4,3}$ of the tangent bundle the equation $Ric(X)\psi = 24\lambda^2 X \cdot \psi$ holds. If ψ is non-isotropic this means that $M^{4,3}$ is an Einstein manifold of scalar curvature $\tau = 168\lambda^2$. Now let W be the Weyl tensor of $M^{4,3}$. Then $W(X, Y) \cdot \psi = 0$ for all $X, Y \in \mathfrak{X}(M^{4,3})$, where this product is defined in the following way. Let $s_1, s_2, ..., s_7$ be a local pseudo-orthonormal frame. $\varepsilon_i = g(s_i, s_i)$ and $W_{ijkl} = W(s_i, s_j, s_k, s_l)$ Then set

$$W(s_i, s_j) \cdot \psi = \sum_{k<l} \varepsilon_k \varepsilon_l W_{ijkl} s_k \cdot s_l \cdot \psi$$

Of course, parallel spinors have the same properties. We now turn to the question how many Killing spinors can exist on $(M^{4,3}, g_{4,3})$.

Theorem 3.2 If there exist four orthogonal non-isotropic Killing spinors with the same Killing number on $(M^{4,3}, g_{4,3})$ such that at least three of them have the same length then $M^{4,3}$ is conformally flat.

Proof. Let $\varphi_1, ..., \varphi_4$ be four such Killing spinors. Let $(\varphi_\alpha, \varphi_\alpha)_\Delta = -1$ for $\alpha = 1, 2, 3$. Because of the transitivity of the $Spin^+(4,3)$-action on $V(-1, -1, -1, -1, -1, -1, -1)$ we may assume that for some local time and space oriented pseudo-orthonormal frame $s_1,, s_7$ the spinor φ_α equals ψ_α for $\alpha = 1, 2, 3$. Moreover, since the isotropy group of (ψ_1, ψ_2, ψ_3) equals $SU(2)$ acting on $span\{\psi_5, \psi_6, \psi_7, \psi_8\}$ we can assume $\varphi_1 = x_1 \psi_1 + x_5 \psi_5$, where x_4 and x_5 are real functions. The condition $W(s_i, s_j) \cdot \varphi_\alpha = 0 (\alpha = 1, 2, 3)$ implies

$$W_{ij12} + W_{ij41} = 0, W_{ij14} - W_{ij24} = 0, W_{ij14} + W_{ij23} = 0$$
and $W_{ijkl} = 0$ for any other k, l. Furthermore, we have

$$
0 = W(s_i, s_j) \cdot (x_4 \psi_4 + x_5 \psi_5) = \sum_{k<l} \epsilon_k \epsilon_l W_{ijkl} s_k \cdot s_l \cdot (x_4 \psi_4 + x_5 \psi_5)
$$

$$
= x_5 \{ (-W_{ij12} + W_{ij34}) \psi_6 + (W_{ij13} + W_{ij24}) \psi_7 + (W_{ij14} + W_{ij23}) \psi_8 \}.
$$

Consequently, in case $x_5 \neq 0$ the Weyl tensor must vanish and we are done. Consider now the case $x_5(m) = 0$ for $m \in M^{4,3}$. If there is any sequence $m_n \in M^{4,3}$ which converges to m and such that $x_5(m_n) \neq 0$ then by continuity of the Weyl tensor we have again $W(m) = 0$. Assume now that $x_5(m) = 0$ on an open set containing m, i.e. $\varphi_4 = \psi_4$. Since $\varphi_1, \ldots, \varphi_4$ are Killing spinors we have $\nabla_{s_i} \psi_\alpha = \lambda \varphi_1 \cdot \psi_\alpha$ ($\alpha = 1, \ldots, 4$). We can calculate the covariant derivative using the local connection forms $\omega_{ij} = \epsilon_i \epsilon_j g_{1,3}(\nabla s_i, s_j)$ and obtain

$$
\nabla_{s_i} \psi_\alpha = \frac{1}{2} \sum_{i<j} \epsilon_i \epsilon_j \omega_{ij}(s_i) s_j \cdot s_i \cdot \psi_\alpha = \lambda \varphi_1 \cdot \psi_\alpha \quad (\alpha = 1, \ldots, 4)
$$

In particular,

$$
-\omega_{27}(s_1) - \omega_{35}(s_1) + \omega_{46}(s_1) = 2\lambda \\
-\omega_{27}(s_1) + \omega_{35}(s_1) - \omega_{46}(s_1) = 2\lambda \\
-\omega_{27}(s_1) + \omega_{35}(s_1) + \omega_{46}(s_1) = -2\lambda \\
-\omega_{27}(s_1) - \omega_{35}(s_1) - \omega_{46}(s_1) = -2\lambda
$$

which is impossible if $\lambda \neq 0$. The assertion can be proved similarly if $\langle \varphi_\alpha, \varphi_\alpha \rangle_\Delta = 1$ for $\alpha = 1, 2, 3$.

3.1 Geometrical and nearly parallel $G_{2(2)}$-structures

Let M^7 be a 7-dimensional manifold and $R(M^7)$ the frame bundle of M^7. We define the bundle $\Lambda^3_s(M^7)$ by

$$
\Lambda^3_s(M^7) := R(M^7) \times_{GL(7)} \Lambda^3(R^7) \subset R(M^7) \times_{GL(7)} \Lambda^3(R^7) = \Lambda^3(M^7).
$$

where $\Lambda^3_s(R^7)$ is the open subset $\{ A^* \omega^3_0 \mid A \in GL(7) \}$ of $\Lambda^3(R^7)$.

