On Hamiltonian structure of the spin Ruijsenaars-Schneider model

G.E.Arutyunov *
and
S.A.Frolov †

Abstract

The Hamiltonian structure of spin generalization of the rational Ruijsenaars-Schneider model is found by using the Hamiltonian reduction technique. It is shown that the model possesses the current algebra symmetry. The possibility of generalizing the found Poisson structure to the trigonometric case is discussed and degeneration to the Euler-Calogero-Moser system is examined.

1 Introduction

Recently a spin generalization of the elliptic Ruijsenaars-Schneider model (spin RS model) was introduced as a dynamical system describing the pole evolution of the elliptic solutions of the non-abelian 2D Toda chain [1]. Equations of motion proposed for the model generalize the ones for the Euler-Calogero-Moser system (ECM) [2]-[6], which is an integrable system of N particles with internal degrees of freedom interacting by a special pairwise potential.

An important tool for dealing with classical integrable systems and especially for quantizing them is the Hamiltonian formalism. Although equations of motion defining the spin RS model can be integrated in terms of Riemann theta-functions, the question about their Hamiltonian form remains open. The aim of the present paper is to give a partial answer to this question, which lies in constructing the explicit Hamiltonian formulation for the rational spin RS model.

Our construction is based on the Hamiltonian reduction procedure acknowledged as the unifying approach to dynamical systems of Calogero or Ruijsenaars type [7]-[16]. In this approach one starts with a large initial phase space and a simple Hamiltonian possessing a symmetry group. Then factorizing the corresponding motion by this symmetry one is left with a nontrivial dynamical system defined on a reduced phase space. In particular, the rational RS model and the trigonometric Calogero-Moser system appear in this way if one uses the cotangent bundle T^*G over a Lie group G as the initial phase space [9].

A natural generalization of this approach allowing us to include spin variables consists in replacing T^*G by a more general phase space P that we choose to be $T^*G \times J^*$, where J^*

*Steklov Mathematical Institute, Gubkina 8, GSP-1, 117966, Moscow, Russia; arut@genesis.mi.ras.ru
†Steklov Mathematical Institute, Gubkina 8, GSP-1, 117966, Moscow, Russia; frolov@genesis.mi.ras.ru
is a dual space to the Lie algebra J of G. Considering on \mathcal{P} a special Hamiltonian H_R and performing the Hamiltonian reduction by G-action, we obtain the Poisson structure of the rational spin RS model.

Let us briefly describe the content of the paper and the results obtained. For simplicity, we restrict ourselves to the case of $G = GL(N, \mathbb{C})$. In Section 2 we define on \mathcal{P} two dynamical systems governed by Hamiltonians H_C and H_R and show that the corresponding integrals of motion combine into generators of the Yangian and the current algebra respectively. Since all these integrals are gauge-invariant, the corresponding symmetries will survive after the reduction.

As is known [11] the dynamical system on the reduced phase space corresponding to H_C is the trigonometric ECM model. This immediately reproduces the result found in [4, 5] that the model possesses the Yangian symmetry.

Section 3 is devoted to the rational spin RS model. First we introduce G-invariant spin variables that after solving the moment map equation can be identified with coordinates on the reduced phase space \mathcal{P}_r. Equations of motion for dynamical variables of \mathcal{P}_r produced by H_R coincide with the ones introduced in [1] for the rational case. That is the way we obtain an explicit Hamiltonian formulation of the spin RS model. The Poisson structure of the model is found to be rather nontrivial and admits at least two equivalent descriptions in terms of different phase variables. Moreover, it depends on a parameter γ being a coupling constant of the model.

It turns out that the spin RS model admits such (spectral-independent) L-operator (Lax matrix) that satisfies the same L-operator algebra as for the corresponding spinless model. We also show that the Hamiltonian reduction provides an alternative way of solving equations of motion without using spectral curves.

Finally, we present an explicit expression for generators of the current algebra via phase variables of the spin RS model and define the gauge-invariant momentum variables.

In Section 4 degeneration of the rational spin RS model to the ECM system is examined. An interesting feature we come here is the appearance of spin variables obeying the defining relations of the Frobenius Lie algebra. We observe that the general elliptic ECM system can be also formulated in terms of Frobenius spin variables.

2 Current and Yangian symmetries

In this section we construct representations of the Yangian and current algebras related to the cotangent bundle T^*G over the matrix group $G = GL(N, \mathbb{C})$ and describe their connection to the ECM and the spin RS models respectively.

