B Decays and the Heavy-Quark Expansion

Matthias Neubert
Theory Division, CERN, CH-1211 Geneva 23, Switzerland

Abstract
We review the theory and phenomenology of heavy-quark symmetry, exclusive weak decays of B mesons, inclusive decay rates and lifetimes of b hadrons.

To appear in the Second Edition of
Heavy Flavours, edited by A.J. Buras and M. Lindner
(World Scientific, Singapore)
We review the theory and phenomenology of heavy-quark symmetry, exclusive weak decays of B mesons, inclusive decay rates and lifetimes of b hadrons.

1 Introduction

The rich phenomenology of weak decays has always been a source of information about the nature of elementary particle interactions. A long time ago, β- and μ-decay experiments revealed the structure of the effective flavour-changing interactions at low momentum transfer. Today, weak decays of hadrons containing heavy quarks are employed for tests of the Standard Model and measurements of its parameters. In particular, they offer the most direct way to determine the weak mixing angles, to test the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, and to explore the physics of CP violation. On the other hand, hadronic weak decays also serve as a probe of that part of strong-interaction phenomenology which is least understood: the confinement of quarks and gluons inside hadrons.

The structure of weak interactions in the Standard Model is rather simple. Flavour-changing decays are mediated by the coupling of the charged current J_{CC}^{μ} to the W-boson field:

$$L_{CC} = - \frac{g}{\sqrt{2}} J_{CC}^{\mu} W_{\mu}^{\dagger} + \text{h.c.},$$

where

$$J_{CC}^{\mu} = (\bar{\nu}_e, \bar{\nu}_\mu, \bar{\nu}_\tau) \gamma_\mu \begin{pmatrix} e_L \\ \mu_L \\ \tau_L \end{pmatrix} + (\bar{u}_L, \bar{c}_L, \bar{t}_L) \gamma_\mu V_{\text{CKM}} \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix},$$

contains the left-handed lepton and quark fields, and

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

is the CKM matrix. At low energies, the charged-current interaction gives rise to local four-fermion couplings of the form

$$L_{\text{eff}} = -2 \sqrt{2} G_F J_{CC}^{\mu} J_{CC,\mu}^{\dagger},$$
where

\[G_F = \frac{g^2}{4\sqrt{2}M_W^2} = 1.16639(2) \text{ GeV}^{-2} \]

is the Fermi constant.

Figure 1: Examples of leptonic (\(B^- \rightarrow \tau^- \bar{\nu}_\tau\)), semileptonic (\(B^0 \rightarrow D^+ e^- \bar{\nu}_e\)), and non-leptonic (\(B^0 \rightarrow D^+ \pi^-\)) decays of \(B\) mesons.

According to the structure of the charged-current interaction, weak decays of hadrons can be divided into three classes: leptonic decays, in which the quarks of the decaying hadron annihilate each other and only leptons appear in the final state; semileptonic decays, in which both leptons and hadrons appear in the final state; and non-leptonic decays, in which the final state consists of hadrons only. Representative examples of these three types of decays are shown in Fig. 1. The simple quark-line graphs shown in this figure are a gross oversimplification, however. In the real world, quarks are confined inside hadrons, bound by the exchange of soft gluons. The simplicity of the weak interactions is overshadowed by the complexity of the strong interactions. A complicated interplay between the weak and strong forces characterizes the
phenomenology of hadronic weak decays. As an example, a more realistic picture of a non-leptonic decay is shown in Fig. 2.

The complexity of strong-interaction effects increases with the number of quarks appearing in the final state. Bound-state effects in leptonic decays can be lumped into a single parameter (a “decay constant”), while those in semileptonic decays are described by invariant form factors, depending on the momentum transfer q^2 between the hadrons. Approximate symmetries of the strong interactions help us to constrain the properties of these form factors. For non-leptonic decays, on the other hand, we are still far from having a quantitative understanding of strong-interaction effects even in the simplest decay modes.

Over the last decade, a lot of information on heavy-quark decays has been collected in experiments at e^+e^- storage rings operating at the $\Upsilon(4s)$ resonance, and more recently at high-energy e^+e^- and hadron colliders. This has led to a rather detailed knowledge of the flavour sector of the Standard Model and many of the parameters associated with it. There have been several great discoveries in this field, such as $B^0-\bar{B}^0$ mixing\cite{1,2}, $b\rightarrow u$ transitions\cite{3,4,5}, and rare decays induced by penguin operators\cite{6}. Yet there is much more to come. In particular, the B-factories at SLAC, KEK, HERA-B and LHC-B will provide a wealth of new results within the coming years.

The experimental progress in heavy-flavour physics has been accompanied by a significant progress in theory, which was related to the discovery of heavy-quark symmetry, the development of the heavy-quark effective theory, and the establishment of the heavy-quark expansion. The excitement
about these developments rests upon the fact that they allow (some) model-independent predictions in an area in which “progress” in theory often meant nothing more than the construction of a new model, which could be used to estimate some strong-interaction hadronic matrix elements. In section 2, we explain the physical picture behind heavy-quark symmetry and discuss the construction, as well as simple applications, of the heavy-quark effective theory. Section 3 deals with applications of these concepts to exclusive weak decays of B mesons. Applications of the heavy-quark expansion to the description of inclusive decay rates and lifetimes of b hadrons are the topics of section 4.

2 Heavy-Quark Symmetry

This section provides an introduction to the ideas of heavy-quark symmetry and the heavy-quark effective theory, which provide the modern theoretical framework for the description of the properties and decays of hadrons containing a heavy quark. For a more detailed description of this subject, the reader is referred to the review articles in Refs. 24–30.

2.1 The Physical Picture

There are several reasons why the strong interactions of hadrons containing heavy quarks are easier to understand than those of hadrons containing only light quarks. The first is asymptotic freedom, the fact that the effective coupling constant of QCD becomes weak in processes with a large momentum transfer, corresponding to interactions at short distance scales. At large distances, on the other hand, the coupling becomes strong, leading to non-perturbative phenomena such as the confinement of quarks and gluons on a length scale $R_{\text{had}} \sim 1/\Lambda_{\text{QCD}} \sim 1 \text{ fm}$, which determines the size of hadrons. Roughly speaking, $\Lambda_{\text{QCD}} \sim 0.2 \text{ GeV}$ is the energy scale that separates the regions of large and small coupling constant. When the mass of a quark Q is much larger than this scale, $m_Q \gg \Lambda_{\text{QCD}}$, it is called a heavy quark. The quarks of the Standard Model fall naturally into two classes: up, down and strange are light quarks, whereas charm, bottom and top are heavy quarks. For heavy quarks, the effective coupling constant $\alpha_s(m_Q)$ is small, implying that on length scales comparable to the Compton wavelength $\lambda_Q \sim 1/m_Q$ the strong interactions are perturbative and much like the electromagnetic interactions. In fact, the quarkonium systems ($\bar{Q}Q$), whose size is of order $\lambda_Q/\alpha_s(m_Q) \ll R_{\text{had}}$, are very much hydrogen-like.

Ironically, the top quark is of no relevance to our discussion here, since it is too heavy to form hadronic bound states before it decays.
Systems composed of a heavy quark and other light constituents are more complicated. The size of such systems is determined by R_{had}, and the typical momenta exchanged between the heavy and light constituents are of order Λ_{QCD}. The heavy quark is surrounded by a most complicated, strongly interacting cloud of light quarks, antiquarks and gluons. In this case it is the fact that $\lambda_Q \ll R_{\text{had}}$, i.e. that the Compton wavelength of the heavy quark is much smaller than the size of the hadron, which leads to simplifications. To resolve the quantum numbers of the heavy quark would require a hard probe; the soft gluons exchanged between the heavy quark and the light constituents can only resolve distances much larger than λ_Q. Therefore, the light degrees of freedom are blind to the flavour (mass) and spin orientation of the heavy quark. They experience only its colour field, which extends over large distances because of confinement. In the rest frame of the heavy quark, it is in fact only the electric colour field that is important; relativistic effects such as colour magnetism vanish as $m_Q \to \infty$. Since the heavy-quark spin participates in interactions only through such relativistic effects, it decouples. That the heavy-quark mass becomes irrelevant can be seen as follows: As $m_Q \to \infty$, the heavy quark and the hadron that contains it have the same velocity. In the rest frame of the hadron, the heavy quark is at rest, too. The wave function of the light constituents follows from a solution of the field equations of QCD subject to the boundary condition of a static triplet source of colour at the location of the heavy quark. This boundary condition is independent of m_Q, and so is the solution for the configuration of the light constituents.

It follows that, in the limit $m_Q \to \infty$, hadronic systems which differ only in the flavour or spin quantum numbers of the heavy quark have the same configuration of their light degrees of freedom. Although this observation still does not allow us to calculate what this configuration is, it provides relations between the properties of such particles as the heavy mesons $B, D, B^* \text{ and } D^*$, or the heavy baryons $\Lambda_b \text{ and } \Lambda_c$ (to the extent that corrections to the infinite quark-mass limit are small in these systems). These relations result from some approximate symmetries of the effective strong interactions of heavy quarks at low energies. The configuration of light degrees of freedom in a hadron containing a single heavy quark with velocity v does not change if this quark is replaced by another heavy quark with different flavour or spin, but with the same velocity. Both heavy quarks lead to the same static colour field. For N_h heavy-quark flavours, there is thus an $\text{SU}(2N_h)$ spin-flavour symmetry group, under which the effective strong interactions are invariant. These symmetries are in close correspondence to familiar properties of atoms. The flavour symmetry is analogous to the fact that different isotopes have the same chemistry, since to good approximation the wave function of the electrons is independent
of the mass of the nucleus. The electrons only see the total nuclear charge. The spin symmetry is analogous to the fact that the hyperfine levels in atoms are nearly degenerate. The nuclear spin decouples in the limit \(m_e/m_N \to 0 \).

Heavy-quark symmetry is an approximate symmetry, and corrections arise since the quark masses are not infinite. In many respects, it is complementary to chiral symmetry, which arises in the opposite limit of small quark masses. There is an important distinction, however. Whereas chiral symmetry is a symmetry of the QCD Lagrangian in the limit of vanishing quark masses, heavy-quark symmetry is not a symmetry of the Lagrangian (not even an approximate one), but rather a symmetry of an effective theory, which is a good approximation of QCD in a certain kinematic region. It is realized only in systems in which a heavy quark interacts predominantly by the exchange of soft gluons. In such systems the heavy quark is almost on-shell; its momentum fluctuates around the mass shell by an amount of order \(\Lambda_{\text{QCD}} \). The corresponding fluctuations in the velocity of the heavy quark vanish as \(\Lambda_{\text{QCD}}/m_Q \to 0 \). The velocity becomes a conserved quantity and is no longer a dynamical degree of freedom \(^{20}\). Nevertheless, results derived on the basis of heavy-quark symmetry are model-independent consequences of QCD in a well-defined limit. The symmetry-breaking corrections can be studied in a systematic way. To this end, it is however necessary to cast the QCD Lagrangian for a heavy quark,

\[
L_Q = \bar{Q} (i\gamma^\mu D_\mu - m_Q) Q ,
\]

into a form suitable for taking the limit \(m_Q \to \infty \).

2.2 Heavy-Quark Effective Theory

The effects of a very heavy particle often become irrelevant at low energies. It is then useful to construct a low-energy effective theory, in which this heavy particle no longer appears. Eventually, this effective theory will be easier to deal with than the full theory. A familiar example is Fermi’s theory of the weak interactions. For the description of the weak decays of hadrons, the weak interactions can be approximated by point-like four-fermion couplings, governed by a dimensionful coupling constant \(G_F \) [cf. (4)]. The effects of the intermediate vector bosons, \(W \) and \(Z \), can only be resolved at energies much larger than the hadron masses.

The process of removing the degrees of freedom of a heavy particle involves the following steps \(^{33} - ^{35}\): one first identifies the heavy-particle fields and “integrates them out” in the generating functional of the Green functions of the theory. This is possible since at low energies the heavy particle does not appear as an external state. However, although the action of the full theory is usually
a local one, what results after this first step is a non-local effective action. The non-locality is related to the fact that in the full theory the heavy particle with mass M can appear in virtual processes and propagate over a short but finite distance $\Delta x \sim 1/M$. Thus, a second step is required to obtain a local effective Lagrangian: the non-local effective action is rewritten as an infinite series of local terms in an Operator Product Expansion (OPE)36,37. Roughly speaking, this corresponds to an expansion in powers of $1/M$. It is in this step that the short- and long-distance physics is disentangled. The long-distance physics corresponds to interactions at low energies and is the same in the full and the effective theory. But short-distance effects arising from quantum corrections involving large virtual momenta (of order M) are not reproduced in the effective theory, once the heavy particle has been integrated out. In a third step, they have to be added in a perturbative way using renormalization-group techniques. These short-distance effects lead to a renormalization of the coefficients of the local operators in the effective Lagrangian. An example is the effective Lagrangian for non-leptonic weak decays, in which radiative corrections from hard gluons with virtual momenta in the range between m_W and some renormalization scale $\mu \sim 1$ GeV give rise to Wilson coefficients, which renormalize the local four-fermion interactions38–40.

The heavy-quark effective theory (HQET) is constructed to provide a simplified description of processes where a heavy quark interacts with light degrees of freedom predominantly by the exchange of soft gluons13–23. Clearly, m_Q is the high-energy scale in this case, and Λ_{QCD} is the scale of the hadronic physics we are interested in. The situation is illustrated in Fig. 3. At short distances, i.e. for energy scales larger than the heavy-quark mass, the physics is perturbative and described by conventional QCD. For mass scales much below the heavy-quark mass, the physics is complicated and non-perturbative because of confinement. Our goal is to obtain a simplified description in this region using an effective field theory. To separate short- and long-distance effects, we introduce a separation scale μ such that $\Lambda_{\text{QCD}} \ll \mu \ll m_Q$. The HQET will be constructed in such a way that it is identical to QCD in the long-distance region, i.e. for scales below μ. In the short-distance region, the effective theory is incomplete, since some high-momentum modes have been integrated out from the full theory. The fact that the physics must be independent of the arbitrary scale μ allows us to derive renormalization-group equations, which can be employed to deal with the short-distance effects in an efficient way.

