R&D work on lead/scintillating fibres calorimetry (the so-called "spaghetti calorimetry") started in 1986 in the framework of the LAA Project, component 2b: "Compact EM+Hadronic Calorimetry". Excellent results were obtained during the past four years (see Refs. 1-7 of Annex II).

In continuation of this R&D work, a collaboration between LAA and INFN physicists from Bologna, Italy, presented a proposal: "CPF: Calorimetria Piombo/Fibre scintillanti" (see Annex II for a summary in English of the proposal), to the "Commissione Scientifica Nazionale V" of INFN, which was approved on June 6, 1991 and recommended for financing (see Annex I).

The LAA Project will participate in this programme with premises and material, including the spaghetti calorimeter prototypes built during the past years, and, most important, with the competence of the people which contributed in a fundamental way to the present success of the R&D on spaghetti calorimetry.

The scientific programme approved by the "Commissione V" INFN constitutes the phase-II of spaghetti calorimetry in LAA, aiming at:

a) Studies with the existing prototypes:
 i) high-rate performances and uniformity;
 ii) long-term stability;
 iii) longitudinal hadronic shower development.

b) Studies on the control of the energy resolution:
 i) "external" systems (flashers, LED, radioactive sources, etc.);
 ii) "internal" systems (γ's and low-energy hadrons);
 iii) quality control of fibres.

c) Studies on the radiation damage of fibres:
 i) single fibres (optimal combination of base/scintillator/cladding);
 ii) modules with many fibres (global damage and energy resolution studies).

d) Systematic studies on a preshower counter.

e) Studies on the trigger and read-out system:
 i) trigger electronics (analog);
ii) second level trigger.

f) Studies on new geometries:
 i) development of cheap mass production assembly techniques for projective modules;
 ii) projective geometry: position resolution and e/π rejection;
 iii) projective geometry: trigger;
 iv) special modules for fibre attenuation and compensation studies.

 Part of this scientific programme requires tests in particle beams, to be carried out in

 In particular we shall need:

1. 10 days in summer 1991 in a 5 ± 50 GeV electron/pion/muon beam, for a study of the
 performances of the 155-cells prototype, after irradiation in the WA89 experiment (see
 point a.i above), and for the study of the hadronic shower development (see point a.iii
 above). Part of this beam time (recalibration of the 155-cells calorimeter) has already
 been assigned to WA89, at the end of their present running period.

2. Some days in summer 1991 in a 150 GeV electron/pion beam for the completion of the
 measurements on the 15-cells projective prototype, already tested (up to 50 GeV) in
 May 1991 [7]. This work has been required to us by INFN to establish the limits in
 e/π separation of such a calorimeter design (see points f.ii and f.iii above).

3. 10 days in summer 1991 on a 0.5 ± 5.0 GeV electron/pion beam for studies on the
 calorimeter response to low energy particles. We intend to explore the possibility of
 using low energy particles, which represents the bulk of the background at LHC, as a
 mean to equalize and calibrate the calorimeter during data taking (see point b.ii above).

4. One week in spring 1992 on a 5 ± 50 GeV electron/pion beam for studies on the
 preshower counter (see points a.ii and d above).

5. The continuation of the present scintillating fibres irradiation tests using the 0.5 GeV
 electron beam from the LIL/LPI, at a maximum beam intensity of 4 × 10⁹ electrons/burst.
 Other fibre samples are expected to be given to us by industries for testing in the near future
 (see point c.ii above).