Consider the following manifold $\mathcal{P} = T^*G \times \mathcal{G}^*$, where \mathcal{G}^* is a dual space to the Lie algebra $\mathcal{G} = \text{Mat}(N, \mathbb{C})$ of G. We parametrize an element from \mathcal{G}^* by a matrix $S \in \mathcal{G}$ due to the isomorphism $\mathcal{G}^* \approx \mathcal{G}$. The space T^*G is naturally isomorphic to $\mathcal{G}^* \times \mathcal{G}$ and we parametrize it by pairs (A, g), where $A \in \mathcal{G}$ and $g \in \mathcal{G}$. The algebra of regular functions on \mathcal{P} is supplied with a Poisson structure, which can be written in terms of variables (A, g, S) as follows

\[
\{A_1, A_2\} = \frac{1}{2} [C, A_1 - A_2] \quad (2.1)
\]

\[
\{A_1, g_2\} = g_2 C, \quad \{g_1, g_2\} = 0, \quad (2.2)
\]
Here we use the standard tensor notation and \(C = \sum_{i,j} E_{ij} \otimes E_{ji} \) is the permutation operator.

The Poisson structure is invariant under the following action of the group \(G \):

\[
A \rightarrow hAh^{-1}, \quad g \rightarrow hgh^{-1}, \quad S \rightarrow hSh^{-1}.
\] (2.5)

We refer to (2.5) as to gauge transformations. The moment map of this action is of the form

\[
\mu = gAg^{-1} - A + S.
\] (2.6)

The simplest gauge-invariant Hamiltonians are \(H_C = \text{tr} A^2 \) and \(H_R = \text{tr} g \).

The Poisson bracket of the variables \(S_{ij} \) can be realized by using \(2N \ l \)-dimensional vectors \(a_i, b_i \) which form \(lN \)-pairs of canonically conjugated variables:

\[
\{a_\alpha^i, b_\beta^j\} = -\delta_{ij}\delta^{\alpha\beta},
\]

where \(i, j = 1, \cdots, N \) and \(\alpha, \beta = 1, \cdots, l \). Supposing the matrix elements of \(S \) to be

\[
S_{ij} = \sum_\alpha a_\alpha^i b_\beta^j
\] (2.7)

one recovers the Poisson bracket (2.4). Obviously, under gauge transformations the variables \(a \) and \(b \) transform in the following way

\[
a_\alpha \rightarrow ha_\alpha, \quad b_\alpha \rightarrow b_\alpha h^{-1},
\]

where we regard \(a_\alpha \) as a column and \(b^\alpha \) as a row.

The variables \(a \) and \(b \) allow one to construct a lot of gauge-invariants Poisson commuting with \(H_C \) or with \(H_R \).

First we consider a family of integrals of motion for \(H_C \): \(I_n^{\alpha\beta} = \text{tr} A^n S^{\alpha\beta} \), where for any \(\alpha \) and \(\beta \) the matrix \(S^{\alpha\beta} \) has the entries \(S^{\alpha\beta}_{ij} = a_\alpha^i b_\beta^j \). In fact, the integrals \(I_n \) form a representation of the classical Yangian. To see this, one can introduce the following generating function \(T^{\alpha\beta}(z) \) of \(I_n \):

\[
T^{\alpha\beta}(z) = \delta^{\alpha\beta} + \text{tr} \frac{1}{z - A} S^{\alpha\beta}.
\]

By using the Poisson bracket for the variables \(S^{\alpha\beta} \):

\[
\{S_1^{\alpha\beta}, S_2^{\mu\nu}\} = C_{12}(\delta^{\beta\mu} S_2^{\alpha\nu} - \delta^{\alpha\nu} S_2^{\beta\mu})
\]

and performing simple calculations, one obtains the Yangian algebra

\[
\{T_1(z), T_2(w)\} = [r(z - w), T_1(z)T_2(w)].
\] (2.8)

Here we regard \(T(z) \) as an \(l \times l \)-matrix with entries \(T^{\alpha\beta}(z) \), and \(r(z - w) \) is a rational solution of the classical Yang-Baxter equation:

\[
r(z - w) = \frac{K}{z - w},
\]
where K is the permutation operator acting in $C^l \otimes C^l$.

A well-known property of the Yangian is the existence of the involutive subalgebra generated by $I_k(z) = \text{tr} T(z)^k$.