Definition 3.3 A topological G_2-structure ($\text{Spin}^+(4,3)$-structure) on M^7 is a G_2-reduction ($\text{Spin}^+(4,3)$-reduction) of the frame bundle $R(M^7)$.
The fact that $G^*_{2(2)}$ is a subset of $SO^+(4,3)$ and of $Spin^+(4,3)$ implies that a $G^*_{2(2)}$ structure $P \subset R(M^7)$ on M^7 induces an orientation of M^7 (i.e. $\omega_1 = 0$). A pseudo-Riemannian metric $g_{4,3}$ of index 4 on M^7 together with a space and time orientation such that the corresponding $SO^+(4,3)$-bundle equals $P \times_{G_2} SO^+(4,3)$ and a spin structure $P \times_{G_2} Spin^+(4,3)$. Furthermore it defines the following spinor $\psi \in \Gamma(S)$ of length -1 in the real spinor bundle $S = P \times_{\Sigma_{4,3}} \Delta_{4,3}$ of M^7. Since $G^*_{2(2)} \subset Spin^+(4,3)$ is the isometry group of $\psi_1 \in \Delta_{4,3}$ the map $\psi : P \rightarrow \Delta_{4,3}; \psi(p) = \psi_1$ has the property $\psi(pg) = g^{-1}\psi$ for all $g \in G^*_{2(2)}$ and is therefore a section in S. Because of the $G^*_{2(2)}$-invariance of ω_0 the $G^*_{2(2)}$-structure defines in the same way a section ω^3 in $\Lambda^3(M^7) = R(M^7) \times_{\Sigma_{4,3}} \Lambda^3(R^7) = P \times_{G_2} \times_{G_{2(2)}} \Lambda^3(R^7)$ by $\omega^3 : P \rightarrow \Lambda^3(R^7); \omega^3(p) = \omega^3_0$. On the other hand the spinor ψ defines a $(2,1)$-tensor field $A = A(\cdot, \Lambda(\cdot, \cdot))$ on M^7 and $\omega^3 = g_{4,3}(\cdot, A(\cdot, \cdot))$ holds.

Vice versa, suppose we are given a 3-form ω^3 in $\Lambda^3(M^7)$ then M^7 admits a $G^*_{2(2)}$-structure P consisting of all frames relative to those ω^3 equals ω^3_0. Secondly, given a pseudo-Riemannian metric $g_{4,3}$, a space and time orientation, a $Spin^+(4,3)$-structure and a spinor ψ of length -1 on M^7 then M^7 admits a $G^*_{2(2)}$-structure P consisting of all frames relative to those ψ equals ψ_0.

Now we turn to geometrical $G^*_{2(2)}$-structures.

Definition 3.4 Let $P \subset R(M^7)$ be a topological $G^*_{2(2)}$-structure on M^7 and $g_{4,3}$ the associated Riemannian metric with Hodge operator \ast. P is said to be geometrical if one of the following equivalent conditions is satisfied.

(i) ∇ reduces to P.

(ii) The holonomy group $Hol(M^7, g)$ of M^7 is contained in $G^*_{2(2)}$.

(iii) The associated 3-form ω^3 is parallel, i.e. $\nabla \omega^3 = 0$.

(iv) $d \omega^3 = 0$, $d \ast \omega^3 = 0$.

(v) The associated spinor field ψ is parallel, i.e. $\nabla \psi = 0$.

For a proof of $(iii) \Leftrightarrow (iv)$ see [3], [5], [6].

Now we can generalise the condition $\nabla \psi = 0$ and obtain the notion of a nearly parallel $G^*_{2(2)}$-structure.
Definition 3.5 Let $P \subset R(M^7)$ be a topological $G_{2(2)}^*$-structure on M^7 and $g_{4,3}$ the associated Riemannian metric with Hodge operator \ast. P is said to be nearly parallel if one of the following equivalent conditions is satisfied.

(i) The associated spinor ψ is a Killing spinor with Killing number λ.

(ii) The associated tensor A satisfies

$$(\nabla_Z A)(Y, X) = 2\lambda \{g_{4,3}(Y, Z)X - g_{4,3}(X, Z)Y + A(Z, A(Y, X))\}.$$

(iii) The associated 3-form ω^3 satisfies

$$\nabla_Z \omega^3 = -2\lambda (Z \ast \omega^3).$$

(iv) The associated 3-form ω^3 satisfies

$$d\ast \omega^3 = 0, \quad d\omega^3 = -8\lambda \ast \omega^3.$$

For a proof of (iii) \iff (iv) see [4].

3.2 Examples of homogeneous spaces with Killing spinors

This section is devoted to the construction of first examples of pseudo-Riemannian manifolds of signature $(4,3)$ with Killing spinors. We use the twistor spaces $Z^-(\mathbb{RP}^{4,0})$ and $Z^-(\mathbb{CP}^{2,0})$ of the negative definite elliptic spaces $\mathbb{RP}^{4,0}$ and $\mathbb{CP}^{2,0}$. One obtains $\mathbb{RP}^{4,0}$ and $\mathbb{CP}^{2,0}$ from the real and the complex hyperbolic space by replacing the metric by its negative. $Z^-(\mathbb{RP}^{4,0})$ is the homogeneous space $Sp(1,1)/U(1) \times Sp(1) = SO^+(4,1)/U(2)$ and $Z^-(\mathbb{CP}^{2,0})$ equals $U(2,1)/U(1) \times U(1) \times U(1)$. There exist two homogeneous Einstein metrics of signature $(4,2)$ on each of these spaces one of both being Kählerian. These Kählerian metrics are used to construct S^1-bundles over $Z^-(\mathbb{RP}^{4,0})$ and $Z^-(\mathbb{CP}^{2,0})$ admitting three linearly independent Killing spinors. One can obtain a further Einstein metric with one Killing spinor on each of these bundles by squashing the metric on the S^3-fibres over $\mathbb{RP}^{4,0}$ and $\mathbb{CP}^{2,0}$, respectively. The other examples are warped products with six-dimensional pseudo-Riemannian manifolds of signature $(4,2)$ with Killing spinors, in particular with the second Einstein metric on the twistor spaces.
3.2.1 The squashed 7-sphere

