BEAM INDUCED GAS DESORPTION IN THE CERN INTERSECTING STORAGE RINGS

by

O. Gröbner and R.S. Calder

Paper to be presented at the 1973 Particle Accelerator Conference

Geneva, Switzerland
27 February 1973
BEAM INDUCED GAS DEPOSITION IN THE CERN INTERSECTING STORAGE RINGS

O. GRÖBNER and R.S. CALDER
ISR Division - CERN
Geneva, Switzerland

Summary

The maximum beam intensity achieved in the ISR has been limited up to now by the beam induced pressure rise which builds up with the stacked proton current. This pressure increase can be explained by ion induced gas desorption from the vacuum chamber. The pressure \(P \), as a function of the stacked proton current \(I \), can be described in good approximation by

\[
P = P_0 / \left[1 - (kn/S)^2 \right],
\]

where \(P_0 \) is the pressure without beam, \(S \) the pumping speed, \(n \) the net gas desorption coefficient in molecules per incident gas ion and \(k \) is a constant. This concept shows the existence of a critical current at which the pressure goes to infinity. The desorption coefficient depends on the primary ion energy, the type of ions and above all, on the surface conditions. Surface treatments yielding low and even negative values of \(n \) are discussed together with experimental results obtained.

1. Introduction

The present limit on beam current in the CERN Intersecting Storage Rings (ISR) has been determined above all by the performance of the vacuum system. The average pressure along the 1 km vacuum pipe which has been in the low \(10^{-10} \) torr range (and a current improvement program is reducing this even further to about \(2 \times 10^{-11} \) torr), yields low beam decay and blow-up rates up to moderate currents. However, when stacking to high currents one or more localised pressure rises may appear which lead to a rapid decay and, if stacking is continued, the beam gets lost due to the various types of beam instabilities or the internal dumping mechanism triggered by the vacuum interlocks. Fig. 1 shows a localised pressure bump and Fig. 2 demonstrates how this pressure grows during the process of beam stacking. This catastrophic effect, often called pressure bump or vacuum instability was observed early during the commissioning period of the ISR and has stimulated intensive studies together with a continuous effort to improve the ultrahigh vacuum system.

Several hypotheses have been put forward to explain the pressure bump mechanism but it is now well established that the pressure increase is caused by an avalanche type of process based on ion induced gas desorption from the stainless steel walls of the vacuum chamber. The ionisation of the residual gas by the beam produces an energetic ion bombardment of the chamber and causes the pressure rise by desorption of surface molecules. Since the ion production is proportional to beam current times pressure\(^1\) one has an accumulative effect.

The following observations suggest that this sequence is indeed the mechanism of the pressure bump:

\(i \) the pressure increase is very sensitive to the beam potential and hence to the ion energy, in agreement with ion desorption yields quoted in the literature\(^2\).

\(ii \) The pressure rise is proportional to beam current rather than beam loss. This excludes gas desorption by particles lost from the beam.

\(iii \) The desorption yield for ions is of a right order of magnitude to explain the pressure rise: electron desorption yields are at least two orders of magnitude too small.

\(iv \) The gas composition in the pressure bump is markedly different from that of the normal residual gas typically \(> 95 \% \) H\(_2\). In particular, heavier masses appear which indicate the existence of an adsorbed gas layer on the wall.

Fig. 1 Pressure distribution in ring 2 of the ISR showing a localised pressure bump in sector 22 caused by a 13.9 A. circulating beam.

Fig. 2 The development of a pressure bump during beam stacking.
v) Beam pumping, i.e. a reduction of pressure in the presence of a circulating beam, can be observed in particularly well cleaned sections of the ISR vacuum chamber (see sect. 4 ii). This is attributed to the number of gas ions being buried in the chamber wall exceeding the number of molecules released - in effect an ion pump.

For completeness it may be added that electron desorption and desorption by beam loss have been observed but both effects play only a secondary role.