For the Hamiltonian H_R one can choose the following family of integrals of motion $J_{n}^{\alpha\beta} = \text{tr} g^a S^{\alpha\beta}$. Introducing the formal generating function $J(z)$:

$$J^{\alpha\beta}(z) = \sum_{n=-\infty}^{\infty} J_{n}^{\alpha\beta} z^{-n-1},$$

one can easily show that $J(z)$ satisfies the current algebra relations:

$$\{J_1(z), J_2(w)\} = [K, J_2(w)]\delta\left(\frac{z}{w}\right), \quad (2.9)$$

where $\delta\left(\frac{z}{w}\right) = \frac{1}{z} \sum_{n=-\infty}^{\infty} (\frac{z}{w})^n$ is the formal δ-function.

It is obvious that $\text{tr} J(z)^n$ are central elements of the current algebra. In addition, the current algebra admits an involutive family of integrals of motion polynomial in g and S. It is constructed as $J^+(z) = \text{tr} J^+(z)^n$, where $J^+(z) = \sum_{n=0}^{\infty} J_n z^{-n-1}$. The involutivity is a consequence of the algebra satisfied by $J^+(z)$:

$$\{J_1^+(z), J_2^+(w)\} = [r(z - w), J_1^+(z) + J_2^+(w)]. \quad (2.10)$$

It is well known that the Yangian (2.8) is a deformation of (2.10).

The dynamical systems governed by the Hamiltonians H_C and H_R are trivial. However, factorizing the initial phase space P by the action of a symmetry group, one gets nontrivial systems defined on the reduced phase space P_r. In particular, to get the ECM and the spin RS models one should fix the moment map as $gA g^{-1} - A + S = \gamma I$, \quad (2.11)

where γ is a complex number being identified with a coupling constant. Then solving this equation modulo the action of the gauge group G (G coincides with the isotropy group of (2.11), i.e. (2.11) is a set of first-class constraints), one obtains the reduced phase space. The dynamical systems on P_r corresponding to the Hamiltonians H_C and H_R are identified with the ECM and the spin RS models respectively.

Since the generators of the Yangian and current algebras are gauge-invariant, we conclude that the ECM model possesses the Yangian symmetry whereas the spin RS model has the current symmetry. As was mentioned in the Introduction this result for the ECM model was obtained in [4, 5] by exploiting an explicit L-operator describing the model.

3 Rational spin RS model

In this section we present the Hamiltonian formulation of the spin RS model by considering the reduction of the phase space P by the action of G. Given the moment map, the space of functions on the reduced phase space P_r can be identified with the space $\text{Fun}^G P$ of G-invariant functions on P restricted to the surface (2.11) of the constant moment level. A choice
of an appropriate basis in Fun$^G\mathcal{P}$ and calculation of the induced Poisson structure make the description of \mathcal{P}, explicit.

To construct a basis in Fun$^G\mathcal{P}$ we first note that any semisimple element of \mathcal{G} can be diagonalized by a gauge transformation:

$$A = TQT^{-1}, \quad (3.12)$$

where Q is a diagonal matrix with gauge-invariant entries $q_i \neq q_j$. By using the action of the Weyl group we fix the order of q_i. For given A, the matrix T in (3.12) is uniquely defined by requiring to be an element of the Frobenius group, i.e. it satisfies the condition

$$Te = e, \quad (3.13)$$

where e is an N-dimensional column with all $e_i = 1$. Such a choice for T is known [13] to be relevant for the description of the RS model.

Given A and g, we can diagonalize a matrix $A' = gAg^{-1} = UQU^{-1}$ with the help of an element U such that $UE = e$. This introduces a useful parametrization for g: $g = UPT^{-1}$, where P is some diagonal matrix.

Under gauge transformation (2.5) matrices T and U transform as follows $T \rightarrow hTh[T]$, $U \rightarrow hUh[U]$ where $h[T], h[U]$ are diagonal matrices $h[T]_i = (T^{-1}h^{-1}e)_i$, $h[U]_i = (U^{-1}h^{-1}e)_i$.