Consider the sphere $S^{1,3} = Sp(1,1)/Sp(1)$ where

$$Sp(1,1) = \{ A \in \mathbb{H}(2) \mid \; t^t A \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \}$$

and the imbedding $Sp(1) \hookrightarrow Sp(1,1)$ is given by

$$Sp(1,1) \ni C \mapsto \begin{pmatrix} 1 \\ 0 \\ 0 \\ C \end{pmatrix} \in Sp(1,1) .$$

Let B be the $Ad(Sp(1))$-invariant bilinear form on $\mathfrak{sp}(1,1)$ defined by $B(X,Y) = -\text{Re} \; t^t XY$ for $X,Y \in \mathfrak{sp}(1,1)$. We decompose

$$\mathfrak{sp}(1,1) = \mathfrak{sp}(1) \oplus m_1 \oplus m_2$$

where

$$m_1 = \text{span} \left\{ \epsilon_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \epsilon_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \epsilon_3 = \begin{pmatrix} 0 & -j \\ j & 0 \end{pmatrix} \right\}$$

$$m_2 = \text{span} \left\{ \epsilon_5 = \begin{pmatrix} j & 0 \\ 0 & 0 \end{pmatrix}, \epsilon_6 = \begin{pmatrix} k & 0 \\ 0 & 0 \end{pmatrix}, \epsilon_7 = \begin{pmatrix} i & 0 \\ 0 & 0 \end{pmatrix} \right\} .$$

Note that $m_1 = \mathbb{H}, m_2 = \text{im} \mathbb{H}$. We have $[\mathfrak{sp}(1), m_1] = m_1$ and $[\mathfrak{sp}(1), m_2] = 0$.

Now we rescale B in direction m_2 and get a bilinear form

$$B_t = B \big|_{m_1 \times m_1} \oplus 2t B \big|_{m_2 \times m_2}$$

on $m_1 \oplus m_2$. Then

$$c_i = \frac{1}{\sqrt{2}} \epsilon_i, (i = 1, \ldots, 4), \quad c_j = \frac{1}{\sqrt{2t}} \epsilon_j, (j = 5, 6, 7)$$

is a pseudo-orthonormal basis of $m_1 \oplus m_2$. Identifying $m_1 \oplus m_2$ with the tangent space of $Sp(1,1)/Sp(1)$ at $\left(\begin{array} {cc} 1 & 0 \\ 0 & 1 \end{array} \right) : Sp(1,1)$ we obtain a left invariant metric g_t on $S^{1,3}$. The isotropy representation $\alpha : Sp(1) \longrightarrow SO(m_1 \oplus m_2)$
assigns to an element \(q \in Sp(1) \) that linear map which is the multiplication by \(q \) on \(m_1 \) and the identity on \(m_2 \). Therefore \(\alpha \) is the standard imbedding

\[
\alpha : Sp(1) \hookrightarrow SO(4) \subset SO(4,3) .
\]

Since \(Spin(4) = Sp(1) \times Sp(1) \),

\[
\hat{\alpha} : Sp(1) \hookrightarrow Sp(1) \times Sp(1) \subset Spin^+(4,3)
\]

\[
q \mapsto (q, 1)
\]
defines a lift of \(\alpha \). From equation (4) we conclude that \(\hat{\alpha}(q) \) acts trivially on \(\text{span}\{\psi_5, \psi_6, \psi_7, \psi_8\} \) for any \(q \in Sp(1) \). \(\hat{\alpha} \) defines a spin structure

\[
Q = Sp(2.1) \times \hat{\alpha} Spin(4,3)
\]

and the associated spinor bundle

\[
S = Sp(2.1) \times \hat{\alpha} \Delta_{4,3} .
\]

Sections of \(S \) are identified with functions \(\psi : Sp(2,1) \rightarrow \Delta_{4,3} \) satisfying the equation \(\psi(g h) = h^{-1} \psi(g) \) for all \(g \in Sp(2,1) \) and \(h \in Sp(1) \). In particular constant functions \(\psi(g) = \psi_0 \in \text{span}\{\psi_5, \psi_6, \psi_7, \psi_8\} \), \(g \in Sp(2,1) \) define spinors on \(S^{4,3} \).

Using Wang's theorem we describe the connection on \(S \) induced by the Levi-Civita connection of \((S^{4,3}, g_0) \). It is given by

\[
\hat{\Lambda} : m_1 \oplus m_2 \hookrightarrow \text{spin}(4,3)
\]

\[
\hat{\Lambda}(e_1) = \frac{\sqrt{2t}}{4} (-e_2e_7 - e_3e_5 - e_4e_6)
\]

\[
\hat{\Lambda}(e_2) = \frac{\sqrt{2t}}{4} (e_1e_7 + e_3e_6 - e_4e_5)
\]

\[
\hat{\Lambda}(e_3) = \frac{\sqrt{2t}}{4} (e_1e_5 - e_2e_6 + e_4e_7)
\]

\[
\hat{\Lambda}(e_4) = \frac{\sqrt{2t}}{4} (e_1e_6 + e_2e_5 - e_3e_7)
\]

\[
\hat{\Lambda}(e_5) = \frac{t - 1}{2\sqrt{2t}} (-e_1e_3 - e_2e_4) + \frac{1}{2\sqrt{2t}} e_6e_7
\]

\[
\hat{\Lambda}(e_6) = \frac{t - 1}{2\sqrt{2t}} (-e_1e_4 + e_2e_3) - \frac{1}{2\sqrt{2t}} e_5e_7
\]