Compared with most effective theories, in which the degrees of freedom of a heavy particle are removed completely from the low-energy theory, the HQET is special in that its purpose is to describe the properties and decays of hadrons which do contain a heavy quark. Hence, it is not possible to remove
the heavy quark completely from the effective theory. What is possible is to
integrate out the “small components” in the full heavy-quark spinor, which
describe the fluctuations around the mass shell.

The starting point in the construction of the HQET is the observation that
a heavy quark bound inside a hadron moves more or less with the hadron’s
velocity \(v \), and is almost on-shell. Its momentum can be written as
\[
p^\mu_Q = m_Q v^\mu + k^\mu,
\]
where the components of the so-called residual momentum \(k \) are much smaller
than \(m_Q \). Note that \(v \) is a four-velocity, so that \(v^2 = 1 \). Interactions of the
heavy quark with light degrees of freedom change the residual momentum by
an amount of order \(\Delta k \sim \Lambda_{\text{QCD}} \), but the corresponding changes in the heavy-
quark velocity vanish as \(\Lambda_{\text{QCD}}/m_Q \to 0 \). In this situation, it is appropriate to
introduce large- and small-component fields, \(h_v \) and \(H_v \), by
\[
h_v(x) = e^{i m_Q v \cdot x} P_+ Q(x), \quad H_v(x) = e^{i m_Q v \cdot x} P_- Q(x),
\]
where \(P_+ \) and \(P_- \) are projection operators defined as
\[
P_\pm = \frac{1 \pm \not{v}}{2}.
\]
It follows that

$$Q(x) = e^{-imQv \cdot x} [h_v(x) + H_v(x)].$$

(10)

Because of the projection operators, the new fields satisfy \(\hat{\phi} h_v = h_v \) and \(\hat{\phi} H_v = -H_v \). In the rest frame, i.e. for \(v^\mu = (1, 0, 0, 0) \), \(h_v \) corresponds to the upper two components of \(Q \), while \(H_v \) corresponds to the lower ones. Whereas \(h_v \) annihilates a heavy quark with velocity \(v \), \(H_v \) creates a heavy antiquark with velocity \(v \).

In terms of the new fields, the QCD Lagrangian (6) for a heavy quark takes the form

$$L_Q = \bar{h}_v i\slashed{\partial} h_v - \bar{H}_v (i\slashed{\partial} + 2m_Q) H_v + \bar{h}_v i\slashed{\partial} H_v + \bar{H}_v i\slashed{\partial} h_v,$$

(11)

where \(D^\mu_\perp = D^\mu - v^\mu \cdot v \cdot D \) is orthogonal to the heavy-quark velocity: \(v \cdot D_\perp = 0 \). In the rest frame, \(D^\mu_\perp = (0, \vec{D}) \) contains the spatial components of the covariant derivative. From (11), it is apparent that \(h_v \) describes massless degrees of freedom, whereas \(H_v \) corresponds to fluctuations with twice the heavy-quark mass. These are the heavy degrees of freedom that will be eliminated in the construction of the effective theory. The fields are mixed by the presence of the third and fourth terms, which describe pair creation or annihilation of heavy quarks and antiquarks. As shown in the first diagram in Fig. 4, in a virtual process, a heavy quark propagating forward in time can turn into an antiquark propagating backward in time, and then turn back into a quark. The energy of the intermediate quantum state \(hh\bar{H} \) is larger than the energy of the incoming heavy quark by at least \(2m_Q \). Because of this large energy gap, the virtual quantum fluctuation can only propagate over a short distance \(\Delta x \approx \frac{1}{m_Q} \).

On hadronic scales set by \(R_{\text{had}} = 1/\Lambda_{\text{QCD}} \), the process essentially looks like a local interaction of the form

$$\bar{h}_v i\slashed{\partial}_\perp \frac{1}{2m_Q} i\slashed{\partial}_\perp h_v,$$

(12)

where we have simply replaced the propagator for \(H_v \) by \(1/2m_Q \). A more correct treatment is to integrate out the small-component field \(H_v \), thereby deriving a non-local effective action for the large-component field \(h_v \), which can then be expanded in terms of local operators. Before doing this, let us mention a second type of virtual corrections involving pair creation, namely heavy-quark loops. An example is shown in the second diagram in Fig. 4. Heavy-quark loops cannot be described in terms of the effective fields \(h_v \) and \(H_v \), since the quark velocities inside a loop are not conserved and are in no way related to hadron velocities. However, such short-distance processes are proportional to the small coupling constant \(\alpha_s(m_Q) \) and can be calculated in
perturbation theory. They lead to corrections that are added onto the low-energy effective theory in the renormalization procedure.

![Figure 4: Virtual fluctuations involving pair creation of heavy quarks. Time flows to the right.](image)

On a classical level, the heavy degrees of freedom represented by H_v can be eliminated using the equation of motion. Taking the variation of the Lagrangian with respect to the field \bar{H}_v, we obtain

$$ (iv \cdot D + 2m_Q) H_v = i\bar{\varphi}_\perp h_v . $$

This equation can formally be solved to give

$$ H_v = \frac{1}{2m_Q + iv \cdot D} i\bar{\varphi}_\perp h_v , $$

showing that the small-component field H_v is indeed of order $1/m_Q$. We can now insert this solution into (11) to obtain the “non-local effective Lagrangian”

$$ \mathcal{L}_{\text{eff}} = \bar{h}_v iv \cdot D h_v + \bar{h}_v i\bar{\varphi}_\perp \frac{1}{2m_Q + iv \cdot D} i\bar{\varphi}_\perp h_v . $$

Clearly, the second term corresponds to the first class of virtual processes shown in Fig. 4.

It is possible to derive this Lagrangian in a more elegant way by manipulating the generating functional for QCD Green functions containing heavy-quark fields. To this end, one starts from the field redefinition (10) and couples the large-component fields h_v to external sources ρ_v. Green functions with an arbitrary number of h_v fields can be constructed by taking derivatives with respect to ρ_v. No sources are needed for the heavy degrees of freedom represented by H_v. The functional integral over these fields is Gaussian and can be performed explicitly, leading to the effective action

$$ S_{\text{eff}} = \int d^4x \mathcal{L}_{\text{eff}} - i \ln \Delta , $$

with \mathcal{L}_{eff} as given in (15). The appearance of the logarithm of the determinant

$$ \Delta = \exp \left(\frac{1}{2} \text{Tr} \ln [2m_Q + iv \cdot D - i\eta] \right) $$

10
is a quantum effect not present in the classical derivation presented above. However, in this case the determinant can be regulated in a gauge-invariant way, and by choosing the gauge $v \cdot A = 0$ one can show that $\ln \Delta$ is just an irrelevant constant.

Because of the phase factor in (10), the x dependence of the effective heavy-quark field h_v is weak. In momentum space, derivatives acting on h_v produce powers of the residual momentum k, which is much smaller than m_Q. Hence, the non-local effective Lagrangian (15) allows for a derivative expansion:

$$\mathcal{L}_{\text{eff}} = \bar{h}_v i v \cdot D h_v + \frac{1}{2m_Q} \sum_{n=0}^{\infty} \bar{h}_v i \slashed{\partial}_\perp \left(- \frac{i v \cdot D}{2m_Q} \right)^n i \slashed{\partial}_\perp h_v. \quad (18)$$

Taking into account that h_v contains a P_+ projection operator, and using the identity

$$P_+ i \slashed{\partial}_\perp i \slashed{\partial}_\perp P_+ = P_+ \left[(i \slashed{\partial}_\perp)^2 + \frac{g_s}{2} \sigma_{\mu\nu} G^{\mu\nu} \right] P_+, \quad (19)$$

where $i[D^\mu, D^\nu] = g_s G^{\mu\nu}$ is the gluon field-strength tensor, one finds that

$$\mathcal{L}_{\text{eff}} = \bar{h}_v i v \cdot D h_v + \frac{1}{2m_Q} \bar{h}_v (i \slashed{\partial}_\perp)^2 h_v + \frac{g_s}{4m_Q} \bar{h}_v \sigma_{\mu\nu} G^{\mu\nu} h_v + O(1/m_Q^2). \quad (20)$$

In the limit $m_Q \to \infty$, only the first terms remains:

$$\mathcal{L}_\infty = \bar{h}_v i v \cdot D h_v. \quad (21)$$

This is the effective Lagrangian of the HQET. It gives rise to the Feynman rules shown in Fig. 5.

![Feynman rules of the HQET](image)

Let us take a moment to study the symmetries of this Lagrangian. Since there appear no Dirac matrices, interactions of the heavy quark with gluons
leave its spin unchanged. Associated with this is an SU(2) symmetry group, under which \mathcal{L}_∞ is invariant. The action of this symmetry on the heavy-quark fields becomes most transparent in the rest frame, where the generators S^i of SU(2) can be chosen as

$$S^i = \frac{1}{2} \left(\begin{array}{cc} \sigma^i & 0 \\ 0 & \sigma^i \end{array} \right); \quad [S^i, S^j] = i\epsilon^{ijk} S^k.$$ \hspace{1cm} (22)

Here σ^i are the Pauli matrices. An infinitesimal SU(2) transformation $h_v \rightarrow (1 + i\vec{\epsilon} \cdot \vec{S}) h_v$ leaves the Lagrangian invariant:

$$\delta \mathcal{L}_\infty = \bar{h}_v [iv \cdot D, i\vec{\epsilon} \cdot \vec{S}] h_v = 0.$$ \hspace{1cm} (23)

Another symmetry of the HQET arises since the mass of the heavy quark does not appear in the effective Lagrangian. For N_h heavy quarks moving at the same velocity, eq. (21) can be extended by writing

$$\mathcal{L}_\infty = \sum_{i=1}^{N_h} \bar{h}_v i v \cdot D h_i.$$ \hspace{1cm} (24)

This is invariant under rotations in flavour space. When combined with the spin symmetry, the symmetry group is promoted to SU($2N_h$). This is the heavy-quark spin-flavour symmetry. Its physical content is that, in the limit $m_Q \rightarrow \infty$, the strong interactions of a heavy quark become independent of its mass and spin.

Consider now the operators appearing at order $1/m_Q$ in the effective Lagrangian (20). They are easiest to identify in the rest frame. The first operator,

$$\mathcal{O}_{\text{kin}} = \frac{1}{2m_Q} \bar{h}_v (iD_\perp)^2 h_v \rightarrow -\frac{1}{2m_Q} \bar{h}_v (iD)^2 h_v,$$ \hspace{1cm} (25)

is the gauge-covariant extension of the kinetic energy arising from the residual motion of the heavy quark. The second operator is the non-Abelian analogue of the Pauli interaction, which describes the colour-magnetic coupling of the heavy-quark spin to the gluon field:

$$\mathcal{O}_{\text{mag}} = \frac{g_s}{4m_Q} \bar{h}_v \sigma_{\mu\nu} G^{\mu\nu} h_v \rightarrow -\frac{g_s}{m_Q} \bar{h}_v \vec{S} \cdot \vec{B}_c h_v.$$ \hspace{1cm} (26)

Here \vec{S} is the spin operator defined in (22), and $B^i_c = -\frac{1}{2} \epsilon^{ijk} G^{jk}$ are the components of the colour-magnetic field. The chromo-magnetic interaction is a relativistic effect, which scales like $1/m_Q$. This is the origin of the heavy-quark spin symmetry.

12
2.3 The Residual Mass Term and the Definition of the Heavy-Quark Mass

The choice of the expansion parameter in the HQET, i.e. the definition of the heavy-quark mass \(m_Q\), deserves some comments. In the derivation presented earlier in this section, we chose \(m_Q\) to be the “mass in the Lagrangian”, and using this parameter in the phase redefinition in (10) we obtained the effective Lagrangian (21), in which the heavy-quark mass no longer appears. However, this treatment has its subtleties. The symmetries of the HQET allow a “residual mass” \(\delta m\) for the heavy quark, provided that \(\delta m\) is of order \(\Lambda_{QCD}\) and is the same for all heavy-quark flavours. Even if we arrange that such a mass term is not present at the tree level, it will in general be induced by quantum corrections. (This is unavoidable if the theory is regulated with a dimensionful cutoff.) Therefore, instead of (21) we should write the effective Lagrangian in the more general form

\[
\mathcal{L}_\infty = \bar{h}_v i v \cdot D h_v - \delta m \bar{h}_v h_v .
\]

(27)

If we redefine the expansion parameter according to \(m_Q \rightarrow m_Q + \Delta m\), the residual mass changes in the opposite way: \(\delta m \rightarrow \delta m - \Delta m\). This implies that there is a unique choice of the expansion parameter \(m_Q\) such that \(\delta m = 0\). Requiring \(\delta m = 0\), as it is usually done implicitly in the HQET, defines a heavy-quark mass, which in perturbation theory coincides with the pole mass. This, in turn, defines for each heavy hadron \(H_Q\) a parameter \(\tilde{\Lambda}\) (sometimes called the “binding energy”) through

\[
\tilde{\Lambda} = (m_{H_Q} - m_Q) \bigg|_{m_Q \to \infty} .
\]

(28)

If one prefers to work with another choice of the expansion parameter, the values of non-perturbative parameters such as \(\tilde{\Lambda}\) change, but at the same time one has to include the residual mass term in the HQET Lagrangian. It can be shown that the various parameters depending on the definition of \(m_Q\) enter the predictions for physical quantities in such a way that the results are independent of the particular choice adopted.

There is one more subtlety hidden in the above discussion. The quantities \(m_Q, \tilde{\Lambda}\) and \(\delta m\) are non-perturbative parameters of the HQET, which have a similar status as the vacuum condensates in QCD phenomenology. These parameters cannot be defined unambiguously in perturbation theory. The reason lies in the divergent behaviour of perturbative expansions in large orders, which is associated with the existence of singularities along the real axis in the Borel plane, the so-called renormalons. For instance, the perturbation
series which relates the pole mass m_Q of a heavy quark to its bare mass,

$$m_Q = m_Q^{\text{bare}} \left\{ 1 + c_1 \alpha_s(m_Q) + c_2 \alpha_s^2(m_Q) + \ldots + c_n \alpha_s^n(m_Q) + \ldots \right\}, \quad (29)$$

contains numerical coefficients c_n that grow as $n!$ for large n, rendering the series divergent and not Borel summable 54,55. The best one can achieve is to truncate the perturbation series at the minimal term, but this leads to an unavoidable arbitrariness of order $\Delta m_Q \sim \Lambda_{\text{QCD}}$ (the size of the minimal term) in the value of the pole mass. This observation, which at first sight seems a serious problem for QCD phenomenology, should not come as a surprise. We know that because of confinement quarks do not appear as physical states in nature. Hence, there is no unique way to define their on-shell properties such as a pole mass. In view of this, it is actually remarkable that QCD perturbation theory “knows” about its incompleteness and indicates, through the appearance of renormalon singularities, the presence of non-perturbative effects. One must first specify a scheme how to truncate the QCD perturbation series before non-perturbative statements such as $\delta m = 0$ become meaningful, and hence before non-perturbative parameters such as m_Q and $\bar{\Lambda}$ become well-defined quantities. The actual values of these parameters will depend on this scheme.