2. Theoretical

For the study of the pressure bump effect the ion desorption yield η is defined as the net number of molecules leaving the surface per primary incident ion. The total number of molecules liberated per second and per unit length is then given by $\eta \delta n$, η being the number of gas molecules per unit volume, δn the number of beam protons per second and σ the ionisation cross-section. For convenience a standard value for σ of 1.2×10^{-18} cm2 for protons of 25 GeV on nitrogen has been assumed throughout in the calculations of η - for other energies or gases a correction has to be applied.

To describe the gas density in a module of the ISR vacuum chamber this beam desorption has to be included in a dynamic vacuum equation for a distributed and conductance limited system3. One then obtains for $n(x,t)$

$$\frac{\partial^n}{\partial t^n} - g + \sigma \eta n + \frac{\partial^2}{\partial x^2}$$

with the boundary condition

$$\left[\frac{\delta n}{\partial x} + \frac{\delta n}{\partial x} \right] x = \pm L = 0$$

(1)

Here A denotes the chamber cross-section, g the outgassing load per unit length, c the conductance per unit length of the vacuum pipe and L the half distance between pumps of speed S. The boundary condition is derived from putting the gas flow at the end points equal to the gas pumped.

The solution of equation (1) can be obtained by separating the variables x and t and represented by a Fourier series.

$$n(x,t) = \sum_{n=1}^{\infty} \frac{\cos \lambda \nu }{C \nu} \left[B \nu \left(\frac{C \nu}{F \nu} \right) \exp(-F \nu \cdot t/A) \right]$$

(2)

where $\lambda \nu$ are the roots of the transcendental equation

$$\lambda \nu \tan \lambda \nu = S/c$$

(3)

and with the coefficients

$$C \nu = \frac{(2g/a^2 \nu \cdot \nu)}{2L \lambda \nu}$$

and

$$a^2 = L + (1/2\lambda \nu) \sin 2\lambda \nu$$

From the starting condition one finds

$$B \nu = 1/a^2 \int_{-L}^{L} n(x,0) \cos \lambda \nu x \, dx,$$

where $n(x,0)$ is the initial gas distribution. The term containing the beam desorption is $F \nu = \sigma n \nu$. Since a finite equilibrium pressure can only exist for negative exponents in equation (2) it follows that for stability the product $n \nu$ must be less than the critical value

$$(n \nu)_{crit} = \frac{e\nu^2}{\sigma}$$

(4)

Here the conversion is made from protons per second to beam current I in Λ, $e = 1.6 \times 10^{-19}$ C and λ is the first root of equation (3), $\lambda \nu_1 < \lambda \nu_2 < \ldots$.

Most of the data were taken at pressure equilibrium. An approximate pressure bump equation valid for equilibrium can be derived from equation (2) by taking the first term of the series expansion only. This yields the relationship between the starting pressure P_0 and the pressure in presence of beam P_I,

$$P_I = P_0 / \left[1 - (k \eta / c \nu^2 \cdot I) \right]$$

(5)

k being written for the ratio σ / ν. In analogy with a vacuum system with a pumped volume V can consider the term $c \nu^2$ (cm3 sec$^{-1}$ cm$^{-1}$) as an effective pumping speed per unit length, S_{eff}.

The analysis neglects so far all readesorption effects which often dominate the pressure behaviour in an ultra-high vacuum system. This approach nevertheless seems justified as long as only equilibrium states are observed where one assumes that the surface coverage of adsorbed molecules is in balance with the gas phase. This simplification can no longer be used in a dynamic situation, e.g. the build up of the pressure bump. For a complete analysis it is then necessary to include the reaction of the surface to changes of pressure in equation (1).

To combat pressure bumps in the ISR the effective pumping speed at any point may be increased either by augmenting the installed pumping speed S and/or by decreasing the pump separation $2L$. Equations (3) and (4) show, for a conductance limited system as the ISR, that the inter-pump distance is the more critical factor. Alternatively, one may attempt to lower η by producing cleaner surfaces. The latter solution is certainly the more elegant but until it can be shown that such clean surfaces are stable and resistant to leaks etc., the former method of increased pumping speed will obviously have the compensating attraction of security.