\[
\hat{\Lambda}(e_7) = \frac{t - 1}{2\sqrt{2t}} (-e_1e_2 + e_3e_4) + \frac{1}{2\sqrt{2t}} e_5e_6
\]
We have now to check for which choice of t and λ do exist common solutions $\psi_0 \in \text{span}\{\psi_5, \psi_6, \psi_7, \psi_8\}$ of

$$\hat{A}(c_i)\psi_0 - \lambda c_i \psi_0 = 0, \quad i = 1, \ldots, 7.$$

There are exactly two possibilities. In case $t = 1$, $\lambda = -\frac{1}{2\sqrt{2}}$ we obtain three linear independent Killing spinors (ψ_6, ψ_7, ψ_8) on the standard sphere. In case $t = \frac{1}{5}$, $\lambda = \frac{3}{2\sqrt{10}}$ we get a further Einstein metric on $S^{4,3}$ together with one Killing spinor (ψ_5).

3.2.2 The space $\tilde{N}(1,1)$

Consider now the homogeneous space $\tilde{N}(1,1) = SU(2,1)/S^1$ where the imbedding of S^1 into $SU(2,1)$ is given by

$$S^1 \hookrightarrow SU(2,1)$$

$$\theta \mapsto \begin{pmatrix} e^{i\theta} & 0 & 0 \\ 0 & e^{-i\theta} & 0 \\ 0 & 0 & e^{-2i\theta} \end{pmatrix}$$

Denote by \mathfrak{t} the Lie algebra of S^1 contained in $\mathfrak{su}(2,1)$. Let B be the $\text{Ad}(S^1)$-invariant bilinear form on $\mathfrak{su}(2,1)$ defined by $B(X,Y) = -\text{Re} \text{tr}XY$ for $X,Y \in \mathfrak{su}(2,1)$. Now we decompose $\mathfrak{su}(2,1)$ into

$$\mathfrak{su}(2,1) = \mathfrak{t} \oplus \mathfrak{m}_1 \oplus \mathfrak{m}_2$$

where

$$\mathfrak{m}_1 = \text{span} \{ \tilde{c}_1 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \tilde{c}_2 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \quad \tilde{c}_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \tilde{c}_4 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \}$$

$$\mathfrak{m}_2 = \text{span} \{ \tilde{c}_5 = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \tilde{c}_6 = \begin{pmatrix} 0 & i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \tilde{c}_7 = \begin{pmatrix} i & 0 & 0 \\ 0 & -i & 0 \\ 0 & 0 & 0 \end{pmatrix} \}.$$
We have $[t, m_1] = m_1$ and $[t, m_2] = 0$. Now we continue as in the case of the sphere. We rescale B and obtain

$$B_t = B \big|_{m_1 \times m_1} \oplus 2tB \big|_{m_2 \times m_2}$$

on $m_1 \oplus m_2$, which yields a left invariant metric g_t on $\tilde{N}(1,1)$. Then

$$e_i = \frac{1}{\sqrt{2}} \tilde{e}_i (i = 1, \ldots, 4), \quad e_j = \frac{1}{2\sqrt{t}} \tilde{e}_j (j = 5, 6, 7)$$

is a pseudo-orthonormal basis of $m_1 \oplus m_2$. With respect to this basis the isotropy representation $\alpha : S^1 \to SO(m_1 \oplus m_2)$ is given by

$$\alpha(\theta) = \begin{pmatrix}
\cos 3\theta & \sin 3\theta & 0 & 0 \\
-\sin 3\theta & \cos 3\theta & 0 & 0 \\
0 & 0 & \cos 3\theta & \sin 3\theta \\
0 & 0 & -\sin 3\theta & \cos 3\theta
\end{pmatrix} \oplus \text{id} \big|_{m_2} .$$

We can lift α into $Spin^+(4,3)$ and obtain

$$\tilde{\alpha} : S^1 \mapsto Spin^+(4,3)$$

$$\theta \mapsto (\cos \frac{3}{2}\theta + \sin \frac{3}{2}\theta e_1 e_2)(\cos \frac{3}{2}\theta + \sin \frac{3}{2}\theta e_3 e_4) .$$

Therefore $\tilde{N}(1,1)$ admits a spin structure. In particular constant functions $\psi(g) = \psi_0 \in \text{span}\{\psi_5, \psi_6, \psi_7, \psi_8\}, g \in SU(2,1)$ define sections in the spinor bundle S of $\tilde{N}(1,1)$. The connection on S with respect to g_t is given by

$$\Lambda : m_1 \oplus m_2 \mapsto \text{spin}(4,3)$$

$$\Lambda(e_1) = \frac{\sqrt{t}}{4} (-c_2 e_7 + c_3 e_5 - c_4 e_6)$$

$$\Lambda(e_2) = \frac{\sqrt{t}}{4} (c_1 e_7 + c_3 e_6 + c_4 e_5)$$

$$\Lambda(e_3) = \frac{\sqrt{t}}{4} (-c_1 e_5 - c_2 e_6 + c_4 e_7)$$

$$\Lambda(e_4) = \frac{\sqrt{t}}{4} (c_1 e_6 - c_2 e_5 - c_3 e_7)$$

$$\Lambda(e_5) = \frac{t-1}{4\sqrt{t}} (c_1 c_3 + c_2 c_4) - \frac{1}{4\sqrt{t}} c_6 e_7$$

$$\Lambda(e_6) = \frac{t-1}{4\sqrt{t}} (-c_1 c_4 + c_2 c_3) + \frac{1}{4\sqrt{t}} c_5 e_7$$

$$\Lambda(e_7) = \frac{t-1}{4\sqrt{t}} (-c_1 c_2 + c_3 c_4) - \frac{1}{4\sqrt{t}} c_5 e_6 .$$
Again we have to check whether there are common solutions $\psi_0 \in \text{span}\{\psi_5, \psi_6, \psi_7, \psi_8\}$ of

$$\hat{\Lambda}(c_i)\psi_0 - \lambda c_i \psi_0 = 0, \quad i = 1, \ldots, 7.$$

Again there are two possible choices of t. In case $t = 1$ we obtain the standard metric together with three linear independent Killing spinors (ψ_5, ψ_6, ψ_8) with Killing number $\lambda = \frac{1}{3}$. For $t = \frac{1}{2}$ we obtain a further Einstein metric on $\tilde{N}(1.1)$ together with one Killing spinor (ψ_7) with Killing number $\lambda = -\frac{1}{4\sqrt{3}}$.