We stress that the “renormalon ambiguities” are not a conceptual problem for the heavy-quark expansion. In fact, it can be shown quite generally that these ambiguities cancel in all predictions for physical observables $^{56-58}$. The way the cancellations occur is intricate, however. The generic structure of the heavy-quark expansion for an observable is of the form:

$$\text{Observable} \sim C[\alpha_s(m_Q)] \left(1 + \frac{\Lambda}{m_Q} + \ldots \right), \quad (30)$$

where $C[\alpha_s(m_Q)]$ represents a perturbative coefficient function, and Λ is a dimensionful non-perturbative parameter. The truncation of the perturbation series defining the coefficient function leads to an arbitrariness of order Λ_{QCD}/m_Q, which cancels against a corresponding arbitrariness of order Λ_{QCD} in the definition of the non-perturbative parameter Λ.

The renormalon problem poses itself when one imagines to apply perturbation theory in very high orders. In practise, the perturbative coefficients are known to finite order in α_s (at best to two-loop accuracy), and to be consistent one should use them in connection with the pole mass (and $\bar{\Lambda}$ etc.) defined to the same order.
The spin-flavour symmetry leads to many interesting relations between the properties of hadrons containing a heavy quark. The most direct consequences concern the spectroscopy of such states\(^\text{59}\). In the limit \(m_Q \to \infty\), the spin of the heavy quark and the total angular momentum \(j\) of the light degrees of freedom are separately conserved by the strong interactions. Because of heavy-quark symmetry, the dynamics is independent of the spin and mass of the heavy quark. Hadronic states can thus be classified by the quantum numbers (flavour, spin, parity, etc.) of their light degrees of freedom\(^\text{60}\). The spin symmetry predicts that, for fixed \(j \neq 0\), there is a doublet of degenerate states with total spin \(J = j \pm \frac{1}{2}\). The flavour symmetry relates the properties of states with different heavy-quark flavour.

In general, the mass of a hadron \(H_Q\) containing a heavy quark \(Q\) obeys an expansion of the form

\[
m_{H_Q} = m_Q + \bar{\Lambda} + \frac{\Delta m^2}{2m_Q} + O(1/m_Q^2).
\]

The parameter \(\bar{\Lambda}\) represents contributions arising from terms in the Lagrangian that are independent of the heavy-quark mass\(^\text{42}\), whereas the quantity \(\Delta m^2\) originates from the terms of order \(1/m_Q\) in the effective Lagrangian of the HQET. For the ground-state pseudoscalar and vector mesons, one can parameterize the contributions from the kinetic energy and the chromo-magnetic interaction in terms of two quantities \(\lambda_1\) and \(\lambda_2\), in such a way that\(^\text{61}\)

\[
\Delta m^2 = -\lambda_1 + 2\left[J(J+1) - \frac{3}{2}\right] \lambda_2.
\]

The hadronic parameters \(\bar{\Lambda}, \lambda_1\) and \(\lambda_2\) are independent of \(m_Q\). They characterize the properties of the light constituents.

Consider, as a first example, the SU(3) mass splittings for heavy mesons. The heavy-quark expansion predicts that

\[
m_{B_S} - m_{B_d} = \bar{\Lambda}_s - \bar{\Lambda}_d + O(1/m_b),
\]

\[
m_{D_S} - m_{D_d} = \bar{\Lambda}_s - \bar{\Lambda}_d + O(1/m_c),
\]

where we have indicated that the value of the parameter \(\bar{\Lambda}\) depends on the flavour of the light quark. Thus, to the extent that the charm and bottom quarks can both be considered sufficiently heavy, the mass splittings should be similar in the two systems. This prediction is confirmed experimentally,
since 62

\begin{align*}
 m_{B_S} - m_{B_d} &= (90 \pm 3) \text{ MeV}, \\
 m_{D_S} - m_{D_d} &= (99 \pm 1) \text{ MeV}.
\end{align*}

(34)

As a second example, consider the spin splittings between the ground-state pseudoscalar ($J = 0$) and vector ($J = 1$) mesons, which are the members of the spin-doublet with $j = \frac{1}{2}$. From (31) and (32), it follows that

\begin{align*}
 m^2_{B^*} - m^2_B &= 4 \lambda^2 + O(1/m_b), \\
 m^2_{D^*} - m^2_D &= 4 \lambda^2 + O(1/m_c).
\end{align*}

(35)

The data are compatible with this:

\begin{align*}
 m^2_{B^*} - m^2_B &\approx 0.49 \text{ GeV}^2, \\
 m^2_{D^*} - m^2_D &\approx 0.55 \text{ GeV}^2.
\end{align*}

(36)

Assuming that the B system is close to the heavy-quark limit, we obtain the value

\[\lambda_2 \approx 0.12 \text{ GeV}^2 \]

(37)

for one of the hadronic parameters in (32). This quantity plays an important role in the phenomenology of inclusive decays of heavy hadrons.

A third example is provided by the mass splittings between the ground-state mesons and baryons containing a heavy quark. The HQET predicts that

\begin{align*}
 m_{\Lambda_b} - m_B &= \bar{\Lambda}_{\text{baryon}} - \bar{\Lambda}_{\text{meson}} + O(1/m_b), \\
 m_{\Lambda_c} - m_D &= \bar{\Lambda}_{\text{baryon}} - \bar{\Lambda}_{\text{meson}} + O(1/m_c).
\end{align*}

(38)

This is again consistent with the experimental results

\begin{align*}
 m_{\Lambda_b} - m_B &= (346 \pm 6) \text{ MeV}, \\
 m_{\Lambda_c} - m_D &= (416 \pm 1) \text{ MeV},
\end{align*}

(39)

although in this case the data indicate sizeable symmetry-breaking corrections.

For the mass of the Λ_b baryon, we have used the value

\[m_{\Lambda_b} = (5625 \pm 6) \text{ MeV}, \]

(40)

which is obtained by averaging the result 62 $m_{\Lambda_b} = (5639 \pm 15)$ MeV with the value $m_{\Lambda_b} = (5623 \pm 5 \pm 4)$ MeV reported by the CDF Collaboration 63. The
dominant correction to the relations (38) comes from the contribution of the chromo-magnetic interaction to the masses of the heavy mesons,\(^b\) which adds a term \(3\lambda_2/2m_Q\) on the right-hand side. Including this term, we obtain the refined prediction that the two quantities

\[
m_{\Lambda_b} - m_B - \frac{3\lambda_2}{2m_B} = (312 \pm 6) \text{ MeV},
\]

\[
m_{\Lambda_c} - m_D - \frac{3\lambda_2}{2m_D} = (320 \pm 1) \text{ MeV}
\] (41)

should be close to each other. This is clearly satisfied by the data.

The mass formula (31) can also be used to derive information on the heavy-quark masses from the observed hadron masses. Introducing the “spin-averaged” meson masses \(m_B = \frac{1}{4}(m_B + 3m_B^*) \approx 5.31 \text{ GeV}\) and \(m_D = \frac{1}{4}(m_D + 3m_D^*) \approx 1.97 \text{ GeV}\), we find that

\[
m_b - m_c = (m_B - m_D) \left\{ 1 - \frac{\lambda_1}{2m_Bm_D} + O(1/m^2_Q) \right\}.
\] (42)

Using theoretical estimates for the parameter \(\lambda_1\), which lie in the range\(^{64-73}\)

\[
\lambda_1 = -(0.3 \pm 0.2) \text{ GeV}^2,
\] (43)

this relation leads to

\[
m_b - m_c = (3.39 \pm 0.03 \pm 0.03) \text{ GeV},
\] (44)

where the first error reflects the uncertainty in the value of \(\lambda_1\), and the second one takes into account unknown higher-order corrections. The fact that the difference \((m_b - m_c)\) is determined rather precisely becomes important in the analysis of inclusive decays of heavy hadrons.

3 Exclusive Semileptonic Decays

Semileptonic decays of \(B\) mesons have received a lot of attention in recent years. The decay channel \(\bar{B} \rightarrow D^* \ell \bar{\nu}\) has the largest branching fraction of all \(B\)-meson decay modes. From a theoretical point of view, semileptonic decays are simple enough to allow for a reliable, quantitative description. The analysis of these decays provides much information about the strong forces that bind the

\(^b\)Because of the spin symmetry, there is no such contribution to the masses of the \(\Lambda_Q\) baryons.
quarks and gluons into hadrons. Schematically, a semileptonic decay process is shown in Fig. 6. The strength of the $b \rightarrow c$ transition vertex is governed by the element V_{cb} of the CKM matrix. The parameters of this matrix are fundamental parameters of the Standard Model. A primary goal of the study of semileptonic decays of B mesons is to extract with high precision the values of $|V_{cb}|$ and $|V_{ub}|$. We will now discuss the theoretical basis of such analyses.

3.1 Weak Decay Form Factors

Heavy-quark symmetry implies relations between the weak decay form factors of heavy mesons, which are of particular interest. These relations have been derived by Isgur and Wise12, generalizing ideas developed by Nussinov and Wetzel9, and by Voloshin and Shifman10,11.

Consider the elastic scattering of a B meson, $\bar{B}(v) \rightarrow \bar{B}(v')$, induced by a vector current coupled to the b quark. Before the action of the current, the light degrees of freedom inside the B meson orbit around the heavy quark, which acts as a static source of colour. On average, the b quark and the B meson have the same velocity v. The action of the current is to replace instantaneously (at time $t = t_0$) the colour source by one moving at a velocity v', as indicated in Fig. 7. If $v = v'$, nothing happens; the light degrees of freedom do not realize that there was a current acting on the heavy quark. If the velocities are different, however, the light constituents suddenly find themselves interacting with a moving colour source. Soft gluons have to be exchanged to rearrange them so as to form a B meson moving at velocity v'. This rearrangement leads to a form-factor suppression, reflecting the fact that, as the velocities become more and more different, the probability for an elastic transition decreases. The important observation is that, in the limit $m_b \rightarrow \infty$, the form factor can only depend on the Lorentz boost $\gamma = v \cdot v'$ connecting the rest frames of the initial- and final-state mesons. Thus, in this limit a dimensionless probability function $\xi(v \cdot v')$ describes the transition. It is called the Isgur-Wise function12.

Figure 6: Semileptonic decays of B mesons.
In the HQET, which provides the appropriate framework for taking the limit $m_b \to \infty$, the hadronic matrix element describing the scattering process can thus be written as

$$\frac{1}{m_B} \langle \bar{B}(v') | \bar{b} \gamma^\mu b | \bar{B}(v) \rangle = \xi (v \cdot v') (v + v')^\mu . \quad (45)$$

Here b_v and $b_{v'}$ are the velocity-dependent heavy-quark fields of the HQET. It is important that the function $\xi (v \cdot v')$ does not depend on m_B. The factor $1/m_B$ on the left-hand side compensates for a trivial dependence on the heavy-meson mass caused by the relativistic normalization of meson states, which is conventionally taken to be

$$\langle \bar{B}(p') | \bar{B}(p) \rangle = 2m_B v^0 (2\pi)^3 \delta^3(\vec{p} - \vec{p}') . \quad (46)$$

Note that there is no term proportional to $(v - v')^\mu$ in (45). This can be seen by contracting the matrix element with $(v - v')^\mu$, which must give zero since $/\!\! b_v = b_v$ and $\bar{b}_{v'} /\!\! v' = \bar{b}_{v'}$.

It is more conventional to write the above matrix element in terms of an elastic form factor $F_{el}(q^2)$ depending on the momentum transfer $q^2 = (p - p')^2$:

$$\langle \bar{B}(v') | \bar{b} \gamma^\mu b | \bar{B}(v) \rangle = F_{el}(q^2) (p + p')^\mu , \quad (47)$$

where $p^{(v)} = m_B v^{(v)}$. Comparing this with (45), we find that

$$F_{el}(q^2) = \xi (v \cdot v') , \quad q^2 = -2m_B^2 (v \cdot v' - 1) . \quad (48)$$

Because of current conservation, the elastic form factor is normalized to unity at $q^2 = 0$. This condition implies the normalization of the Isgur-Wise function at the kinematic point $v \cdot v' = 1$, i.e. for $v = v'$:

$$\xi (1) = 1 . \quad (49)$$

It is in accordance with the intuitive argument that the probability for an elastic transition is unity if there is no velocity change. Since for $v = v'$ the
final-state meson is at rest in the rest frame of the initial meson, the point $v \cdot v' = 1$ is referred to as the zero-recoil limit.