The first method is the basis of a current improvement program now nearing completion in which over 400 titanium sublimation pumps have been installed reducing the average distance between pumps to about 2.5 m in the low conductance magnet chambers and to about 4 m elsewhere. The expected increase of the pressure instability limit in terms of $n \nu$ is at least a factor of 5, in principle sufficient to reach the design current of 20 A. The table shows computed values $(n \nu)_{crit}$ in amperes, (A) for the earlier situation of ion pumps ($S = 100 1/s$) and (B) after adding sublimation pumps ($S = 500 1/s$) with the inter-pump distance $2L$ as parameter.

<table>
<thead>
<tr>
<th>$2L$ (m)</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>elliptical chamber</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>5 x 16 cm</td>
<td>2.5</td>
<td>60</td>
</tr>
<tr>
<td>round chamber</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>16 cm diameter</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>experimental region</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>1/2</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

special chamber in injection septum magnet
It is seen that only by reducing the inter-pump distance, particularly in the case of the low conductance elliptic magnet chamber, can the full advantage of the high speed sublimation pumps be used.

In parallel with the installation of additional pumps the desorption properties of the vacuum chamber are being studied with the aim of defining better cleaning procedures, bake-out or other surface treatments yielding lower \(\eta \) values.

The desorption coefficient \(\eta \) will depend in a rather complex way on the state of the surface and on the type and energy of the bombarding ion. For a phenomenological approach it is therefore convenient to consider \(\eta \) as the difference of two quantities, \(\eta_1 - \eta_2 \): \(\eta_1 \) being the number of gas molecules released per incident ion and \(\eta_2 \) the probability of the primary ion sticking to the surface. Since \(\eta_2 \) cannot exceed unity it follows that \(\eta > -1 \).

The desorption is likely to depend rather strongly on the surface coverage of adsorbed molecules \(\theta \), and therefore \(\eta_2 \) will be the dominant term for a dirty or contaminated vacuum chamber. The sticking probability \(\eta_2 \) on the contrary will probably be essentially independent of \(\theta \) with perhaps a small increase as the surface contamination is reduced and more sites become available for adsorption. One may therefore expect an approximate overall proportionality between \(\eta \) and \(\theta \) for high degrees of contamination with a limiting value of -1 for vanishing \(\theta \).

At moderate and high energies (e.g. \(E_i > 500 \text{ eV} \)) the desorption term \(\eta_1 \) dominates and \(\eta \) will be roughly proportional to the primary ion energy. At lower energy, especially for clean chambers, \(\eta \) will be determined by both \(\eta_1 \) and \(\eta_2 \). The term \(\eta_2 \) depending on various phenomena such as ion adsorption, backscattering and ion burial, may account for the systematically observed rapid rise of \(\eta \) at low energies as seen on Fig. 4 and 5. The potential of the proton beam and hence the ion energy \(E_i \) depends on beam density beam-chamber geometry and further it is roughly proportional to the beam current. Typically one finds between 100 and 200 volts per amphere for the ISR.

Apart from the energy dependence one can observe a very pronounced intensity dependence of the desorption yield at constant ion energy - see sect. 3 ii) and Fig. 6. This effect is not fully understood but there may be two possible explanations:

i) As the pressure bump develops the rest gas composition, originally 95% \(\text{H}_2 \) may change appreciably by the desorption of heavier molecules. Therefore if the desorption depends strongly on the ion species this could give rise to the apparent increase of the composite \(\eta \). The dependence of the cross-section \(\sigma \) on the gas species will also contribute to this effect.

ii) Incident ions may excite the surface molecules so that subsequent ions have a higher desorption probability giving a nonlinear behaviour of \(\eta \).

3. Experimental set-up

Measurements of \(\eta \) have been made at various places around the ISR where pressure bumps occurred. A direct method consists in observing the initial pressure decay \(P_0 \) at \(T = 0 \) after reducing instantaneously the beam current to zero (i.e. by beam dumping). Differentiating equation (2) one derives

\[
\eta = -\frac{A}{k T_0} \left(\frac{P_0}{P_T} \right)
\]

with \(P_T \) the equilibrium pressure before dumping the beam.

