A SULPHUR ABUNDANCE GRADIENT IN NGC 300

L. Petersen, T. Christensen and P. Gammelgaard

Inst. of Physics and Astronomy
University of Aarhus
DK-8000 Aarhus C
Denmark

Contribution to conference on Wide Field Spectroscopy, Athens, May 1996
eds E. Kontizas et al.
A SULPHUR ABUNDANCE GRADIENT IN NGC 300

L. PETERSEN, T. CHRISTENSEN AND P. GAMMELGAARD
Institut for Fysik og Astronomi, Aarhus Universitet
Ny Munkegade, DK-8000 Arhus C

1. A sulphur abundance indicator

Inspired by the success of the empirical method of oxygen abundance determination through the well-known line ratio R\textsubscript{23} a similar method for sulphur abundance determination is proposed. Since these elements are iso-electronical, an expression corresponding to R\textsubscript{23} can be made for sulphur, simply by replacing each oxygen line by the corresponding sulphur line. We define:

\[S_{23} \equiv ([\text{S II}] \lambda\lambda 6716, 6731 + [\text{S III}] \lambda\lambda 9069, 9531)/H_\beta. \]

As two of the sulphur lines are in the far-red part of the spectrum, these have only in the recent years become available, as detector sensibility in this spectral range has now been improved. A calibration of S\textsubscript{23} against sulphur abundance should now enable sulphur abundance determinations in H\textsc{ii} regions where the weak temperature sensitive line [S III] \lambda 6312 is undetectable. A search through literature for the data available for such a calibration has been made. The resulting plot is shown in Fig. 1. It seems likely that only very metal rich H\textsc{ii} regions will be on the high metallicity branch exclusively outlined by the data from M51. Thus, a first order weighted fit for the remaining points is adopted: \[12 + \log(S/H) = 6.485 + 1.218 \log(S_{23}). \]

2. Observations

NGC 300 is a large, nearby (1.2 Mpc) Scd galaxy with many prominent H\textsc{ii} regions (Deharveng et al., 1988). For the studies of sulphur abundance variations across the galactic disk, spectra of several regions with good radial coverage must be obtained in the far-red spectral ranges. To increase the number of regions observed simultaneously from what can be achieved with conventional long-slit spectroscopy a procedure to exploit the
multi object spectroscopy facility on the DFOSC instrument at the Danish 1.5m-telescope, ESO has been developed. Utilizing specially designed multiaperture plates this allows spectra of 5–10 objects over a wide field to be obtained in one exposure. For a further discussion of the feasibility of such aperture plates in abundance studies see Ryder (1995). The aperture plates are manufactured on site with a milling machine on the basis of \(H_\alpha \)-exposures from the same instrument.

Two different aperture plates were used both having 8 non-overlapping slitlets with widths of \(\simeq 2.5 \) and lengths between \(30'' \) and \(60'' \). This is generally sufficient for a good sampling of the sky background, which is especially important in the near-IR range where emission from atmospheric OH-lines rises strongly. With exposure times of \(3000-7000 \) s the advantage over long-slit spectroscopy is obvious.

![Figure 1](image)

Figure 1. Left, the calibration of \(S_{23} \) vs. \(\log(S/H) \). Right, radial variation of sulphur abundance in NGC 300

3. Results

The parameter \(S_{23} \) is calculated according to Eq. (1) for each region and plotted versus the fractional isophotal radii, \(\rho/\rho_o \) from Deharveng et al. (1988) in Fig. 1. The uncertainty calculation for \(S_{23} \) has taking into account the uncertainty of the extinction and the estimated uncertainties of the line fluxes. A gradient in \(S_{23} \) is evident, which is converted to a sulphur abundance of: \(12 + \log(S/H) = 6.97 \pm 0.14 - (1.25 \pm 0.39) \rho/\rho_o \). Furthermore we find by employing \(R_{23} \) an oxygen gradient of \(-0.63 \pm 0.13 \) dex/\(\rho_o \) close to the value derived by Deharveng et al. (1988). For further details on the data reduction and derived results we refer to Christensen et al. (1996).

References