The heavy-quark flavour symmetry can be used to replace the b quark in the final-state meson by a c quark, thereby turning the B meson into a D meson. Then the scattering process turns into a weak decay process. In the infinite-mass limit, the replacement $b \rightarrow c$ is a symmetry transformation, under which the effective Lagrangian is invariant. Hence, the matrix element
\begin{equation}
\frac{1}{\sqrt{m_B m_D}} \langle D(v') | \bar{c} \gamma^\mu b_v | \bar{B}(v) \rangle = \xi(v \cdot v') (v + v')^\mu
\end{equation}
is still determined by the same function $\xi(v \cdot v')$. This is interesting, since in general the matrix element of a flavour-changing current between two pseudoscalar mesons is described by two form factors:
\begin{equation}
\langle D(v') | \bar{c} \gamma^\mu b | \bar{B}(v) \rangle = f_+(q^2) (p + p')^\mu - f_-(q^2) (p - p')^\mu.
\end{equation}
Comparing the above two equations, we find that
\begin{equation}
f_\pm(q^2) = \frac{m_B \pm m_D}{2\sqrt{m_B m_D}} \xi(v \cdot v'),
q^2 = m_B^2 + m_D^2 - 2m_B m_D v \cdot v'.
\end{equation}
Thus, the heavy-quark flavour symmetry relates two a priori independent form factors to one and the same function. Moreover, the normalization of the Isgur-Wise function at $v \cdot v' = 1$ now implies a non-trivial normalization of the form factors $f_\pm(q^2)$ at the point of maximum momentum transfer, $q_{\text{max}}^2 = (m_B - m_D)^2$:
\begin{equation}
f_\pm(q_{\text{max}}^2) = \frac{m_B \pm m_D}{2\sqrt{m_B m_D}}.
\end{equation}

The heavy-quark spin symmetry leads to additional relations among weak decay form factors. It can be used to relate matrix elements involving vector mesons to those involving pseudoscalar mesons. A vector meson with longitudinal polarization is related to a pseudoscalar meson by a rotation of the heavy-quark spin. Hence, the spin-symmetry transformation $c^0_{v'} \rightarrow c^\pm_{v'}$ relates $\bar{B} \rightarrow D$ with $\bar{B} \rightarrow D^*$ transitions. The result of this transformation is
\begin{align}
\frac{1}{\sqrt{m_B m_D^*}} \langle D^*(v', \varepsilon) | \bar{c} v' \gamma^\mu b_v | \bar{B}(v) \rangle &= i \epsilon^{\mu\nu\alpha\beta} \varepsilon^*_\nu v'_{\alpha} v_{\beta} \xi(v \cdot v'),
\frac{1}{\sqrt{m_B m_D^*}} \langle D^*(v', \varepsilon) | \bar{c} v' \gamma^\mu \gamma_5 b_v | \bar{B}(v) \rangle &= \left[\varepsilon^{*\mu} (v \cdot v' + 1) - v'^\mu \varepsilon^{*\cdot} \cdot v \right] \xi(v \cdot v').
\end{align}
where \(\varepsilon \) denotes the polarization vector of the \(D^* \) meson. Once again, the matrix elements are completely described in terms of the Isgur-Wise function. Now this is even more remarkable, since in general four form factors, \(V(q^2) \) for the vector current, and \(A_i(q^2) \), \(i = 0, 1, 2 \), for the axial current, are required to parametrize these matrix elements. In the heavy-quark limit, they obey the relations

\[
\frac{m_B + m_{D^*}}{2 \sqrt{m_B m_{D^*}}} \xi(v \cdot v') = V(q^2) = A_0(q^2) = A_1(q^2) = \left[1 - \frac{q^2}{(m_B + m_{D^*})^2} \right]^{-1} A_1(q^2),
\]

\[q^2 = m_B^2 + m_{D^*}^2 - 2m_B m_{D^*} v \cdot v'. \] (55)

Equations (52) and (55) summarize the relations imposed by heavy-quark symmetry on the weak decay form factors describing the semileptonic decay processes \(\bar{B} \to D \ell \bar{\nu} \) and \(\bar{B} \to D^* \ell \bar{\nu} \). These relations are model-independent consequences of QCD in the limit where \(m_b, m_c \gg \Lambda_{QCD} \). They play a crucial role in the determination of the CKM matrix element \(|V_{cb}| \). In terms of the recoil variable \(w = v \cdot v' \), the differential semileptonic decay rates in the heavy-quark limit become

\[
\frac{d\Gamma(\bar{B} \to D \ell \bar{\nu})}{dw} = \frac{G_F^2}{48\pi^3} |V_{cb}|^2 (m_B + m_D)^2 m_D^3 (w^2 - 1)^{3/2} \xi^2(w),
\]

\[
\frac{d\Gamma(\bar{B} \to D^* \ell \bar{\nu})}{dw} = \frac{G_F^2}{48\pi^3} |V_{cb}|^2 (m_B - m_{D^*})^2 m_{D^*}^3 \sqrt{w^2 - 1} (w + 1)^2 \times \left[1 + \frac{4w}{w + 1} \frac{m_B^2 - 2w m_B m_{D^*} + m_{D^*}^2}{(m_B - m_{D^*})^2} \right] \xi^2(w). \] (56)

These expressions receive symmetry-breaking corrections, since the masses of the heavy quarks are not infinitely large. Perturbative corrections of order \(\alpha_s(m_Q) \) can be calculated order by order in perturbation theory. A more difficult task is to control the non-perturbative power corrections of order \((\Lambda_{QCD}/m_Q)^n \). The HQET provides a systematic framework for analysing these corrections. For the case of weak-decay form factors, the analysis of the \(1/m_Q \) corrections was performed by Luke. Later, Falk and the present author have analysed the structure of \(1/m_Q^2 \) corrections for both meson and baryon weak decay form factors. We shall not discuss these rather technical
issues in detail, but only mention the most important result of Luke’s analysis. It concerns the zero-recoil limit, where an analogue of the Ademollo-Gatto theorem \cite{77} can be proved. This is Luke’s theorem \cite{76}, which states that the matrix elements describing the leading \(1/m_Q\) corrections to weak decay amplitudes vanish at zero recoil. This theorem is valid to all orders in perturbation theory \cite{61,78,79}. Most importantly, it protects the \(\bar{B} \rightarrow D^* \ell \bar{\nu}\) decay rate from receiving first-order \(1/m_Q\) corrections at zero recoil \cite{75}. [A similar statement is not true for the decay \(\bar{B} \rightarrow D \ell \bar{\nu}\). The reason is simple but somewhat subtle. Luke’s theorem protects only those form factors not multiplied by kinematic factors that vanish for \(v = v'\). By angular momentum conservation, the two pseudoscalar mesons in the decay \(\bar{B} \rightarrow D \ell \bar{\nu}\) must be in a relative \(p\) wave, and hence the amplitude is proportional to the velocity \(|\vec{v}_D|\) of the \(D\) meson in the \(B\)-meson rest frame. This leads to a factor \((w^2 - 1)\) in the decay rate. In such a situation, kinematically suppressed form factors can contribute \cite{74}.]

3.2 Short-Distance Corrections

In section 2, we have discussed the first two steps in the construction of the HQET. Integrating out the small components in the heavy-quark fields, a non-local effective action was derived, which was then expanded in a series of local operators. The effective Lagrangian obtained that way correctly reproduces the long-distance physics of the full theory (see Fig. 3). It does not contain the short-distance physics correctly, however. The reason is obvious: a heavy quark participates in strong interactions through its coupling to gluons. These gluons can be soft or hard, i.e. their virtual momenta can be small, of the order of the confinement scale, or large, of the order of the heavy-quark mass. But hard gluons can resolve the spin and flavour quantum numbers of a heavy quark. Their effects lead to a renormalization of the coefficients of the operators in the HQET. A new feature of such short-distance corrections is that through the running coupling constant they induce a logarithmic dependence on the heavy-quark mass \cite{10}. Since \(\alpha_s(m_Q)\) is small, these effects can be calculated in perturbation theory.

Consider, as an example, the matrix elements of the vector current \(V = \bar{q} \gamma^\mu Q\). In QCD this current is partially conserved and needs no renormalization \cite{80}. Its matrix elements are free of ultraviolet divergences. Still, these matrix elements have a logarithmic dependence on \(m_Q\) from the exchange of hard gluons with virtual momenta of the order of the heavy-quark mass. If one goes over to the effective theory by taking the limit \(m_Q \to \infty\), these logarithms diverge. Consequently, the vector current in the effective theory does require a renormalization \cite{17}. Its matrix elements depend on an arbitrary renormaliza-
tion scale μ, which separates the regions of short- and long-distance physics. If μ is chosen such that $\Lambda_{\text{QCD}} \ll \mu \ll m_Q$, the effective coupling constant in the region between μ and m_Q is small, and perturbation theory can be used to compute the short-distance corrections. These corrections have to be added to the matrix elements of the effective theory, which contain the long-distance physics below the scale μ. Schematically, then, the relation between matrix elements in the full and in the effective theory is

$$\langle V(m_Q) \rangle_{\text{QCD}} = C_0(m_Q,\mu) \langle V_0(\mu) \rangle_{\text{HQET}} + \frac{C_1(m_Q,\mu)}{m_Q} \langle V_1(\mu) \rangle_{\text{HQET}} + \ldots,$$

where we have indicated that matrix elements in the full theory depend on m_Q, whereas matrix elements in the effective theory are mass-independent, but do depend on the renormalization scale. The Wilson coefficients $C_i(m_Q,\mu)$ are defined by this relation. Order by order in perturbation theory, they can be computed from a comparison of the matrix elements in the two theories. Since the effective theory is constructed to reproduce correctly the low-energy behaviour of the full theory, this “matching” procedure is independent of any long-distance physics, such as infrared singularities, non-perturbative effects, the nature of the external states used in the matrix elements, etc.

The calculation of the coefficient functions in perturbation theory uses the powerful methods of the renormalization group. It is in principle straightforward, yet in practice rather tedious. A comprehensive discussion of most of the existing calculations of short-distance corrections in the HQET can be found in Ref. 24.

3.3 Model-Independent Determination of $|V_{cb}|$

We will now discuss some of the most important applications and tests of the above formalism in the context of semileptonic decays of B mesons. A model-independent determination of the CKM matrix element $|V_{cb}|$ based on heavy-quark symmetry can be obtained by measuring the recoil spectrum of D^* mesons produced in $\bar{B} \to D^* \ell \bar{\nu}$ decays. In the heavy-quark limit, the differential decay rate for this process has been given in (56). In order to allow for corrections to that limit, we write

$$\frac{d\Gamma(\bar{B} \to D^* \ell \bar{\nu})}{dw} = \frac{G_F^2}{48\pi^3} (m_B - m_{D^*})^2 m_{D^*}^3 \sqrt{w^2 - 1} (w + 1)^2 \times \left[1 + \frac{4w}{w + 1} \frac{m_B^2 - 2w m_B m_{D^*} + m_{D^*}^2}{(m_B - m_{D^*})^2} \right] |V_{cb}|^2 F^2(w),$$

23
where the hadronic form factor $\mathcal{F}(w)$ coincides with the Isgur-Wise function up to symmetry-breaking corrections of order $\alpha_s(m_Q)$ and Λ_{QCD}/m_Q. The idea is to measure the product $|V_{cb}|\mathcal{F}(w)$ as a function of w, and to extract $|V_{cb}|$ from an extrapolation of the data to the zero-recoil point $w = 1$, where the B and the D^* mesons have a common rest frame. At this kinematic point, heavy-quark symmetry helps us to calculate the normalization $\mathcal{F}(1)$ with small and controlled theoretical errors. Since the range of w values accessible in this decay is rather small ($1 < w < 1.5$), the extrapolation can be done using an expansion around $w = 1$:

$$\mathcal{F}(w) = \mathcal{F}(1) \left[1 - \hat{\varrho}^2 (w - 1) + \hat{c}(w - 1)^2 \ldots \right].$$

(59)

The slope $\hat{\varrho}^2$ and the curvature \hat{c} are treated as parameters.

![Figure 8: CLEO data for the product $|V_{cb}|\mathcal{F}(w)$, as extracted from the recoil spectrum in $B \rightarrow D^* \ell \bar{\nu}$ decays. The line shows a linear fit to the data.](image)

Measurements of the recoil spectrum have been performed first by the ARGUS81 and CLEO82 Collaborations in experiments operating at the $\Upsilon(4s)$ resonance, and more recently by the ALEPH83, DELPHI84 and OPAL85 Collaborations at LEP. As an example, Fig. 8 shows the data reported by the CLEO Collaboration. The results obtained by the various experimental groups are summarized in Table 1. In the first analyses, the curvature term in (59) was omitted, and the data were fitted with a linear form factor. Later, the effect of a non-zero curvature has been taken into account83,85. It can be
shown in a model-independent way that the shape of the form factor is highly constrained by analyticity and unitarity requirements. In particular, the curvature at \(w = 1 \) is strongly correlated with the slope of the form factor. For the values of \(\hat{\rho}^2 \) given in Table 1, one obtains a small positive curvature, so that the results obtained from a linear fit are very little affected by including a curvature term. The weighted average of the experimental results is

\[
|V_{cb}| F(1) = (34.1 \pm 1.4) \times 10^{-3}, \quad \hat{\rho}^2 = 0.80 \pm 0.09. \quad (60)
\]

Table 1: Values for \(|V_{cb}| F(1) \) (in units of \(10^{-3} \)) and \(\hat{\rho}^2 \) extracted from measurements of the recoil spectrum in \(\bar{B} \to D^* \ell \bar{\nu} \) decays.

| Reference | Method | \(|V_{cb}| F(1) \) (\(10^{-3} \)) | \(\hat{\rho}^2 \) |
|-----------|--------------|----------------------------------|-----------------|
| ARGUS \(^81\) | Linear Fit | 38.8 \(\pm 4.3 \pm 2.5\) | 1.17 \(\pm 0.22 \pm 0.06\) |
| CLEO \(^82\) | Linear Fit | 35.1 \(\pm 1.9 \pm 2.0\) | 0.84 \(\pm 0.12 \pm 0.08\) |
| ALEPH \(^83\) | Quadratic Fit | 32.0 \(\pm 2.1 \pm 2.0\) | 0.37 \(\pm 0.26 \pm 0.14\) |
| DELPHI \(^84\) | Linear Fit | 31.9 \(\pm 1.8 \pm 1.9\) | 0.31 \(\pm 0.17 \pm 0.08\) |
| OPAL \(^85\) | Quadratic Fit | 35.0 \(\pm 1.9 \pm 2.3\) | 0.81 \(\pm 0.16 \pm 0.10\) |
| | Linear Fit | 32.8 \(\pm 1.9 \pm 2.2\) | 0.55 \(\pm 0.24 \pm 0.05\) |

Heavy-quark symmetry implies that the general structure of the symmetry-breaking corrections to the form factor at zero recoil is

\[
\mathcal{F}(1) = \eta_A \left(1 + 0 \times \frac{\Lambda_{\text{QCD}}}{m_Q} + \text{const} \times \frac{\Lambda_{\text{QCD}}}{m_Q^2} + \ldots \right) \equiv \eta_A \left(1 + \delta_{1/m^2} \right), \quad (61)
\]

where \(\eta_A \) is a short-distance correction arising from the finite renormalization of the flavour-changing axial current at zero recoil, and \(\delta_{1/m^2} \) parametrizes second-order (and higher) power corrections. The absence of first-order power corrections at zero recoil is a consequence of Luke's theorem. The one-loop expression for \(\eta_A \) has been known for a long time:

\[
\eta_A = 1 + \frac{\alpha_s(M)}{\pi} \left(\frac{m_b + m_c}{m_b - m_c} \ln \frac{m_b}{m_c} - \frac{8}{3} \right) \approx 0.96. \quad (62)
\]

The scale \(M \) in the running coupling constant can be fixed by adopting the prescription of Brodsky, Lepage and Mackenzie (BLM), where it is identified with the average virtuality of the gluon in the one-loop diagrams that
contribute to η_A. If $\alpha_s(M)$ is defined in the $\overline{\text{MS}}$ scheme, the result is\footnote{10} $M \approx 0.51 \sqrt{m_c m_b}$. Several estimates of higher-order corrections to η_A have been discussed. A renormalization-group resummation of logarithms of the type $(\alpha_s \ln m_b / m_c)^n$, $\alpha_s (\alpha_s \ln m_b / m_c)^n$ and $m_c / m_b (\alpha_s \ln m_b / m_c)^n$ leads to\footnote{17, 91–94} $\eta_A \approx 0.985$. On the other hand, a resummation of “renormalon-chain” contributions of the form $\beta_0^{n-1} \alpha_s^n$, where $\beta_0 = 11 - \frac{2}{3} n_f$ is the first coefficient of the QCD β-function, gives\footnote{95} $\eta_A \approx 0.945$. Using these partial resummations to estimate the uncertainty gives $\eta_A = 0.965 \pm 0.020$. Recently, Czarnecki has improved this estimate by calculating η_A at two-loop order\footnote{96}. His result,

$$\eta_A = 0.960 \pm 0.007,$$

is in excellent agreement with the BLM-improved one-loop expression (62). Here the error is taken to be the size of the two-loop correction.