6. Following the feasibility studies on the development of cheap mass production assembly
 techniques for projective modules (see point f.i above), we intend to build a 350 cm²
 front-surface projective prototype. We would need about 10 days in spring 1992 in a
 5 ± 150 GeV electron/pion beam for measuring the performances of this calorimeter.
Caro Presidente,
nella ultima riunione della V Commissione Scientifico Nazionale, tenuta a Roma nei giorni 6 e 7 giugno 1991 è stato deciso di chiedere gli sblocchi di sub judice riportati nella seguente tabella:

SBLOCCHI SUB-JUDICE

<table>
<thead>
<tr>
<th>RIFOS:</th>
<th>Roma</th>
<th>CONS. 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPLIT:</td>
<td>GE</td>
<td>EST. 12</td>
</tr>
<tr>
<td></td>
<td>PD</td>
<td>EST. 10</td>
</tr>
<tr>
<td></td>
<td>TS</td>
<td>EST. 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totale 28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XEC:</th>
<th>PI</th>
<th>EST. 20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CONS. 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totale 40</td>
</tr>
</tbody>
</table>

È stato inoltre deciso di proporre l’assegnazione dal fondo indiviso ai seguenti esperimenti:
E' stata decisa anche la approvazione scientifica e proposto il finanziamento sempre dal fondo individuo per nuovi esperimenti come risulta dal seguente prospetto:

PROPOSTE DI FINANZIAMENTO PER NUOVE INIZIATIVE R&D

<table>
<thead>
<tr>
<th>MUTRIG:</th>
<th>LNF</th>
<th>CONS.</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHC TB:</td>
<td>PV</td>
<td>INV.</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CONS.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EST.</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totale</td>
<td>120</td>
</tr>
<tr>
<td>NEW-SCIC:</td>
<td>LNF</td>
<td>CONS.</td>
<td>9</td>
</tr>
<tr>
<td>T&T:</td>
<td>NA</td>
<td>INT.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PV</td>
<td>INT.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Totale</td>
<td>8</td>
</tr>
</tbody>
</table>

TOTALE PROPOSTE 162 ML

DISPONIBIL. FONDO INDIVISO 162 ML

RESIDUO FONDO 0

A seguito di queste proposte il fondo individuo di Gruppo V costituito per il 1991 viene azzerato.

RICHIESITA DI CONTRIBUTO STRAORDINARIO ALLA GIUNTA PER L'ESPERIMENTO CPF:

Dopo un esame approfondito e la relazione di P.Laurelli a nome del gruppo dei referees nominati nella riunione del 22.3.91 (R.Bernabei,P.Laurelli,L.Mandelli) è stato approvato scientificamente l'esperimento CPF della sezione di Bologna.

Tale esperimento costituisce una variante nell'ambito della ricerca e sviluppo sulla calorimetria a fibre scintillanti e piombo. La Commissione ha giudicato adeguate agli scopi le cifre di possibile finanziamento discusse dai referees, pertanto ti chiedo a nome della Commissione un contributo straordinario per il 1991 sotto la seguente forma:
CPF: BO proposta globale 1991: 249 ML
di cui da assegnare subito:

<table>
<thead>
<tr>
<th>Inv.</th>
<th>Cons.</th>
<th>Est.</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>60</td>
<td>14</td>
</tr>
</tbody>
</table>

Totale 94

e da assegnare al fondo indiviso del Gruppo V per ulteriore assegnazione in corso anno (ancora sub-udice per il Gruppo V):

<table>
<thead>
<tr>
<th>Inv.</th>
<th>Cons.</th>
<th>C.App.</th>
<th>Est.</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>32</td>
<td>33</td>
<td>28</td>
</tr>
</tbody>
</table>

Totale 168

TOTALE PROPOSTA PER CPF 249 ML

Del programma di ricerca CPF così come del programma SPACAL (Pv,Ca,Na) fa parte anche lo sviluppo di un fotomoltiplicatore ibrido a stato solido, che costituisce anche motivo di grande interesse per altri gruppi dell'INFN.

Per lo sviluppo di tale dispositivo viene proposto il finanziamento straordinario di 200 ML per costruzione di apparati da assegnare alle dotazioni di gruppoV della sezione di Bologna.