Introduce diagonal matrices $t_{ij} = t_i\delta_{ij}$ and $u_{ij} = u_i\delta_{ij}$ with entries

$$t_i = \sum_\alpha (T^{-1}a^\alpha)_i, \quad u_i = \sum_\alpha (U^{-1}a^\alpha)_i \quad (3.14)$$

which transform under gauge transformation (2.5) in the following way

$$t_i \rightarrow h[T]^{-1}_it_i, \quad u_i \rightarrow h[U]^{-1}_iu_i.$$

We use t to define G-invariant spin variables

$$a^\alpha_i = t_i^{-1}(T^{-1}a^\alpha)_i, \quad c^\alpha_i = t_i(b^\alpha U P)_i.$$

Note that a^α_i are not arbitrary but satisfy constraints $\sum_\alpha a^\alpha_i = 1$ for any i. The relevance of this definition will be clarified later.

To calculate the Poisson algebra of a and c one needs to use the one for (T, U, P, Q)-variables. In [13] it was proved that the standard Poisson structure (2.1,2.2) on T^*G rewritten in terms of (T, U, P, Q)-variables has the form

$$\{T_1, T_2\} = T_1T_2r_{12}, \quad \{U_1, U_2\} = -U_1U_2r_{12}, \quad (3.15)$$

$$\{T_1, P_2\} = T_1P_2\tilde{r}_{12}, \quad \{U_1, P_2\} = U_1P_2\tilde{r}_{12}, \quad (3.16)$$

$$\{T_1, Q_2\} = \{U_1, Q_2\} = \{P_1, P_2\} = \{T_1, U_2\} = 0, \quad (3.17)$$

$$\{Q_1, Q_2\} = 0, \quad \{Q_1, P_2\} = P_2 \sum_i E_{ii} \otimes E_{ii}. \quad (3.18)$$

Here r_{12} is an N-parametric solution of the classical Yang-Baxter equation:

$$r_{12} = \sum_{i \neq j} \frac{1}{q_{ij}} F_{ij} \otimes F_{ji}, \quad (3.19)$$
where $F_{ij} = E_{ii} - E_{ij}$ is a basis of the Frobenius Lie algebra and the matrix \tilde{r}_{12} is given by

$$\tilde{r}_{12} = \sum_{i \neq j} \frac{1}{q_{ij}} F_{ij} \otimes E_{jj}. \quad (3.20)$$

Note that (3.18) implies that q_i and $p_i = \log P_i$ are canonically conjugated variables.

With formulae (3.15)-(3.18) at hand we first calculate

$$\{t_i, t_j\} = -\frac{1}{q_{ij}} (t_i - t_j)^2, \quad \{u_i, u_j\} = \frac{1}{q_{ij}} (u_i - u_j)^2, \quad \{t_i, u_j\} = 0$$

and then the Poisson brackets of the invariant spins:

$$\{a^\alpha_i, a^\beta_j\} = \frac{1}{q_{ij}} (a^\alpha_i a^\beta_j + a^\beta_j a^\alpha_i - a^\alpha_i a^\beta_j - a^\beta_j a^\alpha_i), \quad (3.21)$$

$$\{c^\alpha_i, c^\beta_j\} = \frac{1}{q_{ij}} (c^\alpha_i c^\beta_j + c^\beta_j c^\alpha_i) + c^\beta_j L_{ji} - L_{ij} c^\alpha_i, \quad (3.22)$$

$$\{c^\alpha_i, a^\beta_j\} = \delta^{\alpha\beta} L_{ji} - a^\beta_j L_{ji} + \frac{1}{q_{ij}} c^\alpha_i (a^\beta_j - a^\beta_j), \quad (3.23)$$

$$\{a^\alpha_i, c^\beta_j\} = -\delta^{\alpha\beta} L_{ij} + a^\alpha_i L_{ij} + \frac{1}{q_{ij}} c^\beta_j (a^\alpha_i - a^\alpha_i). \quad (3.24)$$

The Poisson structure of invariant spins is not closed since it involves another gauge invariant object L: $L_{ij} = t_i^{-1} L_{ij} t_j$, where $L = T^{-1} gT$. In [13] L was identified with the L-operator of the rational RS model. Analogously, L will be called the L-operator of the spin RS model. The relevance of this definition will be justified later. Note that in eqs.(3.21)-(3.24) and in formulas below it is assumed that if some denominator becomes zero, the corresponding fraction is omitted.