The analysis of the power corrections is more difficult, since it cannot rely on perturbation theory. Three approaches have been discussed: in the “exclusive approach”, all $1/m_Q^2$ operators in the HQET are classified and their matrix elements estimated, leading to\footnote{61} $\delta_{1/m^2} = -(3 \pm 2)\%$; the “inclusive approach” has been used to derive the bound $\delta_{1/m^2} < -3\%$, and to estimate that\footnote{98} $\delta_{1/m^2} = -(7 \pm 3)\%$; the “hybrid approach” combines the virtues of the former two to obtain a more restrictive lower bound on δ_{1/m^2}. This leads to\footnote{99}

$$\delta_{1/m^2} = -0.055 \pm 0.025.$$

Combining the above results, adding the theoretical errors linearly to be conservative, gives

$$\mathcal{F}(1) = 0.91 \pm 0.03$$

for the normalization of the hadronic form factor at zero recoil. Thus, the corrections to the heavy-quark limit amount to a moderate decrease of the form factor of about 10%. This can be used to extract from the experimental result (60) the model-independent value

$$|V_{cb}| = (37.5 \pm 1.5_{\text{exp}} \pm 1.2_{\text{th}}) \times 10^{-3}.$$

3.4 Bounds and Predictions for $\hat{\varrho}^2$

The slope parameter $\hat{\varrho}^2$ in the expansion of the physical form factor in (59) differs from the slope parameter ϱ^2 of the Isgur-Wise function by corrections that violate the heavy-quark symmetry. The short-distance corrections have been calculated, with the result\footnote{99}

$$\hat{\varrho}^2 = \varrho^2 + (0.16 \pm 0.02) + O(1/m_Q).$$
Bjorken has shown that the slope of the Isgur-Wise function is related to the form factors of transitions of a ground-state heavy meson into excited states, in which the light degrees of freedom carry quantum numbers \(j^P = \frac{1}{2}^+ \) or \(\frac{3}{2}^+ \), by a sum rule which is an expression of quark-hadron duality: in the heavy-quark limit, the inclusive sum of the probabilities for decays into hadronic states is equal to the probability for the free quark transition. If one normalizes the latter probability to unity, the sum rule takes the form\(^{100–102}\)

\[
1 = \frac{w+1}{2} \left\{ |\xi(w)|^2 + \sum_l |\xi^{(l)}(w)|^2 \right\} \\
+ (w-1) \left\{ 2 \sum_m |\tau_{1/2}^{(m)}(w)|^2 + (w+1)^2 \sum_n |\tau_{3/2}^{(n)}(w)|^2 \right\} + O[(w-1)^2],
\]

(68)

where \(l, m, n \) label the radial excitations of states with the same spin-parity quantum numbers. The terms in the first line on the right-hand side of the sum rule correspond to transitions into states containing light constituents with quantum numbers \(j^P = \frac{1}{2}^- \). The ground state gives a contribution proportional to the Isgur-Wise function, and excited states contribute proportionally to analogous functions \(\xi^{(l)}(w) \). Because at zero recoil these states must be orthogonal to the ground state, it follows that \(\xi^{(l)}(1) = 0 \), and the corresponding contributions to (68) are of order \((w-1)^2 \). The contributions in the second line correspond to transitions into states with \(j^P = \frac{1}{2}^+ \) or \(\frac{3}{2}^+ \). Because of the change in parity, these are \(p \)-wave transitions. The amplitudes are proportional to the velocity \(|\vec{v}_f| = (w^2 - 1)^{1/2} \) of the final state in the rest frame of the initial state, which explains the suppression factor \((w-1) \) in the decay probabilities. The functions \(\tau_j(w) \) are the analogues of the Isgur-Wise function for these transitions\(^{101}\). Transitions into excited states with quantum numbers other than the above proceed via higher partial waves and are suppressed by at least a factor \((w-1)^2 \).

For \(w = 1 \), eq. (68) reduces to the normalization condition for the Isgur-Wise function. The Bjorken sum rule is obtained by expanding in powers of \((w-1) \) and keeping terms of first order. Taking into account the definition of the slope parameter, \(\xi'(1) = -\varrho^2 \), one finds that\(^{100,101}\)

\[
\varrho^2 = \frac{1}{4} + \sum_m |\tau_{1/2}^{(m)}(1)|^2 + 2 \sum_n |\tau_{3/2}^{(n)}(1)|^2 > \frac{1}{4}.
\]

(69)

Notice that the lower bound is due to the prefactor \(\frac{1}{4}(w + 1) \) of the first term in (68) and is of purely kinematic origin. In the analogous sum rule for
Λ_Q baryons, this factor is absent, and consequently the slope parameter of
the baryon Isgur-Wise function is only subject to the trivial constraint ^74,103
\(\varrho^2 > 0 \).

Voloshin has derived another sum rule involving the form factors for tran-
sitions into excited states, which is the analogue of the “optical sum rule” for
the dipole scattering of light in atomic physics. It reads

\[
\frac{m_M-m_Q}{2} = \sum_m E_{1/2}^{(m)} |r_{1/2}^{(m)}(1)|^2 + 2 \sum_n E_{3/2}^{(n)} |r_{3/2}^{(n)}(1)|^2 ,
\]

(70)

where \(E_j \) are the excitation energies relative to the mass \(m_M \) of the ground-
state heavy meson. This relation can be combined with the Bjorken sum rule
to obtain an upper bound for the slope parameter \(\varrho^2 \):

\[
\varrho^2 < \frac{1}{4} + \frac{m_M-m_Q}{2E_{\text{min}}} ,
\]

(71)

where \(E_{\text{min}} \) denotes the minimum excitation energy. In the quark model, one
expects that \(E_{\text{min}} \approx m_M-m_Q \), and one may use this as an estimate to obtain
\(\varrho^2 < 0.75 \).

The above discussion of the sum rules ignores renormalization effects. Both
perturbative and non-perturbative corrections to (69) and (71) can be incorpo-
rated using the OPE, where one introduces a momentum scale \(\mu \) large enough for \(\alpha_s(\mu) \)
and power corrections of order \((\Lambda_{\text{QCD}}/\mu)^n \) to be small,
but otherwise as small as possible so as to suppress the contributions from
excited states ^105,106. The result is ^107 \(\varrho^2_{\text{min}}(\mu) < \varrho^2 < \varrho^2_{\text{max}}(\mu) \), where
the boundary values are shown in Fig. 9 as a function of the scale \(\mu \). Assuming
that the OPE works down to values \(\mu \approx 0.8 \text{ GeV} \), one obtains rather tight
bounds for the slope parameters:

\[
0.5 < \varrho^2 < 0.8 , \quad 0.5 < \varrho^2 < 1.1 .
\]

(72)

The allowed region for \(\varrho^2 \) has been increased in order to account for the un-
known \(1/m_Q \) corrections in the relation (67). The experimental result given
in (60) falls inside this region.

These bounds compare well with theoretical predictions for the slope pa-
rameters. QCD sum rules have been used to calculate the slope of the Isgur-
Wise function. The results obtained by various authors are \(\varrho^2 = 0.84 \pm 0.02 \)

\(^c\)Strictly speaking, the lowest excited state contributing to the sum rule is \(D + \pi \), which
has an excitation-energy spectrum with a threshold at \(m_\pi \). However, this spectrum is broad,
so that this contribution will not invalidate the upper bound for \(\varrho^2 \) derived here.
OPE breaks down
Voloshin sum rule
Bjorken sum rule
excluded by
excluded by

\[\rho^2 \]

\[\mu \text{ [GeV]} \]

Figure 9: Bounds for the slope parameter \(\rho^2 \) following from the Bjorken and Voloshin sum rules.

(Bagan et al.108), 0.7 ± 0.1 (present author109), 0.70 ± 0.25 (Blok and Shifman110), and 1.00 ± 0.02 (Narison111). The UKQCD Collaboration has presented a lattice calculation of the slope of the form factor \(F(w) \), yielding112 \(\rho^2 = 0.9^{+0.2+0.4}_{-0.3-0.2} \). We stress that the sum-rule bounds in (72) are largely model independent; model calculations in strong disagreement with these bounds should be discarded.

3.5 Measurements of \(\bar{B} \to D^* \ell \bar{\nu} \) and \(\bar{B} \to D \ell \bar{\nu} \) Form Factors and Tests of Heavy-Quark Symmetry

We have discussed earlier in this section that heavy-quark symmetry implies relations between the semileptonic form factors of heavy mesons. They receive symmetry-breaking corrections, which can be estimated using the HQET. The extent to which these relations hold can be tested experimentally by comparing the different form factors describing the decays \(\bar{B} \to D^* \ell \bar{\nu} \) at the same value of \(w \).

When the lepton mass is neglected, the differential decay distributions in \(\bar{B} \to D^* \ell \bar{\nu} \) decays can be parametrized by three helicity amplitudes, or equivalently by three independent combinations of form factors. It has been suggested that a good choice for three such quantities should be inspired by the heavy-quark limit24,113. One thus defines a form factor \(h_{A1}(w) \), which up to symmetry-breaking corrections coincides with the Isgur-Wise function, and
two form-factor ratios

\[R_1(w) = \left[1 - \frac{q^2}{(m_B + m_{D^*})^2} \right] \frac{V(q^2)}{A_1(q^2)}, \]
\[R_2(w) = \left[1 - \frac{q^2}{(m_B + m_{D^*})^2} \right] \frac{A_2(q^2)}{A_1(q^2)}. \] (73)

The relation between \(w \) and \(q^2 \) has been given in (55). This definition is such that in the heavy-quark limit \(R_1(w) = R_2(w) = 1 \) independently of \(w \).

To extract the functions \(h_{A_1}(w) \), \(R_1(w) \) and \(R_2(w) \) from experimental data is a complicated task. However, HQET-based calculations suggest that the \(w \) dependence of the form-factor ratios, which is induced by symmetry-breaking effects, is rather mild\(^{113}\). Moreover, the form factor \(h_{A_1}(w) \) is expected to have a nearly linear shape over the accessible \(w \) range. This motivates to introduce three parameters \(g^2_{A_1}, R_1 \) and \(R_2 \) by

\[h_{A_1}(w) \approx F(1) \left[1 - g^2_{A_1}(w - 1) \right], \]
\[R_1(w) \approx R_1, \quad R_2(w) \approx R_2, \] (74)

where \(F(1) = 0.91 \pm 0.03 \) from (65). The CLEO Collaboration has extracted these three parameters from an analysis of the angular distributions in \(\bar{B} \to D^* \ell \bar{\nu} \) decays\(^{114}\). The results are

\[g^2_{A_1} = 0.91 \pm 0.16, \quad R_1 = 1.18 \pm 0.32, \quad R_2 = 0.71 \pm 0.23. \] (75)

Using the HQET, one obtains an essentially model-independent prediction for the symmetry-breaking corrections to \(R_1 \), whereas the corrections to \(R_2 \) are somewhat model dependent. To good approximation\(^{24}\)

\[R_1 \approx 1 + \frac{4\alpha_s(m_c)}{3\pi} + \frac{\bar{\Lambda}}{2m_c} \approx 1.3 \pm 0.1, \]
\[R_2 \approx 1 - \kappa \frac{\bar{\Lambda}}{2m_c} \approx 0.8 \pm 0.2, \] (76)

with \(\kappa \approx 1 \) from QCD sum rules\(^{113}\). Here \(\bar{\Lambda} \) is the “binding energy” as defined in (28). Theoretical calculations\(^{115,116}\) as well as phenomenological analyses\(^{69,70}\) suggest that \(\bar{\Lambda} \approx 0.45-0.65 \) GeV is the appropriate value to be used in one-loop calculations. A quark-model calculation of \(R_1 \) and \(R_2 \) gives results similar to the HQET predictions\(^{117}\): \(R_1 \approx 1.15 \) and \(R_2 \approx 0.91 \). The experimental data confirm the theoretical prediction that \(R_1 > 1 \) and \(R_2 < 1 \), although the errors are still large.
There is a model-independent relation between the three parameters determined from the analysis of angular distributions and the slope parameter $\hat{\varrho}^2$ extracted from the semileptonic spectrum. It reads

$$g_{A1}^2 - \hat{\varrho}^2 = \frac{1}{6} (R_1^2 - 1) + \frac{m_B}{3(m_B - m_{D^*})} (1 - R_2).$$

(77)

The CLEO data give 0.07 ± 0.20 for the difference of the slope parameters on the left-hand side, and 0.22 ± 0.18 for the right-hand side. Both values are compatible within errors.