In practice this method ceases to work for small pressure bumps and at very low pressures due to the excessively long response time of the gauge control units. Therefore a second method is used, based on equation (5) for the equilibrium pressure. Here the knowledge of the effective pumping speed \(S_{\text{eff}} \) is required which can be obtained either from calculation, or by measurement of the dynamic pressure behaviour when the above limitation does not apply.

Most of the experimental work on beam induced gas desorption has been done in an especially equipped 10 m long straight section of the ISR. There sufficiently reproducible experimental conditions could be maintained and provisions made for various diagnostic devices. Fig. 3 shows a cross-section through the vacuum chamber with the ribbon like proton beam in the centre and an electrode which extends about 6 m along the beam direction. Depending on the electrode voltage the potential of the beam and thus the energy of the ions hitting the inner surface vacuum chamber can be varied in a controlled way. There is a beam neutralisation facility consisting of a pair of electrodes at each end of the section which can be biased so as to trap all electrons produced in the test section and thus effectively neutralising the positive space charge of the beam. This enables one to experiment at any convenient level of beam current and to vary independently the ion energy from a virtually zero volts up to energies corresponding to cleared beam currents well above 20 A. Various test gases can be injected by a leak valve and the rest gas or pressure bump composition analysed. Four titanium sublimation pumps mounted on short side arms as well as two sets of "linear" sublimators stretched along the bottom of the chamber can be activated to increase the pumping speed. Samples having undergone different cleaning or surface treatments can be introduced into the bottom of the vacuum chamber.

![Side arm Titanium sublimator](image)

Fig. 3 Cross-section of the experimental arrangement to study ion induced gas desorption effects.

4. Results of various surface treatments

i) **Bake-out**

The ISR vacuum system has been designed for in-situ bake-out temperatures of up to 300°C. In the
early phase of operation, only mild 6-hour bake-outs at 200°C were made which proved to be insufficient as evidenced by the appearance of the pressure bump phenomenon at the 4 to 5 A level. The more rigorous bake to 300°C for 24 hours reduced \(\eta \) in the worst places by at least a factor of two and beam currents of up to 10 A could be obtained. Repeated bake-outs seem to give still further improvement but the effect is marginal. Also there are practical limits to lengthening the time to excess of 24 hours and unfortunately only at some places it is possible to increase the temperature above 300°C. Bake-outs at 340°C prove indeed to be very effective as is shown in Fig. 4, comparing \(\eta \) as a function of ion energy for one 300°C and a subsequent 340°C bake-out. The improvement in terms of \(\eta \) is about one order of magnitude. In both cases the desorbed gas species are predominantly \(H_2 \) and \(CO \) in approximately equal proportion, together giving about 80% of the desorption total - the rest being a range of light \(C_1 \) or \(C_2 \) cracked hydrocarbons. The bombarding ion species would be the same as the residual gas composition at the start (> 90% \(H_2 \)); it would tend towards the desorbed composition for high desorption rates - e.g. the 300°C curve and \(E_1 \) < 1000 eV. Even though increased temperatures pose additional problems due to higher risks of leaks the results nevertheless indicates the importance of avoiding cold spots during the bake-out and offers a possible solution for lowering the gas desorption \(\eta \).

Fig. 4 Desorption coefficient \(\eta \) as a function of the ion energy \(E_1 \) for a stainless steel vacuum chamber. The curves show the relative efficiencies of 24-hour bake-outs at 300°C and 340°C. (beam current \(I = 3 \) A).

ii) Gas discharge cleaning

There exists considerable interest in investigating surface treatments other than bake-out. The latter has the disadvantage that the thermal energies at 300°C are small compared to chemical adsorption energies. A proportion of the contamination will therefore not be removed during the bake-out but can still be readily desorbed by the energetic ion bombardment of the beam.

