Comment on Covariant Duality Symmetric Actions

Paolo Pasti¹, Dmitrij Sorokin² and Mario Tonin³

Università Degli Studi Di Padova, Dipartimento Di Fisica “Galileo Galilei”
ed INFN, Sezione Di Padova, Via F. Marzolo, 8, 35131 Padova, Italia

Abstract

We demonstrate that an action proposed by A. Khoudeir and N. R. Pantoja in Phys. Rev. D53, 5974 (1996) for endowing Maxwell theory with manifest electric–magnetic duality symmetry contains, besides the Maxwell field, additional propagating vector degrees of freedom. Hence it cannot be considered as a duality symmetric action for a single abelian gauge field.

PACS numbers: 11.15-q, 11.17+y

The action proposed in [1] to describe abelian vector fields in four–dimensional Minkowski space has the following form⁴:

\[I = -\frac{1}{2} \int d^4 x \left(u^m \mathcal{F}^\alpha_{mn} \Phi_{mp}^\alpha + \Lambda^\alpha_{mp} \Phi_{mp}^\alpha \right), \]

where \(\alpha = 1, 2, \mathcal{L}_{\alpha\beta} \) is the antisymmetric unit tensor,

\[\Phi_{mp}^\alpha \equiv F_{mp}^\alpha + \mathcal{L}_{\alpha\beta} F_{mp}^\beta, \]

is a self–dual tensor \(\Phi_{mn}^\alpha \equiv \frac{1}{2} \epsilon_{mpq} \mathcal{L}_{\alpha\beta} \Phi^{\beta pq} \) constructed out of the field strengths of two abelian gauge fields \(A_m^\alpha \)

\[F_{mn}^\alpha = \partial_m A_n^\alpha - \partial_n A_m^\alpha, \quad \mathcal{F}^{\alpha mn} = \frac{1}{2} \epsilon^{mpq} F_{pq}^\alpha, \]

\(u_m(x) \) is an auxiliary vector field satisfying the condition

\[u_m u^m = -1, \]

and

\[\Lambda^\alpha_{mn} \equiv -\frac{1}{2} \epsilon_{mpq} \mathcal{L}_{\alpha\beta} \Lambda^{\beta pq} \]

¹e–mail: pasti@pd.infn.it
²on leave from Kharkov Institute of Physics and Technology, Kharkov, 310108, Ukraine.
e–mail: sorokin@pd.infn.it
³e–mail: tonin@pd.infn.it
⁴for details of notation and convention see [1]
is anti–self–dual Lagrange multiplier, since Φ_{mn}^α (2) is self–dual.

The equations of motion one gets from (1) reduce to

$$\frac{\delta}{\delta \Lambda_{mn}^\alpha} I = 0 \implies \Phi_{mn}^\alpha = 0,$$

(6)

$$\frac{\delta}{\delta A_m^\alpha} I = 0 \implies \varepsilon^{mnpq} \partial_p \Lambda_{nq}^\alpha = 0.$$

(7)

From (6) it follows [2, 3] that the field strength of one of the gauge fields A_m^α is dual to another one. Thus on the mass shell only one of A_m^α remains independent and the latter satisfies the free Maxwell equations of motion (see [2, 3] for details).

At the same time the general solution of Eq. (7) is

$$\Lambda_{mn}^\alpha = \partial_{[m}B_{n]}^\alpha,$$

(8)

where $B_m^\alpha(x)$ are vector fields which, because of anti–self–duality of Λ_{mn}^α (5), satisfy the Maxwell equations

$$\partial^m \partial_{[m}B_{n]}^\alpha = 0.$$

(9)

Eq. (9) is the point which demonstrates that the statement of Ref. [1] that on the mass shell $\Lambda_{mn}^\alpha = 0$ fails. It might be so if the action (1) had a local symmetry under which Λ_{mn}^α transformed as

$$\delta \Lambda_{mn}^\alpha = \partial_{[m}\phi_{n]}^\alpha - \mathcal{L}^\alpha_{\beta\gamma} \varepsilon_{mn}^{\rho\sigma} \partial_{[\rho} \phi_{\sigma]}^\beta \delta_{\gamma]},$$

(10)

with a vector parameter $\phi_n^\alpha(x)$. Then on the mass shell one might use this symmetry to eliminate B_m^α. [Note that simpler transformations of Λ_{mn}^α of the form $\delta \Lambda_{mn}^\alpha = \partial_{[m}\phi_{n]}^\alpha$, cannot be considered as a nontrivial local symmetry of the model since they leave the action invariant only if $\phi_n^\alpha(x)$ a priori (because of anti–self–duality of Λ_{mn}^α) satisfies the dynamical Maxwell equations the same as Λ_{mn}^α on the mass shell (9). The action of any theory possesses such kind of trivial invariance]. One can see that if other fields of the model are inert under transformations with $\phi_n^\alpha(x)$ the action is not invariant under (10).

Thus one should try to find appropriate transformations of u_m and A_m^α which would cancel that of Λ_{mn}^α in the action. An argument against the existence of such transformations is that for the local symmetry to be present there must be first–class constraints on dynamical variables of the model which generate this symmetry. However there are no relevant constraints in the case at hand. Analogous situation takes place in simpler case of chiral bosons [4, 5, 6] where an action proposed in [6] has a Lagrange multiplier term linear in derivatives of physical fields (like in (1)). There the Lagrange multiplier is a propagating degree of freedom which causes the problem with unitarity of the model of [6] (see [7] for detailed discussion of these points).

By the same reasons the model of [1] contains additional propagating vector degrees of freedom B_n^α and cannot be considered as a covariant version of a duality–symmetric free Maxwell action [2, 3]. A consistent Lorentz covariant way of constructing duality–symmetric actions was proposed in [8], and alternative formulations, based on an infinite number of auxiliary fields, were considered recently in [9].

References