Calculating the Poisson algebra for L with the help of eqs.(3.15)-(3.18), we obtain that it coincides with the one for L, namely

$$\{L_1, L_2\} = r_{12} L_1 L_2 + L_1 L_2 \tilde{r}_{12} + L_1 \tilde{r}_{21} L_2 - L_2 \tilde{r}_{12} L_1, \quad (3.25)$$

where $\tilde{r}_{12} = \tilde{r}_{12} - \tilde{r}_{21} - r_{12}$ is a constant solution of the Gervais-Neveu-Felder equation [17, 18]. Therefore, the L-operator algebra for the spin RS model and the one for the RS model without spins are the same.

To complete the description of the Poisson algebra of invariant spins we find the Poisson brackets of L with a and c:

$$\{a^\alpha_i, L_{kl}\} = \frac{1}{q_{ik}} (a^\alpha_i - a^\alpha_i) L_{kl} - \frac{1}{q_{ik}} (a^\alpha_i - a^\alpha_i) L_{il} - \frac{1}{q_{il}} (a^\alpha_i - a^\alpha_i) L_{kl}, \quad (3.26)$$

$$\{c^\alpha_i, L_{kl}\} = \frac{1}{q_{ik}} c^\alpha_i L_{kl} + \frac{1}{q_{il}} c^\alpha_i L_{ki} - \frac{1}{q_{ik}} c^\alpha_i L_{kl} + \frac{1}{q_{ik}} c^\alpha_i L_{kl} + L_{il} L_{kl} - L_{ki} L_{kl}. \quad (3.27)$$

Thus, the Poisson algebra of gauge-invariant variables a, c and L is closed.

Remark that the choice of gauge-invariant spins and the L-operator is not unique. In particular, one could use $\omega_i = \sum_\alpha (b^\alpha T)_i$ to define other gauge-invariant spins $\hat{a}_i^\alpha = \omega_i (T^{-1} a^\alpha)_i$,

6
\(\hat{c}_i^\alpha = \omega_i^{-1}(b^aUP)_i \) and the \(L \)-operator: \(\hat{L}_{ij} = \omega_i \omega_j^{-1} \). One can verify that this set of gauge-invariant variables satisfies a different algebra.

The next step consists in restricting the Poisson algebra (3.21)-(3.27) to the surface (2.11) of the constant moment level. Diagonalizing the variable \(A \), we find that eq.(2.11) is equivalent to

\[
LQ - QL - \gamma L = -T^{-1}STL.
\]

(3.28)

Multiplying (3.28) by the diagonal matrix \(t \) from the right and by \(t^{-1} \) from the left, and taking into account that \(L = T^{-1} g T = T^{-1} U P \), we rewrite (3.28) in terms of gauge-invariant variables

\[
LQ - QL - \gamma L = -t^{-1} T^{-1} S U P t,
\]

(3.29)

since \((t^{-1} T^{-1} S U P t)_{ij} = \sum_\alpha a_\alpha^i c_\alpha^j \). Thus, we can solve eq.(3.29) with respect to \(L \). The solution is given by

\[
L = \sum_{ij} f_{ij} q_{ij} + \gamma E_{ij},
\]

(3.30)

where we introduced \(f_{ij} = \sum_\alpha a_\alpha^i c_\alpha^j \). Now the reduction of the Poisson structure (3.21)-(3.27) on the surface (3.28) amounts to the substitution in the r.h.s. of (3.21)-(3.27) the entries of \(L \)-operator (3.30). The consistency of the reduced Poisson structure can be also checked by direct calculations. To this end one first find the Poisson algebra of \(f_{ij} \)-variables:

\[
\{ f_{ij}, f_{kl} \} = (\frac{1}{q_{ik}} + \frac{1}{q_{ij}} + \frac{1}{q_{ji}} + \frac{1}{q_{il}}) f_{ij} f_{kl} + (\frac{1}{q_{ki}} + \frac{1}{q_{il}} + \frac{1}{q_{ji}} - \frac{1}{q_{il} + \gamma}) f_{ij} f_{ik} f_{ki} + (\frac{1}{q_{jl}} - \frac{1}{q_{ji} + \gamma}) f_{ij} f_{kl} f_{il}
\]

(3.31)

and \(\{ f_{ij}, q_{kl} \} = -f_{ij} \delta_{kj} \). Then using the representation (3.30) for \(L \) one does recover the \(L \)-operator algebra (3.25).