More recently, heavy-quark symmetry has also been tested by comparing the form factor $F(w)$ in $\bar{B} \to D^* \ell \bar{\nu}$ decays with the corresponding form factor $G(w)$ governing $\bar{B} \to D \ell \bar{\nu}$ decays. The theoretical prediction compares well with the experimental results for this ratio: 0.99 ± 0.19 reported by the CLEO Collaboration118, and 0.87 ± 0.30 reported by the ALEPH Collaboration83. In these analyses, it has also been tested that within experimental errors the shape of the two form factors agrees over the entire range of w values.

The results of the analyses described above are very encouraging. Within errors, the experiments confirm the HQET predictions, starting to test them at the level of symmetry-breaking corrections.

3.6 Decays to Charmless Final States

For completeness, we will discuss briefly semileptonic B-meson decays into charmless final states, although heavy-quark symmetry does not help much in the analysis of these processes. Recently, the CLEO Collaboration has reported a first signal for the exclusive semileptonic decay modes $\bar{B} \to \pi \ell \bar{\nu}$ and $\bar{B} \to \rho \ell \bar{\nu}$. The underlying quark process for these transitions is $b \to u \ell \bar{\nu}$. Thus, these decays provide information on the strength of the CKM matrix element V_{ub}. The observed branching fractions are5:

$$B(\bar{B} \to \pi \ell \bar{\nu}) = (1.8 \pm 0.5) \times 10^{-4},$$

$$B(\bar{B} \to \rho \ell \bar{\nu}) = (2.5^{+0.8}_{-0.9}) \times 10^{-4}. \quad (79)$$

The theoretical description of these heavy-to-light ($b \to u$) decays is more model dependent than that for heavy-to-heavy ($b \to c$) transitions, because heavy-quark symmetry does not help to constrain the relevant hadronic form factors. A variety of calculations for such form factors exists, based on QCD
Table 2: Values for $|V_{ub}/V_{cb}|$ extracted from the CLEO measurement of exclusive semileptonic B decays into charmless final states, taking $|V_{cb}| = 0.040$. The first error quoted is experimental, the second (when available) is theoretical.

<table>
<thead>
<tr>
<th>Method</th>
<th>Reference</th>
<th>$\bar{B} \rightarrow \pi \ell \bar{\nu}$</th>
<th>$\bar{B} \rightarrow \rho \ell \bar{\nu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum Rules</td>
<td>Narison 119</td>
<td>$0.177 \pm 0.025 \pm 0.001$</td>
<td>$0.064^{+0.010}_{-0.012} \pm 0.003$</td>
</tr>
<tr>
<td></td>
<td>Ball 120</td>
<td>$0.117 \pm 0.016 \pm 0.012$</td>
<td>$0.090^{+0.013}_{-0.016} \pm 0.015$</td>
</tr>
<tr>
<td></td>
<td>Khod., Rückl 121</td>
<td>0.095 ± 0.013</td>
<td>—</td>
</tr>
<tr>
<td>Lattice QCD</td>
<td>UKQCD 122</td>
<td>$0.115 \pm 0.016^{+0.013}_{-0.011}$</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>APE 123</td>
<td>$0.094 \pm 0.013 \pm 0.023$</td>
<td>—</td>
</tr>
<tr>
<td>Pert. QCD</td>
<td>Li, Yu 124</td>
<td>0.060 ± 0.008</td>
<td>—</td>
</tr>
<tr>
<td>Quark Models</td>
<td>BSW 125</td>
<td>0.098 ± 0.014</td>
<td>$0.061^{+0.010}_{-0.011}$</td>
</tr>
<tr>
<td></td>
<td>KS 126</td>
<td>0.098 ± 0.014</td>
<td>$0.054^{+0.006}_{-0.007}$</td>
</tr>
<tr>
<td></td>
<td>ISGW2 127</td>
<td>0.086 ± 0.012</td>
<td>$0.083^{+0.013}_{-0.015}$</td>
</tr>
<tr>
<td></td>
<td>Melikhov 128</td>
<td>$0.099 \pm 0.014 \pm 0.014$</td>
<td>$0.097^{+0.015}_{-0.017} \pm 0.014$</td>
</tr>
</tbody>
</table>

sum rules, lattice gauge theory, perturbative QCD, or quark models. Table 2 contains a summary of values extracted for the ratio $|V_{ub}/V_{cb}|$ from a selection of such calculations. Some approaches are more consistent than others in that the extracted values are compatible for the two decay modes. With few exceptions, the results lie in the range

$$|V_{ub}/V_{cb}|_{\text{excl}} = 0.06 - 0.11,$$ \quad (80)

which is in good agreement with the measurement of $|V_{ub}|$ obtained from the endpoint region of the lepton spectrum in inclusive semileptonic decays 3,4:

$$|V_{ub}/V_{cb}|_{\text{incl}} = 0.08 \pm 0.01_{\text{exp}} \pm 0.02_{\text{th}}.$$

Clearly, this is only the first step towards a more reliable determination of $|V_{ub}|$, yet, with the discovery of exclusive $b \rightarrow u$ transitions an important milestone has been met. Efforts must now concentrate on more reliable methods to determine the form factors for heavy-to-light transitions. Some new ideas in this direction have been discussed recently. They are based on lattice calculations 129, analyticity constraints 130,131, or variants of the form-factor relations for heavy-to-heavy transitions 132.
Inclusive decay rates determine the probability of the decay of a particle into the sum of all possible final states with a given set of global quantum numbers. An example is provided by the inclusive semileptonic decay rate of the B meson, $\Gamma(\bar{B} \to X\ell\bar{\nu})$, where the final state consists of a lepton-neutrino pair accompanied by any number of hadrons. Here we shall discuss the theoretical description of inclusive decays of hadrons containing a heavy quark133–142. From the theoretical point of view, such decays have two advantages: first, bound-state effects related to the initial state (such as the “Fermi motion” of the heavy quark inside the hadron140,141) can be accounted for in a systematic way using the heavy-quark expansion; secondly, the fact that the final state consists of a sum over many hadronic channels eliminates bound-state effects related to the properties of individual hadrons. This second feature is based on the hypothesis of quark-hadron duality, which is an important concept in QCD phenomenology. The assumption of duality is that cross sections and decay rates, which are defined in the physical region (i.e. the region of time-like momenta), are calculable in QCD after a “smearing” or “averaging” procedure has been applied143. In semileptonic decays, it is the integration over the lepton and neutrino phase space that provides a smearing over the invariant hadronic mass of the final state (so-called global duality). For non-leptonic decays, on the other hand, the total hadronic mass is fixed, and it is only the fact that one sums over many hadronic states that provides an averaging (so-called local duality). Clearly, local duality is a stronger assumption than global duality. It is important to stress that quark-hadron duality cannot yet be derived from first principles; still, it is a necessary assumption for many applications of QCD. The validity of global duality has been tested experimentally using data on hadronic τ decays144. Some more formal attempts to address the problem of quark-hadron duality can be found in Refs. 145,146.

Using the optical theorem, the inclusive decay width of a hadron H_b containing a b quark can be written in the form

\begin{equation}
\Gamma(H_b \to X) = \frac{1}{m_{H_b}} \text{Im} \langle H_b | T | H_b \rangle ,
\end{equation}

where the transition operator T is given by

\begin{equation}
T = i \int \text{d}^4 x T\{ \mathcal{L}_{\text{eff}}(x), \mathcal{L}_{\text{eff}}(0) \} .
\end{equation}

Inserting a complete set of states inside the time-ordered product, we recover
the standard expression
\[\Gamma(H_b \rightarrow X) = \frac{1}{2m_{H_b}} \sum_X (2\pi)^4 \delta^4(p_H - p_X) \left| \langle X | \mathcal{L}_{\text{eff}} | H_b \rangle \right|^2 \] (84)

for the decay rate. For the case of semileptonic and non-leptonic decays, \(\mathcal{L}_{\text{eff}} \)

is the effective weak Lagrangian given in (4), which in practice is corrected

for short-distance effects\(^{38,39,147-149}\) arising from the exchange of gluons with virtualities between \(m_W\) and \(m_b\). If some quantum numbers of the final states \(X\) are specified, the sum over intermediate states is restricted appropriately. In

the case of the inclusive semileptonic decay rate, for instance, the sum would include only those states \(X\) containing a lepton-neutrino pair.

Figure 10: Perturbative contributions to the transition operator \(T\) (left), and the corresponding operators in the OPE (right). The open squares represent a four-fermion interaction of the effective Lagrangian \(\mathcal{L}_{\text{eff}}\), while the black circles represent local operators in the OPE.

In perturbation theory, some contributions to the transition operator are given by the two-loop diagrams shown on the left-hand side in Fig. 10. Because of the large mass of the \(b\) quark, the momenta flowing through the internal propagator lines are large. It is thus possible to construct an OPE for the transition operator, in which \(T\) is represented as a series of local operators containing the heavy-quark fields. The operator with the lowest dimension, \(d = 3\), is \(\bar{b}b\). It arises by contracting the internal lines of the first diagram. The only gauge-invariant operator with dimension 4 is \(\bar{b}i\not{D}b\); however, the equations of motion imply that between physical states this operator can be replaced by \(m_bb\). The first operator that is different from \(\bar{b}b\) has dimension 5 and contains the gluon field. It is given by \(\bar{b}g_\sigma G^\mu\nu b\). This operator arises from diagrams in which a gluon is emitted from one of the internal lines, such as the second diagram shown in Fig. 10. For dimensional reasons, the matrix
elements of such higher-dimensional operators are suppressed by inverse powers of the heavy-quark mass. Thus, any inclusive decay rate of a hadron H_b can be written as

$$\Gamma(H_b \to X_f) = \frac{G_F^2 m_b^5}{192 \pi^3} \left\{ c_f^f \langle \bar{b} b \rangle_H + c_f^f \frac{\langle \bar{b} g_s \sigma_{\mu \nu} G^{\mu \nu} b \rangle_H}{m_b^2} + \ldots \right\}, \quad (85)$$

where the prefactor arises naturally from the loop integrations, c_f^f are calculable coefficient functions (which also contain the relevant CKM matrix elements) depending on the quantum numbers f of the final state, and $\langle O \rangle_H$ are the (normalized) forward matrix elements of local operators, for which we use the short-hand notation

$$\langle O \rangle_H = \frac{1}{2 m_{H_b}} \langle H_b | O | H_b \rangle. \quad (86)$$

In the next step, these matrix elements are systematically expanded in powers of $1/m_b$, using the technology of the HQET. The result is

$$\langle \bar{b} b \rangle_H = 1 - \frac{\mu_2^2(H_b)}{2 m_b^2} + O(1/m_b^3),$$

$$\langle \bar{b} g_s \sigma_{\mu \nu} G^{\mu \nu} b \rangle_H = 2 \mu_2^2(H_b) + O(1/m_b), \quad (87)$$

where we have defined the HQET matrix elements

$$\mu_2^2(H_b) = \frac{1}{2 m_{H_b}} \langle H_b(v) | \bar{b}_v (i\vec{D})^2 b_v | H_b(v) \rangle,$$

$$\mu_5^2(H_b) = \frac{1}{2 m_{H_b}} \langle H_b(v) | \bar{b}_v \frac{g_s}{2} \sigma_{\mu \nu} G^{\mu \nu} b_v | H_b(v) \rangle. \quad (88)$$

Here $(i\vec{D})^2 = (i v \cdot D)^2 - (i D)^2$; in the rest frame, this is the square of the operator for the spatial momentum of the heavy quark. Inserting these results into (85) yields

$$\Gamma(H_b \to X_f) = \frac{G_F^2 m_b^5}{192 \pi^3} \left\{ c_f^f \left(1 - \frac{\mu_2^2(H_b) - \mu_5^2(H_b)}{2 m_b^2} \right) + 2 c_f^f \frac{\mu_5^2(H_b)}{m_b^2} + \ldots \right\}. \quad (89)$$

It is instructive to understand the appearance of the “kinetic energy” contribution μ_2^2, which is the gauge-covariant extension of the square of the b-quark momentum inside the heavy hadron. This contribution is the field-theory analogue of the Lorentz factor $(1 - \vec{v}_b^2)^{1/2} \approx 1 - \vec{k}^2 / 2 m_b^2$, in accordance with the
fact that the lifetime, $\tau = 1/\Gamma$, for a moving particle increases due to time dilation.

The main result of the heavy-quark expansion for inclusive decay rates is the observation that the free quark decay (i.e. the parton model) provides the first term in a systematic $1/m_b$ expansion. For dimensional reasons, the corresponding rate is proportional to the fifth power of the b-quark mass. The non-perturbative corrections, which arise from bound-state effects inside the B meson, are suppressed by at least two powers of the heavy-quark mass, i.e. they are of relative order $(\Lambda_{QCD}/m_b)^2$. Note that the absence of first-order power corrections is a consequence of the equations of motion, as there is no independent gauge-invariant operator of dimension 4 that could appear in the OPE. The fact that bound-state effects in inclusive decays are strongly suppressed explains a posteriori the success of the parton model in describing such processes.

The hadronic matrix elements appearing in the heavy-quark expansion (89) can be determined to some extent from the known masses of heavy hadron states. For the B meson, one finds that

$$\mu_{\pi}^2(B) = -\lambda_1 = (0.3 \pm 0.2) \text{ GeV}^2,$$

$$\mu_{G}^2(B) = 3\lambda_2 \approx 0.36 \text{ GeV}^2,$$

(90)

where λ_1 and λ_2 are the parameters appearing in the mass formula (32). For the ground-state baryon Λ_b, in which the light constituents have total spin zero, it follows that

$$\mu_{G}^2(\Lambda_b) = 0,$$

(91)

while the matrix element $\mu_{\pi}^2(\Lambda_b)$ obeys the relation

$$(m_{\Lambda_b} - m_{\Lambda_c}) - (\overline{m}_B - \overline{m}_D) = [\mu_{\pi}^2(B) - \mu_{\pi}^2(\Lambda_b)] \left(\frac{1}{2m_c} - \frac{1}{2m_b}\right) + O(1/m_Q^2),$$

(92)

where \overline{m}_B and \overline{m}_D denote the spin-averaged masses introduced in connection with (42). With the value of m_{Λ_b} given in (40), this leads to

$$\mu_{\pi}^2(B) - \mu_{\pi}^2(\Lambda_b) = (0.01 \pm 0.03) \text{ GeV}^2.$$

(93)

What remains to be calculated, then, is the coefficient functions c_n^ℓ for a given inclusive decay channel. We shall now discuss some of the most important applications of this general formalism.
4.1 Determination of $|V_{cb}|$ from Inclusive Semileptonic Decays

The extraction of $|V_{cb}|$ from the inclusive semileptonic decay rate of B mesons is based on the general expression (89), with the short-distance coefficients\(^{134−136}\)

\[
\begin{align*}
 c_{3}^{\text{SL}} &= |V_{cb}|^2 \left[1 - 8x^2 + 8x^6 - x^8 - 12x^4 \ln x^2 + O(\alpha_s) \right], \\
 c_{5}^{\text{SL}} &= -6|V_{cb}|^2 (1 - x^2)^4.
\end{align*}
\] (94)

Here $x = m_c/m_b$, and m_b and m_c are the pole masses of the b and c quarks, defined to a given order in perturbation theory\(^{43}\). The $O(\alpha_s)$ terms in c_{3}^{SL} are known exactly\(^{152}\), while only partial calculations of higher-order corrections exist\(^{153,154}\). The theoretical uncertainties in this determination of $|V_{cb}|$ are quite different from those entering the analysis of exclusive decays. The main sources are the dependence on the heavy-quark masses, unknown higher-order perturbative corrections, and the assumption of global quark-hadron duality.