Per decisione della Commissione le specifiche ed il test dei prototipi dovranno essere curati da P.Benetti(SPACAL) e R.DeSalvo(CPF) e riferite al presidente della V Commissione il quale si farà cura anche di approvare di volta in volta le spese relative allo sviluppo del dispositivo.

Ti saluto cordialmente

[Signature]

Marcello Giorgi
ANNEX II.

Summary of the proposal:

“CPF: Calorimetria Piombo/Fibre scintillanti”
Calorimetria Elettromagnetica e Adronica Compatta

Presented at the INFN “Commissine Scientifica Nazionale V” by:

G.Anzivino8), F.Arzarello1), G.Bari1), M.Basile1,2), L.Bellagamba1), C.Bencheikh4), D.Boscherini1), G.Bruni1), P.Bruni1), V.Buzuloiu7), G.Cara Romeo1), M.Chiarini1), L.Cifarelli1,9), F.Cindolo1), F.Ciralli1), A.Contin1,2,3)*, M.Dardo10), S.DePasquale1), R.De Salvo3), F.Frasconi1), A.Gheorge7), P.Giusti1), W.Hao5), G.Iacobucci1), G.Laurenti1,3), G.Maccarrone1), A.Margotti1), T.Massam1), R.Nania1), V.Peskov6), G.Sartorelli1,2), M.Scioni1), R.Timellini1), Y.Wang5), C.Xu5), K.You5) and A.Zichichi1,2,3)

1) INFN, Sezione di Bologna, Italy.
2) Università di Bologna, Italy.
3) CERN/LAA, Geneva, Switzerland.
4) Haute Commissariat à la Recherche, Ain-Ouussura, Algeria.
5) IHEP, Beijing, People’s Republic of China.
6) Institute for Physical Problems, Moscow, URSS.
7) Institute of Atomic Physics, Bucarest, Romania.
8) INFN, Laboratori Nazionali di Frascati, Italy.
9) Università di Napoli, Italy.
10) Università di Torino and INFN, Sezione di Torino, Italy.

*) spokesman
1. Introduction.

During the last 3.5 years, some of the most relevant problems of the lead/fibre calorimetry have been addressed and solved in the framework of the LAA Project. In particular, during the first 1.5 years:

a) the fibres with the correct characteristics have been specified;

b) several test modules have been built;

c) the longitudinal and lateral response of the calorimeter have been made uniform;

d) the first measurements of the calorimeter response to electrons and hadrons have been done; very good results have been obtained on e/π separation with a new method based on the signal speed;

e) the construction method for larger prototypes has been defined;

f) the first radiation hardness tests of the fibres have been made in Lisbon;

g) prototypes for a new photon detector (HPD - Hybrid Photo Diode) have been designed and built.

During the following 1.5 years, two large prototypes (20- and 155-cells, respectively) have been built by LAA with the help of interested Institutions, which participated in the subsequent data taking and analysis [1-7].

In July 1990, the proposal CERN-DRDC/P1 was submitted to the DRDC. The goal of this proposal was to study some of the remaining issues on spaghetti calorimetry, in view of its use as a detector for LHC. The proposed activities were a continuation of the work done in the framework of LAA, and, in fact, represented the “phase-2” of spaghetti calorimetry, as presented to the LAA Scientific and Technical Advisory Board in June 1987, and approved by it in September of the same year. Part of these activities had already started within the LAA group at the time of the presentation of the proposal. The proposal was signed by the members of the LAA group, under the condition that a Memorandum of Understanding had to be laid down, defining the responsibilities of each group participating in the collaboration (to be called SPACAL Collaboration).

After discussions inside the collaboration and with CERN officials, the LAA group decided to withdraw. Nevertheless, the component 2b of LAA have not run out of interest in the spaghetti calorimetry. On the contrary, we think that the know-how built up in the past years will allow us to produce very good results on various aspects of it.

In the last six months, the activity of the LAA group has been limited by the low level of funding available within LAA. To help our financial problems, the group was opened to other collaborators, who signed the proposal approved by the INFN Commissione V.