Reducing the surface contamination by ion bombardment in a gas discharge, which simulates and accelerates the effect of the beam, has been successfully studied in the laboratory\(^4\). So far argon at 10^-2 torr has been used as the discharge gas since it does not adsorb chemically on the surface and any physisorbed layer can be removed by a subsequent bake-out. The ion flux can be made very high - best results are obtained with a few \(10^{10} \) ions cm^-2. The desorbed gas molecules are removed effectively by maintaining a continuous flow of the carrier gas and re-adsorption is reduced by operating the discharge while the chamber is hot. The treatment has been made in the range of abnormal discharge to ensure bombardment of all parts of the chamber and to give reasonable treatment times - typically \(10^{-4} \) A cm^-2 for 3 hours. Applied voltage is normally 300 V, but bombarding ion energy will be given by the cathode-fall voltage of about 160 V.

Tests made in the ISR on chamber sections treated in-situ have shown a considerable decrease of the desorption yield - rather large negative \(\eta \) values (i.e. beam pumping) could even be obtained. Fig. 5 shows the desorption yield versus ion energy before and after a discharge for a stainless steel chamber and a titanium test sample. The yield after discharge treatment is negative up to high energies and apart from the initial region it is almost energy independent suggesting that the desorption term \(\eta \) is very small. This is in clear contrast to results from a surface not subjected to gas discharge which have always exhibited an \(\eta \) increasing with \(E_1 \).

The second important effect of the gas discharge shown in Fig. 6. The steep increase of the desorption yield with beam current, irrespective of ion energy, is practically absent for the discharge cleaned surface. Curve 3 shows an example for \(E_1 \) = 0. Results similar those shown in Fig. 5 and 6 were obtained when replace the titanium test sample by one of stainless steel.

Fig. 5 The dependence of the desorption coefficient on ion energy \(E_1 \), (1) before and (2) after a argon glow discharge treatment measured at 6 and 9.5 A respectively.

Another method of surface cleaning by ion bombardment consists in using directly the beam produced ions (beam cleaning). Experiments in this direction have so far been unsuccessful because of the low ion flux which can be obtained (about \(10^{10} \) ion cm^-2 sec^-1).

iii) Change of surface

During a gas discharge treatment as outlined above a considerable quantity of chamber material is sputtered and re-deposited while the gaseous desorption products are being pumped away. This sputtering will pose a problem for general in-situ discharge treatments since any insulator, unless very well protected will be covered with a conducting metal film. This problem can
Fig. 6. The variation of the desorption coefficient η with beam intensity I (bombarding ion intensity) at constant ion energy. Curves 1 and 2 are before, curve 3 after an argon glow discharge treatment.

be circumvented by a pre-treatment in the laboratory - a process which implies that the chamber is exposed to air before being installed and re-baked at 300°C in the ISR. The results, in terms of low desorption coefficient η, are similar to those obtained from the in-situ treatment - a fact which makes the pre-treatment method very attractive from the practical point of view. The explanation for this interesting result may lay in the very drastic change of surface structure.

Following the ideas developed above a layer of titanium was deposited in-situ under ultrahigh vacuum conditions from the linear sublimators. This surface, apart from pumping and giving a very low pressure in the absence of beam, showed a pronounced beam pumping effect with $\eta = -1$, i.e. complete ion absorption and no secondary desorption. Unfortunately we have not yet been able to continue measurements on a partly or fully saturated titanium layer or after exposure to air.

Conclusions

The improvement of the pumping system together with the reduction of the ion desorption yield due to improved bake-out and/or the systematic argon discharge of the chamber should make it possible to achieve stable or even decreasing pressures with the design beam intensity of 20 A. So far one does not know for how long a clean chamber will remain so and how important unavoidable small leaks will be - whether a simple rebake will be sufficient or whether a gas discharge has to be repeated from time to time. The results so far are nevertheless encouraging and the beneficial effect of the gas discharge seems to survive even several prolonged exposures to air and rebakes.

The intensity dependence of η, apparently absent after the discharge cleaning may nevertheless reappear at higher current levels. However we feel confident that the combined effects of higher pumping speed, lower base pressure, higher or more uniform bake-out temperature and glow discharge treatment in sensitive regions when necessary will prove sufficient to remove vacuum limitations up to ISR currents of at least 20 amperes.

Acknowledgements

Many members of the ISR Vacuum Group have contri-