A conservative estimate of the total theoretical error on the extracted value of $|V_{cb}|$ is\(^{155}\) $\delta |V_{cb}|/|V_{cb}| \approx 10\%$. Taking the result of Ball et al.\(^{154}\) for the central value, and using $\tau_B = (1.60 \pm 0.03)$ ps for the average B-meson lifetime\(^{156}\), we find

\[
|V_{cb}| = (0.040 \pm 0.004) \left(\frac{B_{\text{SL}}}{10.8\%} \right)^{1/2} = (40 \pm 1_{\text{exp}} \pm 4_{\text{th}}) \times 10^{-3}. \] (95)

In the last step, we have used $B_{\text{SL}} = (10.8 \pm 0.5)\%$ for the semileptonic branching ratio of B mesons (see below). The value of $|V_{cb}|$ extracted from the inclusive semileptonic width is in excellent agreement with the value in (66) obtained from the analysis of the exclusive decay $\bar{B} \to D^{\ast} \ell \bar{\nu}$, This agreement is gratifying given the differences of the methods used, and it provides an indirect test of global quark-hadron duality. Combining the two measurements gives the final result

\[
|V_{cb}| = 0.039 \pm 0.002. \] (96)

After V_{ud} and V_{us}, this is the third-best known entry in the CKM matrix.

4.2 Semileptonic Branching Ratio for Decays into τ Leptons

Semileptonic decays of B mesons into τ leptons are of particular importance, since they are sensitive probes of physics beyond the Standard Model\(^{157}\). From the theoretical point of view, the ratio of the semileptonic rates (or branching ratios) into τ leptons and electrons can be calculated reliably. This ratio is
independent of the factor m_b^5, the hadronic parameter λ_1, and CKM matrix elements. To order $1/m_b^2$, one finds139,158,159

$$\frac{B(\bar{B} \to X \tau \bar{\nu}_\tau)}{B(\bar{B} \to X e \bar{\nu}_e)} = f(x_c, x_\tau) + \frac{\lambda_2}{m_b^2} g(x_c, x_\tau) = 0.22 \pm 0.02,$$ \hspace{1cm} (97)

where f and g are calculable coefficient functions depending on the mass ratios $x_c = m_c/m_b$ and $x_\tau = m_\tau/m_b$, as well as on $\alpha_s(m_b)$. Two new measurements of the semileptonic branching ratio of b quarks, $B(b \to X \tau \bar{\nu}_\tau)$, have been reported by the ALEPH and OPAL Collaborations at LEP160,161. The weighted average is $(2.68 \pm 0.28)\%$. Normalizing this result to the LEP average value156

$$\frac{B(b \to X \tau \bar{\nu}_\tau)}{B(b \to X e \bar{\nu}_e)} = 0.245 \pm 0.027,$$ \hspace{1cm} (98)

in good agreement with the theoretical prediction (97) for B mesons.

4.3 Semileptonic Branching Ratio and Charm Counting

The semileptonic branching ratio of B mesons is defined as

$$B_{SL} = \frac{\Gamma(\bar{B} \to X e \bar{\nu})}{\sum_\ell \Gamma(B \to X \ell \bar{\nu}) + \Gamma_{\text{had}} + \Gamma_{\text{rare}}},$$ \hspace{1cm} (99)

where Γ_{had} and Γ_{rare} are the inclusive rates for hadronic and rare decays, respectively. The main difficulty in calculating B_{SL} is not in the semileptonic width, but in the non-leptonic one. As mentioned previously, the calculation of non-leptonic decay rates in the heavy-quark expansion relies on the strong assumption of local quark-hadron duality.

Measurements of the semileptonic branching ratio have been performed by various experimental groups, using both model-dependent and model-independent analyses. The status of the results is controversial, as there is a discrepancy between low-energy measurements performed at the $\Upsilon(4s)$ resonance and high-energy measurements performed at the Z^0 resonance. The situation has been reviewed recently by Richman156, whose numbers we shall use. The average value at low energies is $B_{SL} = (10.23 \pm 0.39)\%$, whereas high-energy measurements give $B_{SL}(\bar{b}) = (10.95 \pm 0.32)\%$. The label (\bar{b}) indicates that this value refers not to the B meson, but to a mixture of b hadrons (approximately 40% B^-, 40% B^0, 12% B_s, and 8% Λ_b). Assuming that the corresponding semileptonic width $\Gamma_{SL}(\bar{b})$ is close to that of B mesonsd, we can

dTheoretically, this is expected to be a very good approximation.
correct for this fact and find $B_{SL} = (\tau_B/\tau_b) B_{SL}(b) = (11.23 \pm 0.34)\%$, where
$\tau_b = (1.56 \pm 0.03)$ ps is the average lifetime corresponding to the above mixture of b hadrons. The discrepancy between the low- and high-energy measurements of the semileptonic branching ratio is therefore larger than three standard deviations. If we take the average and inflate the error to account for this fact, we obtain

$$B_{SL} = (10.80 \pm 0.51)\%.$$ \hspace{1cm} (100)

An important aspect in interpreting this result is charm counting, i.e. the measurement of the average number n_c of charm hadrons produced per B decay. Theoretically, this quantity is given by

$$n_c = 1 + B(\bar{B} \to X_{c\bar{c}c'}) - B(\bar{B} \to X_{no\,c}),$$ \hspace{1cm} (101)

where $B(\bar{B} \to X_{c\bar{c}c'})$ is the branching ratio for decays into final states containing two charm quarks, and $B(\bar{B} \to X_{no\,c}) \approx 0.02$ is the Standard Model branching ratio for charmless decays\(^{162-164}\). The average value obtained at low energies is\(^{156}\) $n_c = 1.12 \pm 0.05$, whereas high-energy measurements give\(^{165}\) $n_c = 1.23 \pm 0.07$. The weighted average is

$$n_c = 1.16 \pm 0.04.$$ \hspace{1cm} (102)

The naive parton model predicts that $B_{SL} \approx 15\%$ and $n_c \approx 1.2$; however, it has been known for some time that perturbative corrections could change these results significantly\(^{162}\). With the establishment of the heavy-quark expansion, the non-perturbative corrections to the parton model could be computed, and their effect turned out to be very small. This led Bigi et al. to conclude that values $B_{SL} < 12.5\%$ cannot be accommodated by theory\(^{166}\). Later, Bagan et al. have completed the calculation of the $O(\alpha_s)$ corrections including the effects of the charm-quark mass, finding that they lower the value of B_{SL} significantly\(^{167}\). Their original analysis has recently been corrected in an erratum. Here we shall present the results of an independent numerical analysis using the same theoretical input\(^{168}\). The semileptonic branching ratio and n_c depend on the quark-mass ratio m_c/m_b and on the ratio μ/m_b, where μ is the scale used to renormalize the coupling constant $\alpha_s(\mu)$ and the Wilson coefficients appearing in the non-leptonic decay rate. The freedom in choosing the scale μ reflects our ignorance of higher-order corrections, which are neglected when the perturbative expansion is truncated at order α_s. We allow the pole masses of the heavy quarks to vary in the range $m_b = (4.8 \pm 0.2)$ GeV and $m_b - m_c = (3.39 \pm 0.06)$ GeV, corresponding to $0.25 < m_c/m_b < 0.33$. The value of the difference $(m_b - m_c)$ is in accordance with (44). Non-perturbative effects appearing at order $1/m_b^2$ in the heavy-quark expansion are described by the
single parameter λ_2 in (37); the dependence on the parameter λ_1 is the same for all inclusive decay rates and cancels out in the predictions for B_{SL} and n_c. For the two choices $\mu = m_b$ and $\mu = m_b/2$, we obtain

$$B_{SL} = \begin{cases} 12.0 \pm 1.0\%; & \mu = m_b, \\ 10.9 \pm 1.0\%; & \mu = m_b/2, \end{cases}$$

$$n_c = \begin{cases} 1.20 \pm 0.06; & \mu = m_b, \\ 1.21 \pm 0.06; & \mu = m_b/2. \end{cases}$$

(103)

The uncertainties in the two quantities, which result from the variation of m_c/m_b in the range given above, are anticorrelated. Notice that the semileptonic branching ratio has a stronger scale dependence than n_c. By choosing a low renormalization scale, values $B_{SL} < 12.5\%$ can easily be accommodated. This is indeed not unnatural. Using the BLM scale-setting method89, it has been estimated that $\mu \sim 0.32m_b$ is an appropriate scale to use in this case153.

![Figure 11: Theoretical prediction for the semileptonic branching ratio and charm counting as a function of the quark-mass ratio m_c/m_b and the renormalization scale μ. The data points show the average experimental values obtained in low-energy (LE) and high-energy (HE) measurements, as discussed in the text.](image_url)

The combined theoretical predictions for the semileptonic branching ratio and charm counting are shown in Fig. 11. They are compared with the experimental results obtained from low- and high-energy measurements. It has been argued that the combination of a low semileptonic branching ratio
and a low value of \(n_c \) would constitute a potential problem for the Standard Model\(^{164}\). However, with the new experimental and theoretical numbers, only for the low-energy measurements a discrepancy remains between theory and experiment. Note that, with \((101)\), our results for \(n_c \) can be used to calculate the branching ratio \(B(\bar{B} \rightarrow X_c\bar{c}^s) \), which is accessible to a direct experimental determination. Our prediction of \((22 \pm 6)\%\) for this branching ratio agrees well with the preliminary result reported by the CLEO Collaboration, which is\(^{169}\) \(B(\bar{B} \rightarrow X_c\bar{c}^s) = (23.9 \pm 3.8)\% \).

Previous attempts to resolve the “problem of the semileptonic branching ratio” have focused on four possibilities:

- It has been argued that the experimental value of \(n_c \) may depend on model assumptions about the production of charm hadrons, which are sometimes questionable\(^ {164,170}\).

- It has been pointed out that the assumption of local quark-hadron duality could fail in non-leptonic \(B \) decays\(^ {146,171−174}\). If so, this will most likely happen in the channel \(b \rightarrow c\bar{c}s \), where the energy release, \(E = m_B - m_{X(c\bar{c}s)} \), is less than about 1.5 GeV. However, if one assumes that sizeable duality violations occur only in this channel, it is impossible to improve the agreement between theory and experiment\(^ {155}\).

- Another possibility is that higher-order corrections in the \(1/m_b \) expansion, which were previously thought to be negligible, give a sizeable contribution. It has been argued that they could lower the semileptonic branching ratio by up to \(1\% \), depending on the size of some hadronic matrix elements\(^ {168}\).

- Finally, there is also the possibility to invoke New Physics\(^ {175−178}\). One may, for instance, consider extensions of the Standard Model with enhanced flavour-changing neutral currents, such as \(b \rightarrow s g \). The effect of such a contribution would be that both \(B_{\text{SL}} \) and \(n_c \) are reduced by a factor \((1 + \eta B_{\text{SL}}^{\text{SM}})^{-1}\), where \(\eta = (\Gamma_{\text{rare}} - \Gamma_{\text{rare}}^{\text{SM}})/\Gamma_{\text{SL}} \). To obtain a sizeable decrease requires values \(\eta \gtrsim 0.5 \), which are large (in the Standard Model, \(\Gamma_{\text{rare}}^{\text{SM}}/\Gamma_{\text{SL}} \approx 0.2 \)), but not excluded by current experiments.

4.4 Lifetime Ratios of \(b \) Hadrons

The heavy-quark expansion shows that the lifetimes of all hadrons containing a \(b \) quark agree up to non-perturbative corrections suppressed by at least two
powers of $1/m_b$. In particular, it predicts that

$$\frac{\tau(B^-)}{\tau(B^0)} = 1 + O(1/m_b^3),$$

$$\frac{\tau(B_s)}{\tau(B_d)} = (1.00 \pm 0.01) + O(1/m_b^3),$$

$$\frac{\tau(\Lambda_b)}{\tau(B^0)} = 1 + \frac{\mu^2(\Lambda_b) - \mu^2(B)}{2m_b^2} - c_G \frac{\mu^2_G(B)}{m_b^2} + O(1/m_b^3) \approx 0.98 + O(1/m_b^3),$$

(104)

where $c_G \approx 1.1$, and we have used (90) and (93). The uncertainty in the value of the ratio $\tau(B_s)/\tau(B_d)$ arises from unknown SU(3)-violating effects in the matrix elements of B_s mesons. The above theoretical predictions may be compared with the average experimental values for the lifetime ratios, which are:

$$\frac{\tau(B^-)}{\tau(B^0)} = 1.06 \pm 0.04,$$

$$\frac{\tau(B_s)}{\tau(B_d)} = 0.98 \pm 0.07,$$

$$\frac{\tau(\Lambda_b)}{\tau(B^0)} = 0.78 \pm 0.04.$$

(105)

Whereas the lifetime ratios of the different B mesons are in good agreement with the theoretical prediction, the low value of the lifetime of the Λ_b baryon is surprising.