Now we proceed with describing dynamics on \(P_r \). The invariant Hamiltonian \(H_R \) acquires on \(P_r \) a form \(H_R = \text{tr}L = \frac{1}{\gamma} \sum_i f_{ii} \). This Hamiltonian and the Poisson structure on \(P_r \) produce the following equations of motion

\[
\dot{q}_i = L_{ii} = \frac{1}{\gamma} f_{ii},
\]

(3.32)

\[
\dot{a}_\alpha = -\sum_{j \neq i} \frac{1}{q_{ij}} (a_\alpha^i - a_\alpha^j) L_{ij} = -\frac{1}{\gamma} \sum_{j \neq i} (a_\alpha^i - a_\alpha^j) f_{ij} V(q_{ij}),
\]

(3.33)

\[
\dot{c}_\alpha^i = \sum_{j \neq i} \frac{1}{q_{ij}} (c_\alpha^i L_{ij} + c_\alpha^j L_{ji}) = \frac{1}{\gamma} \sum_{j \neq i} (c_\alpha^i f_{ij} V(q_{ij}) - c_\alpha^j f_{ji} V(q_{ji})),
\]

(3.34)

where we introduced the potential \(V(q_{ij}) = \frac{1}{q_{ij}} - \frac{1}{q_{ij} + \gamma} \). Differentiating \(\dot{q}_i \) and taking into account eqs.(3.33),(3.34), one gets

\[
\dot{q}_i = 2 \sum_{j \neq i} \frac{1}{q_{ij}} L_{ij} L_{ji} = 2 \sum_{j \neq i} \frac{1}{q_{ij}} L_{ij} L_{ji} = \frac{1}{\gamma^2} \sum_{j \neq i} f_{ij} f_{ji} (V(q_{ij}) - V(q_{ji})),
\]

(3.35)
and equations of motion for \(f_{ij} \):

\[
\dot{f}_{ij} = \frac{1}{\gamma} \sum_{k \neq i,j} V(q_{kj}) f_{ik} f_{kj} - V(q_{ik}) f_{ik} f_{kj} + V(q_{jk}) f_{ik} f_{ij} - V(q_{jk}) f_{ij} f_{ij}. \tag{3.36}
\]

It follows from eqs. (3.32) and (3.36) that the equation of motion for \(L \) can be written in the Lax form \(\dot{\mathbf{L}} = [\mathbf{L}, \mathbf{M}] \) with \(\mathbf{M} = \sum_{i \neq j} \frac{1}{q_{ij}} L_{ji} F_{ij} \). However, this equation is not equivalent to eqs. (3.32) and (3.36).

In the paper [1] the spin generalization of the elliptic RS model was introduced. The generalized model is a system of \(N \) particles with coordinates \(q_i \), each particle has internal degrees of freedom described by \(l \)-dimensional vector \(a_i^\alpha \) and \(l \)-dimensional vector \(c_i^\alpha \). The equations of motion generalize the ones for the ECM system:

\[
\begin{align*}
\ddot{q}_i &= \sum_{j \neq i} f_{ij} f_{ji} (V(q_{ij}) - V(q_{ji})), \tag{3.37} \\
\dot{a}_i &= \sum_{j \neq i} a_j f_{ij} V(q_{ji}) - \lambda_i a_i, \tag{3.38} \\
\dot{c}_i &= -\sum_{j \neq i} c_j f_{ji} V(q_{ji}) + \lambda_i c_i, \tag{3.39}
\end{align*}
\]

where \(V(q) = \zeta(q) - \zeta(q + \gamma) \), \(\lambda_i(t) \) are arbitrary functions of \(t \) and \(\zeta(q) \) denotes the Weierstrass zeta-function. Equations of motion (3.37-3.39) are invariant under rescaling:

\[
a_i \rightarrow k_i a_i, \quad c_i \rightarrow \frac{1}{k_i} c_i.
\]

Introducing the invariant variables \(\hat{a}_i^\alpha = (\sum_{\alpha} a_i^\alpha)^{-1} a_i^\alpha \) and \(\hat{c}_i^\alpha = (\sum_{\alpha} a_i^\alpha) c_i^\alpha \), and calculating from (3.38) and (3.39) equations of motion for \(\hat{a}_i^\alpha \) and \(\hat{c}_i^\alpha \), one discovers that all \(\lambda_i \) drop out and equations of motion coincide with (3.33) and (3.34) with the change \(\hat{a}_i^\alpha \rightarrow a_i^\alpha \), \(\hat{c}_i^\alpha \rightarrow \frac{1}{\gamma} c_i^\alpha \) and with the substitution \(V(q) \) for its rational analog \(\frac{1}{q} - \frac{1}{q + \gamma} \). To present eqs. (3.37) in the Lax form, in the paper [1] a spectral-dependent \(L \)-operator \(L(z) \) was suggested. One can see that in the rational case \(L(z) \) coincides with \(L \) in the limit \(z \rightarrow \infty \). Thus, we obtain the Hamiltonian formulation of the spin generalization of the rational RS model.