3.3 Warped products with Killing spinors

3.3.1 pseudo-Riemannian manifolds of signature (4,2)

Consider first $\mathbb{R}^6 = \text{span}\{e_1, \ldots, e_6\} \subset \mathbb{R}^7$ with pseudo-Euclidean product $g_{4,2} = g_{4,1}\big|_{\mathbb{R}^7}$. We may restrict the real Spin$(4,3)$-representation to Spin$(4,2)$ and obtain the unique irreducible real representation $\Delta_{4,2}$ of Spin$(4,2)$. The connected component Spin$^+(4,2)$ of $1 \in \text{Spin}(4,2)$ acts transitively on $S^{1,3}$ and $H^{3,1}$. Actually, the proof of Proposition 2.1 remains valid.

The multiplication of spinors by the volume form of $(\mathbb{R}^6, g_{4,2})$ yields a complex structure on $\Delta_{4,2}$. In fact, let X_1, \ldots, X_6 be a positively oriented pseudo-orthonormal basis of $(\mathbb{R}^6, g_{4,2})$. Then we define J^Δ by $J^\Delta(\psi) = X_1 \cdot \cdots \cdot X_6 \psi$. J^Δ does not depend on the choice of the pseudo-orthonormal basis. We have $J^\Delta = -I \otimes I \otimes \varepsilon$ with respect to the standard basis ψ_1, \ldots, ψ_8. Furthermore J^Δ has the following properties.

1. $(J^\Delta)^2 = -1$

2. $X \cdot J^\Delta(\psi) = -J^\Delta(X \cdot \psi)$ for any $X \in \mathbb{R}^6$

3. Besides $(X \cdot \psi, \psi)_\Delta = 0$ we also have $(X \cdot \psi, J^\Delta(\psi))_\Delta = 0$.

Therefore the map

$$\mathbb{R}^6 \to \{\psi \cdot J^\Delta(\psi)\}^\perp \subset \mathbb{R}^8$$

$$X \mapsto X \cdot \psi$$

is an isomorphism for any spinor $\psi \in \Delta_{4,2}$ with $(\psi, \psi)_\Delta \neq 0$. In particular, we obtain a complex structure J_ψ of \mathbb{R}^6 defined by

$$J_\psi(X) \cdot \psi := J^\Delta(X \cdot \psi)$$

for any $X \in \mathbb{R}^6$.

24
For instance,

\[
J_{e_1} = \left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & -1 & 0 \\
\end{array} \right)
\]

with respect to \(e_1, \ldots, e_6\).

Now let \((F^4, h)\) be a pseudo-Riemannian manifold of signature \((4,2)\). \(J^\Delta\) defines a complex structure \(J^S\) on the spinor bundle \(S^F\) of \(F^4\). We have \(\nabla J^S = 0\). Furthermore any nowhere vanishing nor isotropic section \(\psi \in \Gamma(S^F)\) defines a complex structure \(J_\psi\) on \(F^4\). Assume now that \(F^4\) admits a Killing spinor \(\varphi \neq 0\) with Killing number \(\lambda\). Then \(J^S(\varphi)\) is a Killing spinor with Killing number \(-\lambda\), since

\[
\nabla_X(J^S(\varphi)) = J^S(\nabla_X \varphi) = J^S(\lambda X \cdot \varphi) = -\lambda X \cdot J^S(\varphi).
\]

If \(\varphi\) is non-isotropic then we can define \(J_\varphi\) which is nearly-Kaehlerian.

Next we discuss two examples of such manifolds with Killing spinors.

3.3.2 \(U(2,1)/U(1) \times U(1) \times U(1)\)

Consider the homogeneous space \(U(2,1)/U(1) \times U(1) \times U(1)\) where the imbedding of \(U(1) \times U(1) \times U(1)\) into \(U(2,1)\) is given by

\[
U(1) \times U(1) \times U(1) \hookrightarrow U(2,1) \\
(e^i, e^j, e^k) \mapsto \text{diag}(e^i, e^j, e^k)
\]

Denote by \(\mathfrak{t}\) the Lie algebra of \(U(1) \times U(1) \times U(1)\) contained in \(u(2,1)\). Let \(\mathcal{B}\) be the \(\text{Ad}(U(1) \times U(1) \times U(1))\)-invariant bilinear form on \(u(2,1)\) defined by \(\mathcal{B}(X, Y) = -\text{Re} \text{tr} XY\) for \(X, Y \in \mathfrak{su}(2,1)\). We decompose \(u(2,1)\) into

\[
u(2,1) = \mathfrak{t} \oplus \mathfrak{m}_1 \oplus \mathfrak{m}_2
\]

where

\[
\mathfrak{m}_1 = \text{span} \left\{ \tilde{e}_1 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \tilde{e}_2 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \tilde{e}_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \tilde{e}_4 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \right\}
\]

25
\(m_2 = \text{span} \{ \tilde{c}_5 = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \tilde{c}_6 = \begin{pmatrix} 0 & i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \} \).