INFN approved the funding for the participation of physicists from Bologna, Italy, to the following R&D programme:

a) Studies with the existing prototypes:

i) high-rate performances and uniformity;

ii) long-term stability;

iii) longitudinal hadronic shower development.

b) Studies on the control of the energy resolution:

i) "external" systems (flashers, LED, radioactive sources, etc.);

ii) "internal" systems (γ's and low-energy hadrons);

iii) quality control of fibres.
c) Studies on the radiation damage of fibres:
 i) single fibres (optimal combination of base/scintillator/cladding);
 ii) modules with many fibres (global damage and energy resolution studies).

d) Systematic studies on a preshower counter.

e) Studies on the trigger and read-out system:
 i) trigger electronics (analog);
 ii) second level trigger.

f) Studies on new geometries:
 i) development of cheap mass production assembly techniques for projective modules;
 ii) projective geometry: position resolution and e/π rejection;
 iii) projective geometry: trigger;
 iv) special modules for fibre attenuation and compensation studies.

The LAA Project, component 2b, will participate in this programme with material and laboratory equipment worth about 1.7 MSF, and with the competence of the people which contributed in a fundamental way to the present success of the R&D on spaghetti calorimetry.

In the following a brief summary of the above items is given.

2. Studies on the existing prototypes.

Two big calorimeter prototypes (see Fig. 1) have been built in the framework of the LAA Project. Their characteristics are summarized in Table I.

![Diagram of spaghetti calorimeter prototypes](image)
studing, through Monte Carlo simulations, the possibility to use the γ's produced in For what concerns the control of the equalization of the module response, we are absolute calibration of the calorimeter in-situ. Moreover, we will develop a movable radioactive-source-based system for the abso and an image processing computer. the fibres, based on a circular radioactive source, an image intensifier, a CCD camera, We intend to pursue the development of an automated quality control system for the absolute calibration of the energy response. production of the fibres up to the equalization of the response detector modules and to the calibration of a spaghetti calorimeter in a future hadron collider, starting from the Long—term stability test will be done with the 20-cells prototype. We plan to measure the performances of this prototype every 6-12 months in an electron/pion beam. The high granularity of the prototypes allowed a detailed study of the lateral development of the hadronic showers. We intend to study also the longitudinal profile of the showers, placing the prototypes with the fibres oriented perpendicularly to the incident particles (see Fig. 2).

3. Studies on the control of the energy resolution.

We intend to develop a complete system which will allow to keep under control the calibration of a spaghetti calorimeter in a future hadron collider, starting from the production of the fibres up to the equalization of the response detector modules and to the absolute calibration of the energy response.

We intend to pursue the development of an automated quality control system for the fibres, based on a circular radioactive source, an image intensifier, a CCD camera, and an image processing computer.

Moreover, we will develop a movable radioactive-source-based system for the absolute calibration of the calorimeter in-situ.

For what concerns the control of the equalization of the module response, we are studing, through Monte Carlo simulations, the possibility to use the γ's produced in

<table>
<thead>
<tr>
<th></th>
<th>20-cells</th>
<th>155-cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (ton)</td>
<td>2.2</td>
<td>18</td>
</tr>
<tr>
<td>Equipped weight (ton)</td>
<td>1.7</td>
<td>13.5</td>
</tr>
<tr>
<td>Number of fibres</td>
<td>22820</td>
<td>176855</td>
</tr>
<tr>
<td>Total length of fibres (km)</td>
<td>49</td>
<td>380</td>
</tr>
<tr>
<td>Number of photomultipliers</td>
<td>20</td>
<td>155</td>
</tr>
<tr>
<td>Length</td>
<td>2m (9.5 λ_0,266 X_0)</td>
<td>2m (9.5 λ_0,266 X_0)</td>
</tr>
<tr>
<td>Diameter</td>
<td>35 cm (1.7 λ_0,47 X_0)</td>
<td>100 cm (4.8 λ_0,133 X_0)</td>
</tr>
</tbody>
</table>

The 155-cells prototype is presently installed in the WA89 experiment, where it will receive a radiation dose equivalent to one year running at LHC at a rapidity of 2.5. At the end of the WA89 run, we intend to proceed with a full recalibration of the prototype and to a scan with muons impinging perpendicularly to the fibre direction, in order to measure the radiation damage both in the light output and in the attenuation length of the fibres.