Now we show how equations of motion (3.35)-(3.34) can be solved in terms of the factorization problem. The Hamiltonian \(H_R \) induces on \(\mathcal{P} \) equations of motion:

\[
\dot{g} = 0, \quad \dot{A} = g, \quad \dot{S} = 0
\]

that can be easily integrated: \(A(t) = gt + A_0, \, g(t) = \text{const}, \, S(t) = \text{const} \). We suppose that the positions of particles at \(t = 0 \) are given by \(q_i \) lying on \(\mathcal{P}_r \). It means that \(A(t) = gt + Q \). Since for any \(t \) the point \((A(t), g(t), S(t))\) satisfies the constraint (2.11) one gets that \(g \) should be identified with the \(L \)-operator \(L_0 \) at \(t = 0 \).

Let us show that the solution of (3.35) is given by the diagonal factor \(Q(t) \) in the decomposition of \(A(t) \):

\[
A(t) = L_0 t + Q = T(t) Q(t) T^{-1}(t), \quad T(t) e = e. \tag{3.40}
\]
In [13] it was proved that

\[
\frac{\delta T_{ij}}{\delta A_{mn}} = \sum_{a\neq j} \frac{1}{q_{ja}} (T_{ia} T_{nj} T_{am}^{-1} + T_{ij} T_{na} T_{jm}^{-1}), \tag{3.41}
\]

\[
\frac{\delta q_i}{\delta A_{mn}} = T_{ni} T_{im}^{-1}. \tag{3.42}
\]

Using these formulae, we find

\[
\dot{q}_i = \sum_{mn} \frac{\delta q_i}{\delta A_{mn}} \frac{dA_{mn}}{dt} = (T^{-1} g T)_{ii}(t) = L_{ii}(t).
\]

Differentiating \(\dot{q}_i\) once again, one gets

\[
\ddot{q}_i = L_{ii} = [T^{-1} g T, T^{-1} \dot{T}]_{ii}, \tag{3.43}
\]

where

\[
(T^{-1} \dot{T})_{ij} = -\frac{1}{q_{ij}} L_{ij} + \delta_{ij} \sum_{a\neq j} \frac{1}{q_{ja}} L_{ja}.
\]

Substituting eq.(3.44) in eq.(3.43), we obtain eq.(3.35).

As to the spin variables their equations of motion are automatically solved if one knows the factor \(T(t)\) in the decomposition (3.40). Indeed, if we define \(\tilde{a}_i^\alpha = (T^{-1}(t)a^\alpha)_i\) then

\[
\dot{\tilde{a}}_i^\alpha = -\sum_{j \neq i} \frac{1}{q_{ij}} (\tilde{a}_i^\alpha - \tilde{a}_j^\alpha) L_{ij}
\]

and for the invariant spin \(a_i^\alpha = \frac{1}{l} \tilde{a}_i^\alpha\) we get eq.(3.33). Solution of the equation of motion for \(c_i^\alpha\) is given by \(c_i^\alpha(t) = t_i(t)(b^\alpha L_0 T(t))_i\).

The integrals of motion \(J_{n}^{\alpha\beta} = \text{tr}(g^n S^{\alpha\beta})\) introduced in Section 2 take on \(P_r\) the following form

\[
J_{n}^{\alpha\beta} = \sum_{ij} (L^{n-1})_{ij} a_j^\alpha c_i^\beta.
\]

Substituting here the explicit form (3.30) of the \(L\)-operator, one can recast \(J_{n}^{\alpha\beta}\) for \(n \geq 1\) in the form

\[
J_{1}^{\alpha\beta} = \sum_{i} S_{i}^{\beta\alpha},
\]

\[
J_{n}^{\alpha\beta} = \sum_{i_1, \ldots, i_n} \frac{(S_{i_1} S_{i_2} \ldots S_{i_n})^{\beta\alpha}}{(q_{i_1 i_2} + \gamma)(q_{i_2 i_3} + \gamma) \ldots (q_{i_{n-1} i_n} + \gamma)}, \tag{3.45}
\]

where we use \(l \times l\)-matrices \(S_{i}^{\alpha\beta} = c_i^\alpha a_i^\beta\) \((i = 1, \ldots N)\).