We rescale \(B \) and obtain
\[
B_\ell = B \mid_{m_1 \times m_1} \oplus 2tB \mid_{m_2 \times m_2}
\]
on \(m_1 \oplus m_2 \), which yields a left invariant metric \(g_\ell \) on \(U(2,1)/U(1) \times U(1) \times U(1) \). Then
\[
c_i = \frac{1}{\sqrt{2}} \tilde{c}_i (i = 1, \ldots, 4), \quad c_j = \frac{1}{2\sqrt{t}} \tilde{c}_j (j = 5, 6)
\]
is a pseudo-orthonormal basis of \(m_1 \oplus m_2 \). With respect to this basis the isotropy representation \(\alpha : U(1) \times U(1) \times U(1) \rightarrow SO(m_1 \oplus m_2) \) is given by
\[
\alpha(e^{\theta n}, e^{\theta n'), e^{\theta n''}) = \begin{pmatrix} D_{\theta - t} & 0 & 0 \\ 0 & D_{\theta - t} & 0 \\ 0 & 0 & D_{\theta - t} \end{pmatrix}
\]
where \(D_\theta \) denotes the rotation of the plane about \(\theta \). We can lift \(\alpha \) into \(Spin(4, 2)^+ \) and obtain
\[
\hat{\alpha} : U(1) \times U(1) \times U(1) \rightarrow Spin^+(4, 2)
\]
\[
\hat{\alpha}(e^{\theta n}, e^{\theta n'), e^{\theta n''}) = (\cos \frac{\theta - t}{2} - \frac{\theta - t}{2} c_1 c_2)(\cos \frac{\theta - t}{2} - \sin \frac{\theta - t}{2} c_3 c_4) \\
\cdot (\cos \frac{\theta - t}{2} + \sin \frac{\theta - t}{2} c_5 c_6)
\]
Therefore \(U(2,1)/U(1) \times U(1) \times U(1) \) admits a spin structure. In particular constant functions \(\psi(g) = \psi_0 \in \text{span} \{ \psi_1, \psi_2 \}, g \in U(2,1) \) define sections in the spinor bundle \(S \) of \(U(2,1)/U(1) \times U(1) \times U(1) \). The connection on \(S \) with respect to \(g_\ell \) is given by
\[
\hat{\Lambda} : m_1 \oplus m_2 \rightarrow \text{spin}(4, 3)
\]
\[
\hat{\Lambda}(e_1) = \frac{\sqrt{t}}{4} (e_3 c_5 - e_5 c_3)
\]
\[
\hat{\Lambda}(e_2) = \frac{\sqrt{t}}{4} (+e_4 c_6 + e_6 c_4)
\]
\[
\hat{\Lambda}(e_3) = \frac{\sqrt{t}}{4} (-e_1 c_5 - e_5 c_1)
\]
\[\hat{\Lambda}(e_4) = \frac{\sqrt{t}}{4} (e_1 e_6 - e_2 e_5) \]
\[\hat{\Lambda}(e_5) = \frac{t - \frac{1}{4\sqrt{t}}}{4\sqrt{t}} (e_1 e_3 + e_2 e_4) \]
\[\hat{\Lambda}(e_6) = \frac{t - \frac{1}{4\sqrt{t}}}{4\sqrt{t}} (-e_1 e_4 + e_2 e_3) . \]

If \(t = \frac{1}{2} \) we obtain an Einstein metric with one Killing spinor for each of the values \(\lambda = \pm \frac{1}{2\sqrt{2}} \) (\(\psi_8 \) and \(\psi_7 \), respectively).

3.3.3 \(SO^+(4,1)/U(2) \)

with canonical imbedding

\[U(2) \hookrightarrow SO(4) \hookrightarrow \begin{pmatrix} SO(4) & 0 \\ 0 & 1 \end{pmatrix} \hookrightarrow SO^+(4,1). \]

Denote by \(D_{ij} \) the \(5 \times 5 \)-matrix consisting of a single 1 in the \(i \)-th row and \(j \)-th column, and zeros elsewhere. We set \(E_{ij} = -D_{ij} + D_{ji} \) and \(A_{ij} = D_{ij} + D_{ji} \). Then we have

\[u(2) = \text{span}\{ E_{12}, E_{34}, E_{13} + E_{24}, E_{14} - E_{23} \} . \]

Let \(B \) be the \(\text{Ad}(U(2)) \)-invariant bilinear form on \(so(4,1) \) defined by \(B(X,Y) = -\frac{1}{2} \text{Re } trXY \) for \(X,Y \in so(4,1) \). We decompose \(so(4,1) \) into

\[so(4,1) = u(2) \oplus m_1 \oplus m_2 \]

where

\[m_1 = \text{span}\{ A_{15}, A_{25}, A_{35}, A_{45} \} , \ m_2 = \text{span}\{ -E_{13} + E_{24}, -E_{14} - E_{23} \} . \]

We rescale \(B \) and obtain

\[B_t = B \mid_{m_1 \times m_1} \oplus tB \mid_{m_2 \times m_2} \]

on \(m_1 \oplus m_2 \), which yields a left invariant metric \(g_t \) on \(SO^+(4,1)/U(2) \). Then

\[e_1 = A_{15}, e_2 = A_{25}, e_3 = A_{35}, e_4 = A_{45} \]
\[e_5 = \frac{1}{\sqrt{2t}} (E_{13} + E_{24}), e_6 = \frac{1}{\sqrt{2t}} (-E_{14} - E_{23}) \]