The 155—cells prototype is presently installed in the WA89 experiment, where it will receive a radiation dose equivalent to one year running at LHC at a rapidity of 2.5. At the end of the WA89 run, we intend to proceed with a full recalibration of the prototype and to a scan with muons impinging perpendicularly to the fibre direction, in order to measure the radiation damage both in the light output and in the attenuation length of the fibres.

Long-term stability test will be done with the 20-cells prototype. We plan to measure the performances of this prototype every 6-12 months in an electron/pion beam.

The high granularity of the prototypes allowed a detailed study of the lateral development of the hadronic showers. We intend to study also the longitudinal profile of the showers, placing the prototypes with the fibres oriented perpendicularly to the incident particles (see Fig. 2).
4. Studies on the radiation damage of fibres.

The LAA group is presently performing radiation damage tests at LIL/LPI (0.5 GeV electrons) with full-size modules (2 m long), each equipped with 300 fibres. These tests are foreseen to last for about three weeks of integrated beam time.

We intend to continue these tests using several fibre samples given to us by industry for free specifically for these tests. Moreover, we plan to study the radiation damage induced by hadrons, by simulating the hadronic showers profile with electrons hitting on the module perpendicularly to the fibre direction.
5. Systematic studies on a preshower counter.

In order to take advantage of the very high spatial resolution of our calorimeter (17.1(mm)/\sqrt{E(\text{GeV})} with the old prototypes, 5.2(mm)/\sqrt{E(\text{GeV})} with the new projective one), a very precise preshower counter is needed in order to recognize electrons in hadron jets, and to identify π/γ overlaps.

We intend to build a preshower counter based on BaF_2, read-out by a Parallel Plate Avalanche Chamber, developed by the group of G. Charpak in the framework of LAA. Different crystal sizes and thicknesses will be used to study their influence on the spatial and energy resolution of the calorimeter. A scheme of principle of the experimental apparatus is shown in Fig. 4.

6. Studies on the trigger and read-out system.

The very high speed of the spaghetti calorimeter signals (some ns) dictates for a comparably fast analysis., which must be done before digital conversion. We intend to develop the analog electronics which will allow to get "physical" signals from the calorimeter (e.g., particle identification), in the same time-scale of the signals.

We also plan to select algorithms for a second level trigger, starting from the experience in image processing already built up in the LAA Project (group 6: Real-time data analysis).
7. Studies on new geometries.

The technique used up to now to build spaghetti calorimeter prototypes are either not usable for full projective modules (pile-up technique – the one used to build the 20- and 155-cells prototypes), or cumbersome and expensive (brasing technique – as the one proposed for the experiment RD1).

We intend to develop new technologies for cheap mass-production of spaghetti calorimeter modules, based on binding together the lead strips. This should reduce the number of steps with respect to brasing, therefore reducing the cost. The possibility to use an automated machine to build complete modules will also be explored.

If these study are successful we intend to build a prototype calorimeter with 33 full-projective modules (400 cm2 front face – see Fig. 5). This prototype, which will have modules with much smaller surface than the 20- and 155-cells prototypes, will be devoted to study e/π rejection and trigger strategies.

We also intend to build some smaller prototypes for studies on the response of different kind of fibres, on the electron/hadron response with a different lead:fibre ratio, and on the possibility to increase the attenuation length of the fibres.
References.