To understand the structure of lifetime differences requires to go further in the $1/m_b$ expansion. Although at first sight it appears that higher-order corrections could be safely neglected given the smallness of the $1/m_b^2$ corrections, this impression is erroneous for two reasons: first, at order $1/m_b^3$ in the heavy-quark expansion for non-leptonic decay rates there appear four-quark operators, whose matrix elements explicitly depend on the flavour of the spectator quark(s) in the hadron H_b, and hence are responsible for lifetime differences between hadrons with different light constituents; secondly, these spectator effects receive a phase-space enhancement factor of $O(16\pi^2)$ with respect to the leading terms in the OPE. This can be seen from Fig. 12, which shows that the corresponding contributions to the transition operator \mathbf{T} arise from one-loop rather than two-loop diagrams. The presence of this
phase-space enhancement factor leads to a peculiar structure of the heavy-quark expansion for non-leptonic rates, which may be displayed as follows:

\[
\Gamma = \Gamma_0 \left\{ 1 + x_2 \left(\frac{\Lambda_{\text{QCD}}}{m_b} \right)^2 + x_3 \left(\frac{\Lambda_{\text{QCD}}}{m_b} \right)^3 + \ldots \right. \\
+ 16\pi^2 \left[y_3 \left(\frac{\Lambda_{\text{QCD}}}{m_b} \right)^3 + y_4 \left(\frac{\Lambda_{\text{QCD}}}{m_b} \right)^4 + \ldots \right] \right\}.
\] (106)

Here \(\Gamma_0 \) is the free quark decay rate, and \(x_n \) and \(y_n \) are coefficients of order unity. Since it is conceivable that the terms of order \(16\pi^2 (\Lambda_{\text{QCD}}/m_b)^3 \) could be larger than the ones of order \((\Lambda_{\text{QCD}}/m_b)^2 \), it is important to include them in the predictions for non-leptonic decay rates. Moreover, there is a challenge to calculate the hadronic matrix elements of the corresponding four-quark operators with high accuracy.

In total, a set of four four-quark operators is induced by spectator effects. They are

\[
O^q_{V-A} = \bar{b} \gamma_\mu (1 - \gamma_5) q \, \bar{q} \gamma^\mu (1 - \gamma_5) b,
\]
\[
O^q_{S-P} = \bar{b} (1 - \gamma_5) q \, \bar{q} (1 + \gamma_5) b,
\]
\[
T^q_{V-A} = \bar{b} \gamma_\mu (1 - \gamma_5) t_a q \, \bar{q} \gamma^\mu (1 - \gamma_5) t_a b,
\]
\[
T^q_{S-P} = \bar{b} (1 - \gamma_5) t_a q \, \bar{q} (1 + \gamma_5) t_a b,
\] (107)

where \(q \) is a light quark, and \(t_a \) are the generators of colour SU(3). In most previous analyses of spectator effects the hadronic matrix elements of these op-
Operators have been estimated making simplifying assumptions179–182. For the matrix elements between B-meson states the vacuum saturation approximation44 has been assumed, i.e. the matrix elements of the four-quark operators have been evaluated by inserting the vacuum inside the current products. This leads to

\begin{align*}
\langle \bar{B}_q | O_{\text{VA}}^q | \bar{B}_q \rangle &= \langle \bar{B}_q | O_{\text{SP}}^q | \bar{B}_q \rangle = f_{B_q}^2 m_{B_q}^2, \\
\langle \bar{B}_q | T_{\text{VA}}^q | \bar{B}_q \rangle &= \langle \bar{B}_q | T_{\text{SP}}^q | \bar{B}_q \rangle = 0,
\end{align*}

(108)

where f_{B_q} is the decay constant of the B_q meson, defined as

\begin{equation}
\langle 0 | \bar{q} \gamma^\mu \gamma_5 b | \bar{B}_q(v) \rangle = i f_{B_q} m_{B_q} v^\mu.
\end{equation}

The vacuum saturation approximation has been criticized by Chernyak183, who estimates that the corrections to it can be as large as 50%.

A model-independent analysis of spectator effects, which avoids assumptions about hadronic matrix elements, can be performed if instead of (108) one defines168

\begin{align*}
\langle \bar{B}_q | O_{\text{VA}}^q | \bar{B}_q \rangle &= B_1 f_{B_q}^2 m_{B_q}^2, \\
\langle \bar{B}_q | O_{\text{SP}}^q | \bar{B}_q \rangle &= B_2 f_{B_q}^2 m_{B_q}^2, \\
\langle \bar{B}_q | T_{\text{VA}}^q | \bar{B}_q \rangle &= \varepsilon_1 f_{B_q}^2 m_{B_q}^2, \\
\langle \bar{B}_q | T_{\text{SP}}^q | \bar{B}_q \rangle &= \varepsilon_2 f_{B_q}^2 m_{B_q}^2.
\end{align*}

(110)

The values of the dimensionless hadronic parameters B_i and ε_i are currently not known; ultimately, they may be calculated using some field-theoretic approach such as lattice gauge theory or QCD sum rules. The vacuum saturation approximation corresponds to setting $B_i = 1$ and $\varepsilon_i = 0$ (at some scale μ, where the approximation is believed to be valid). For real QCD, it is known that

\begin{align*}
B_i &= O(1), \\
\varepsilon_i &= O(1/N_c),
\end{align*}

(111)

where N_c is the number of colours. Below, we shall treat B_i and ε_i (renormalized at the scale m_b) as unknown parameters. Similarly, the relevant hadronic matrix elements of the four-quark operators between Λ_b-baryon states can be parametrized by two parameters, \tilde{B} and r, where $\tilde{B} = 1$ in the valence-quark approximation, in which the colour of the quark fields in the operators is identified with the colour of the quarks inside the baryon.
Lifetime ratio for B^- and B^0

The lifetimes of the charged and neutral B mesons differ because of two types of spectator effects illustrated in Fig. 13. They are referred to as Pauli interference and W exchange\[^{180-182}\]. In the operator language, these effects are represented by the hadronic matrix elements of the local four-quark operators given in (110). In fact, the diagrams in Fig. 13 can be obtained from those in Fig. 12 by cutting the internal lines, which corresponds to taking the imaginary part in (82).

![Diagram of Pauli interference and W exchange contributions to the lifetimes of the B^- and the \bar{B}^0 mesons. The spectator effect in the first diagram arises from the interference due to the presence of two identical \bar{u} quarks in the final state.](image)

Figure 13: Pauli interference and W exchange contributions to the lifetimes of the B^- and the \bar{B}^0 mesons. The spectator effect in the first diagram arises from the interference due to the presence of two identical \bar{u} quarks in the final state.

The explicit calculation of these spectator effects leads to\[^{168}\]

$$\Delta \Gamma_{\text{spec}}(B_q) = \frac{G_F^2 m_b^7}{192 \pi^3} |V_{cb}|^2 16 \pi^2 f_B^2 m_B m_{B_q} \zeta_{B_q},$$

(112)

where

$$\zeta_{B^-} \approx -0.4 B_1 + 6.6 \varepsilon_1, \quad \zeta_{B^0} \approx -2.2 \varepsilon_1 + 2.4 \varepsilon_2.$$

(113)

Note the factor of $16 \pi^2$ in (112), which arises from the phase-space enhancement of spectator effects. Given that the parton-model result for the total decay width is

$$\Gamma_{\text{tot}}(B) \approx 3.7 \times \frac{G_F^2 m_b^7}{192 \pi^3} |V_{cb}|^2,$$

(114)

we see that the characteristic scale of the spectator contributions is

$$4 \pi^2 f_B^2 m_B \approx \left(\frac{2 \pi f_B}{m_b} \right)^2 \approx 5\%.$$

(115)

The precise value of the lifetime ratio depends crucially on the size of the hadronic matrix elements. Taking $f_B = 200$ MeV for the decay constant of the B meson (see Ref. 24 and references therein), i.e. absorbing the uncertainty in

45
this parameter into the definition of \(B_i \) and \(\varepsilon_i \), we find\(^\text{168}\)

\[
\frac{\tau(B^-)}{\tau(B^0)} \approx 1 + 0.03B_1 - 0.70\varepsilon_1 + 0.20\varepsilon_2
\]

\[
\approx 1 + 0.05\hat{B}_1 - 0.75\hat{\varepsilon}_1 + 0.20\hat{\varepsilon}_2 .
\]

(116)

Here \(B_i \) and \(\varepsilon_i \) refer to a renormalization scale \(\mu = m_b \), whereas \(\hat{B}_i \) and \(\hat{\varepsilon}_i \) refer to a low renormalization point \(\mu = \mu_{\text{had}} \) chosen such that \(\alpha_s(\mu_{\text{had}}) = 0.5 \).

The most striking feature of this result is that the coefficients of the colour-octet operators \(T_{V-A} \) and \(T_{S-P} \) are an order of magnitude larger than those of the colour-singlet operator \(O_{V-A} \). As a consequence, the vacuum insertion approximation, which was adopted in Ref. 179 to predict that \(\tau(B^-)/\tau(B^0) \) is larger than unity by an amount of order 5\%, should not be trusted (not even at a low renormalization point such as \(\mu_{\text{had}} \)). With \(\varepsilon_i \) of order \(1/N_c \), it is conceivable that the non-factorizable contributions dominate the result. Thus, without a detailed calculation of the parameters \(\varepsilon_i \) no reliable prediction can be obtained. Given our present ignorance about the true values of the hadronic matrix elements, we must conclude that even the sign of the sum of the spectator contributions cannot be predicted. A lifetime ratio in the range \(0.8 < \tau(B^-)/\tau(B^0) < 1.2 \) could be easily accommodated by theory.

In view of these considerations, the experimental fact that the lifetime ratio turns out to be close to unity is somewhat of a surprise. It implies a constraint on a certain combination of the colour-octet matrix elements, which reads \(\varepsilon_1 - 0.3\varepsilon_2 = \text{few\%} \).

Lifetime ratio for \(B_s \) and \(B_d \)

The lifetimes of the two neutral mesons \(B_s \) and \(B_d \) differ because spectator effects depend on the flavour of the light quark, and moreover because the hadronic matrix elements in the two cases differ by SU(3) symmetry-breaking corrections. It is difficult to predict the sign of the net effect, but the magnitude cannot be larger than one or two per cent\(^\text{168,179}\). Hence

\[
\frac{\tau(B_s)}{\tau(B_d)} = 1 \pm O(1\%) ,
\]

(117)

which is consistent with the experimental value in (105). Note that \(\tau(B_s) \) denotes the average lifetime of the two \(B_s \) states, whose individual lifetimes are expected to differ by a sizeable amount\(^\text{179,184}\).
Lifetime ratio for Λ_b and B^0

Although, as shown in (104), the lifetime differences between heavy mesons and baryons start at order $1/m_b^2$ in the heavy-quark expansion, the main effects are expected to appear at order $1/m_b^3$. Therefore, for an estimate of the ratio $\tau(\Lambda_b)/\tau(B^0)$ one needs the matrix elements of four-quark operators between baryon states. Very little is known about such matrix elements. Bigi et al. have adopted a simple non-relativistic quark model to conclude that

$$\frac{\tau(\Lambda_b)}{\tau(B^0)} = 0.90 - 0.95. \quad (118)$$

An even smaller lifetime difference has been obtained by Rosner. A model-independent analysis gives

$$\frac{\tau(\Lambda_b)}{\tau(B^0)} \approx 0.98 - 0.17\varepsilon_1 + 0.20\varepsilon_2 - (0.012 + 0.021\tilde{B})r, \quad (119)$$

where \tilde{B} and r are expected to be positive and of order unity. Given the structure of this result, it seems difficult to explain the experimental value $\tau(\Lambda_b)/\tau(B^0) = 0.78 \pm 0.04$ without violating the constraint $\varepsilon_1 \approx 0.3\varepsilon_2$ mentioned above. Essentially the only possibility is to have r of order 2–4 or so, as there are good theoretical arguments why \tilde{B} cannot be much larger than unity. On the other hand, in a constituent quark picture, r is the ratio of the wave functions determining the probability to find a light quark at the location of the b quark inside the Λ_b baryon and the B meson, i.e.,

$$r = \frac{|\psi_{\Lambda_b}^{bq}(0)|^2}{|\psi_{B}^{bq}(0)|^2}, \quad (120)$$

and it is hard to see how this ratio could be much different from unity.

In view of the above discussion, the observation of the short Λ_b lifetime remains a puzzle, whose explanation may lie beyond the heavy-quark expansion. If the current experimental value persists, one may have to question the validity of local quark-hadron duality, which is assumed in the theoretical calculation of lifetimes and non-leptonic inclusive decay rates.

5 Concluding Remarks

We have presented a review of the theory and phenomenology of heavy-quark symmetry and its applications to the spectroscopy, weak decays and lifetimes.
of hadrons containing a heavy quark. The theoretical tools that allow us to perform quantitative calculations are the heavy-quark effective theory and the $1/m_Q$ expansion. Our hope is to have convinced the reader that heavy-flavour physics is a rich and diverse area of research, which is at present characterized by a fruitful interplay between theory and experiments. This has led to many significant discoveries and developments. Heavy-quark physics has the potential to determine many important parameters of the electroweak theory and to test the Standard Model at low energies. At the same time, it provides an ideal laboratory to study the nature of non-perturbative phenomena in QCD.

The prospects for further significant developments in the field of heavy-flavour physics look rather promising. With the approval of the first asymmetric B factories at SLAC and KEK, with ongoing B-physics programs at the existing facilities at Cornell, Fermilab and CERN, and with plans for future B physics at HERA-B and the LHC-B, there are Beautiful times ahead of us!

References

89. S.J. Brodsky, G.P. Lepage, and P.B. Mackenzie, Phys. Rev. D 28, 228 (1983);

125. M. Wirbel, B. Stech, and M. Bauer, Z. Phys. C 29, 637 (1985);
127. D. Scora and N. Isgur, Phys. Rev. D 52, 2783 (1995);
I.I. Bigi, M.A. Shifman, N.G. Uraltsev, and A.I. Vainshtein, Phys. Rev. Lett. 71, 496 (1993);
141. I.I. Bigi, M.A. Shifman, N.G. Uraltsev, and A.I. Vainshtein, Int. J. Mod.
160. ALEPH Collaboration, Paper PA10-019, contributed to the International Conference on High Energy Physics, Warsaw, Poland, July 1996.
161. OPAL Collaboration, Paper PA05-038, contributed to the International Conference on High Energy Physics, Warsaw, Poland, July 1996.