27
is a pseudo-orthonormal basis of $m_1 \oplus m_2$. With respect to this basis the isotropy representation $\alpha : U(2) \rightarrow SO(m_1 \oplus m_2)$ is given by

$$
\alpha : U(2) \rightarrow SO(4, 2)
$$

$$
h \mapsto (h, \det h), \text{ where } \det h \in S^1 = SO(2).
$$

Considering this map at the level of homotopy groups we see that we can lift α into $Spin^+(4, 2)$. Let $\tilde{\alpha}$ denote this lift. One calculates

$$
\tilde{\alpha}_* (E_{12}) = \frac{1}{2}(-e_1 e_2 + e_5 e_6)
$$

$$
\tilde{\alpha}_* (E_{14}) = \frac{1}{2}(-e_1 e_2 + e_5 e_6)
$$

$$
\tilde{\alpha}_* (E_{13} + E_{21}) = \frac{1}{2}(-e_1 e_3 - e_2 e_4)
$$

$$
\tilde{\alpha}_* (E_{11} + E_{23}) = \frac{1}{2}(-e_1 e_4 + e_2 e_3).
$$

Consequently, constant functions $\psi(g) = \psi_0 \in \text{span}\{\psi_3, \psi_4\}, g \in SO^+(4, 1)$ define sections in the spinor bundle S of $SO^+(4, 1)/U(2)$. The connection on S with respect to g, is given by

$$\hat{\Lambda} : m_1 \oplus m_2 \rightarrow \text{spin}(4, 3)
$$

$$
\hat{\Lambda}(e_1) = \frac{1}{4 \sqrt{2}}(-e_3 e_5 - e_4 e_6)
$$

$$
\hat{\Lambda}(e_2) = \frac{1}{4 \sqrt{2}}(-e_3 e_6 + e_4 e_5)
$$

$$
\hat{\Lambda}(e_3) = \frac{1}{4 \sqrt{2}}(e_1 e_5 + e_2 e_6)
$$

$$
\hat{\Lambda}(e_4) = \frac{1}{4 \sqrt{2}}(e_1 e_6 - e_2 e_5)
$$

$$
\hat{\Lambda}(e_5) = \frac{t - 2}{2 \sqrt{2 t}}(-e_1 e_3 + e_2 e_4)
$$

$$
\hat{\Lambda}(e_6) = \frac{t - 2}{2 \sqrt{2 t}}(-e_1 e_4 - e_2 e_3).
$$

If $t = 1$ we obtain an Einstein metric with one Killing spinor for each of the values $\lambda = \pm \frac{1}{2 \sqrt{2}}$ (ψ_1 and ψ_3, respectively).
3.3.4 Construction of warped products with Killing spinors

Let \((F^{4,2}, h)\) be a pseudo-Riemannian spin manifold of signature \((4,2)\) with spin structure \(Q_F\) and spinor bundle \(S_F\). Furthermore let \(I = (a, b) \subseteq \mathbb{R}\) be an open interval and \(\sigma \in C^\infty(I, (0, \infty))\) be a smooth positive function. We consider the warped product

\[(M^{4,3}, g) := F^{4,2} \times_\sigma I := (F^{4,2} \times I, \sigma(t)h \oplus dt^2).\]

Denote by \(\pi : F^{4,2} \times I \rightarrow F^{4,2}\) the projection. Let \(\tilde{Q}\) be the spin structure of \((M^{4,3}, g)\) whose \(\text{Spin}(n-1)\)-reduction with respect to \(\xi = \frac{\partial}{\partial t}\) restricted to any fibre \(F^{4,2} \times \{t\}\) yields that spin structure of \((F^{4,2}, \sigma(t)h)\) which is conformally equivalent to the spin structure \(Q_F\) of \((F^{4,2}, h)\). The spinor bundle \(S\) of \((M^{4,3}, g)\) can be identified with the bundle \(\pi^*S_F\) by

\[\pi^*S_F \rightarrow S = \tilde{Q} \times_{\text{Spin}(4,3)} \Delta_{4,3}\]

\[\psi = [q, u(x, t)] \mapsto \tilde{\psi} = [\tilde{q}, u(x, t)]\]

where \(\tilde{q}\) denotes the element of \(\tilde{Q}_{(x, t)}\) which corresponds to \(q \in (Q_F)_x\) relative to the conformal equivalence of \(Q_F\) and \(\tilde{Q}|_{F^{4,2} \times \{t\}}\). For a section \(\psi \in \Gamma(\pi^*S_F)\) we denote by \(\psi^\prime \in \Gamma(S_F)\) the spinor field \(\psi^\prime(x) := \psi(x, t)\). Furthermore, for a vector field \(X\) on \(F^{4,2}\) let \(\tilde{X}\) be the vector field \(X(x, t) := \sigma(t)^{-\frac{1}{2}}X(x)\) on \(M^{4,3}\). Then the following formulae for the Clifford multiplication and the spinor derivative hold.

\[\tilde{X}(x, t) \cdot \tilde{\psi}(x, t) = \tilde{X}(x) \cdot \tilde{\psi}(x)\]

\[\tilde{\xi} \cdot \tilde{\psi} = -J^\tilde{\psi}\]

\[\nabla_{\tilde{X}} \tilde{\psi} = \sigma(t)^{-\frac{1}{2}}\nabla_X \tilde{\psi} - \frac{1}{3}\sigma^{-1}\sigma'\tilde{X} \cdot \tilde{\psi}\]

\[\nabla_{\tilde{\xi}} \tilde{\psi} = \frac{\partial}{\partial t} \tilde{\psi}\]

Theorem 3.6 Let now \(\varphi^+\) and \(\varphi^- := J^\varphi(\varphi^+)\) be Killing spinors on \(F^{4,2}\) with Killing numbers \(\lambda\) and \(-\lambda\), respectively. We may assume \(\lambda > 0\). Denote by \(\psi^+\) and \(\psi^-\) the sections \(\psi^+(x, t) = \cos(\lambda t)\varphi^+(x) - \sin(\lambda t)\varphi^-(x)\) and \(\psi^-(x, t) = \sin(\lambda t)\varphi^+(x) - \cos(\lambda t)\varphi^-(x)\) of \(\pi^*S_F\). Then \(\tilde{\psi}^+\) and \(\tilde{\psi}^-\) are Killing spinors on \(F^{4,2} \times_{\cos(2\lambda)} (-\frac{\pi}{4\lambda}, \frac{\pi}{4\lambda})\) with Killing numbers \(\lambda\) and \(-\lambda\), respectively.

Proof. Direct calculations using (16) - (19).
References

Sfb 288 Preprints are available at:
http://www-sfb288.math.tu-berlin.de
List of most recent 50 sfb288 preprints

153 Große-Brauckmann; Polthier: Numerical Examples of Compact Constant Mean Curvature Surfaces

154 D. Ferus, F. Pedit: Isometric Immersions of Space Forms and Soliton Theory

155 J. E. Avron, R. Seiler, P. Zograf: Viscosity of Quantum Hall Fluids

156 T. Friedrich: Neue Invarianten der 4-dimENSIONalen Mannigfaltigkeiten

157 A. Fring: Braid Relations in Affine Toda Field Theory

158 A. Schmitt: Solutions of a 2-dimensional Skyrme-Model on Aff(R)

159 B. Nobbe: Classical motion in two-dimensional crystals

160 F. V. Andreev, A. V. Kitaev: Connection Formulas for Asymptotics of the Fifth Painlevé Transcendent on the Real Axis. I

161 A. Tresse: Rational Models of Solvmanifolds with Kahlerian Structures

162 Th. Friedrich, I. Kath, A. Moroianu, U. Semmelmann: On Nearly Parallel G2-Structures

163 M. Karowski, R. Schrader: A lattice model of local algebras of observables and fields with braid group statistics

164 H. C. Hege, K. Polthier: Visualization and Mathematic

165 I. Krichever, A. Zabrodin: Spin generalisation of the Ruijsenaars-Schneider model, non-abelian 2D Toda chain and representations of Sklyanin algebra

166 V. Bazhanov, A. Bobenko, N. Reshetikhin: Quantum Discrete Sine-Gordon Model at Roots of 1: Integrable Quantum System on the Integrable Classical Background

167 U. Bunke, M. Olbrich: Fuchsian groups of the second kind and representations carried by the limit set

168 H. Ferguson, A. Gray, St. Markvorsen: Costa's Minimal Surface via Mathematica

169 J. Dorfmeister, I. McIntosh, F. Pedit, H. Wu: On the Meromorphic Potential for a Harmonic Surface in a k-Symmetric Space

170 M. Lüdke: Notes on generalised Magnus modules over the braid group

172 P. Contucci, A. Knauf: The Phase Transition of the Number-Theoretical Spin Chain

173 K. Mohrke: On Seiberg-Witten Equations on Symplectic 4-manifolds

174 D. Ferus, F. Pedit: Curved Flats in Symmetric Spaces

175 M. Hinze: On the Numerical Approximation and Computation of Minimal-Surface-Continua bounded by One-Parameter-Families of Polygonal Contours

176 U. Hertrich-Jeromin: On Conformally flat hypersurfaces, Curved flats and Cyclic sytems

177 U. Bunke, M. Olbrich: Cohomological properties of the smooth globalization of a Harish-Chandra module
178 F. Nill, K. Szlachányi: Quantum Chains of Hopf Algebras with Quantum Double Cosymmetry

179 St. Meißner, B.-D. Dörfel: Ground state and low excitations of an integrable chain with alternating spins

180 Ch. Bär: Harmonic Spinors for Twisted Dirac Operators

181 F. Constantinescu, M. Luedde: The Alexander and Jones-invariants and the Burau module

182 A. Bobenko, U. Eitner, A. Kitaev: Harmonic Inverse Mean Curvature Surfaces and Painlevé Equations

183 K.-D. Kirchberg: Kählerian E-spinors

184 J. Kellendonk: Integer Groups of Coinvariants Associated to Octagonal Tilings

185 V. Kostrykin, R. Schrader: Ionization of Atoms and Molecules by Short Strong Laser Pulses

186 M. J. Pflaum: A new concept of deformation quantization I. Normal order quantization on cotangent bundles

187 J. Brüning: The local index theorem without smoothness

188 U. Bunke, M. Olbrich: Cohomological properties of the canonical globalizations of Harish-Chandra modules

189 U. Bunke, M. Olbrich: Group cohomology and the singularities of the Selberg zeta function associated to a Kleinian group

190 H. Gollek: Deformations of isotropic curves in C3 and minimal surfaces in R3

191 F. Guerra, A. Knauf: Free Energy and Correlations of the Number-Theoretical Spin-Chain

192 H.-W. Wiesbrock: Symmetries and Modular Intersections of von-Neumann-Algebras

193 H.-W. Wiesbrock: Modular Intersections of von-Neumann-Algebras in Quantum Field Theory

194 H. Karcher, K. Polthier: Construction of Triply Periodic Minimal Surfaces

195 V. Bach, J. Poelchau: Accuracy of the Hartree-Fock Approximation for the Hubbard Model

196 F. V. Andreev, A. V. Kitaev: Connection Formulas for the asymptotics of the fifth Painlevé transcendent on the real axis. II

197 J. Dorfmeister, G. Haak: On symmetries of constant mean curvature surfaces

198 Th. Friedrich: On Superminimal Surfaces

199 M. J. Pflaum: The normal symbol on Riemannian manifolds

200 M. U. Schmidt: On complex Bloch-spaces of periodic Schrödinger operators

201 Fring:

202 C. Binnenhei: On The Even CAR Algebra

203 I. Kath: G*2(2)-Structures on pseudo-Riemannian manifolds