An important property of \(S_{i}\)-variables is that they form a set of gauge-invariant variables equivalent to \((a, c)\). In fact, one can see that

\[
c_i^\alpha = \sum_{\beta} S_{i}^{\alpha\beta}, \quad a_i^\alpha = \frac{S_{i}^{\beta\alpha}}{\sum_{\gamma} S_{i}^{\beta\gamma}}.
\]
The Poisson structure of the model can be conveniently rewritten in terms of $S_i^{\alpha\beta}$:

$$\{S_i^{\alpha\beta}, S_j^{\mu\nu}\} = \frac{1}{q_{ij}} (S_i^{\mu\beta} S_j^{\alpha\nu} + S_i^{\alpha\nu} S_j^{\mu\beta}) - \delta_{\beta\mu} q_{ij} + \gamma (S_i S_j)^{\alpha\nu} + \delta_{\alpha\nu} (S_j S_i)^{\mu\beta},$$

$$\{q_i, S_j^{\alpha\beta}\} = S_j^{\alpha\beta} \delta_{ij}. \tag{3.46}$$

Since the Hamiltonian H_R can be expressed as $H_R = \sum_i \text{Tr} S_i$, eq.(3.35) acquires the form

$$\ddot{q}_i = \frac{1}{\gamma^2} \sum_{j \neq i} \text{Tr}(S_i S_j) (V(q_{ij}) - V(q_{ji})), \tag{3.47}$$

where Tr is used to denote the trace of an $l \times l$-matrix. Analogously, eqs.(3.33) and (3.34) produce the equations of motion for S_i:

$$\dot{S}_i = \frac{1}{\gamma} \sum_{j \neq i} (S_i S_j V(q_{ij}) - S_j S_i V(q_{ji})). \tag{3.48}$$

Observe that the Poisson structure (3.46) and the Hamiltonian H_R are invariant under the transformations $S_i \rightarrow \Omega^{-1} S_i \Omega$, where $\Omega \in GL(l, C)$. These transformations are generated by $J_0^{\alpha\beta}$.

Thus, we see that the Hamiltonian formalism of the rational spin RS model can be equivalently presented in terms of either (a, c)- or S_i-variables.

The definition of $c_i^\alpha = t_i (b^\alpha U P)$, implies that they contain the variables conjugated to q_i. However, we cannot identify them with P_i since the latter are not gauge-invariant. The gauge-invariant momentum P_i can be defined as $P_i = u_i^{-1} P_t t_i$. Computing the Poisson brackets of P_i, one gets that $\{P_i, P_j\} = 0$ and $\{q_i, P_j\} = \delta_{ij} P_j$.

Recall that the invariant L-operator has the form $L = t^{-1} T^{-1} U P t$. Thus, it can be written as $L = WP$, where W is a gauge-invariant variable:

$$W = t^{-1} T^{-1} U u. \tag{3.49}$$

Then it is easy to see that W belongs to the Frobenius group, i.e. it obeys the condition $W e = e$:

$$(We)_i = \sum_{k, m} (t^{-1} T^{-1})_{ik} U_{km} (U^{-1} a^\alpha)_m = \frac{1}{t_i} (T^{-1} a^\alpha)_i = 1. \tag{3.50}$$

Just as it was for the spinless RS model, the Poisson bracket for W coincides with the Sklyanin bracket:

$$\{W_1, W_2\} = [r_{12}, W_1 W_2]. \tag{3.51}$$

On P_r the variable W acquires the form

$$W_{ij} = \sum_{\alpha} a^\alpha_i b^\alpha_j, \tag{3.52}$$

where $b^\alpha_i = c_i^\alpha P_t^{-1}$.

Remind that the variables a^α_i obey the constraints $\sum_{\alpha} a^\alpha_i = 1$ for any i. The condition (3.49) implies that b^α_i are also not arbitrary but subject to the constraints:

$$\sum_{\alpha} a^\alpha_i \sum_j \frac{b^\alpha_j}{q_{ij} + \gamma} = 1. \tag{3.53}$$
case the corresponding variables the Poisson structure of \(P_r \) looks as follows:

\[
\{ q_i, P_j \} = \delta_{ij} P_j, \quad \{ q_i, a_j^\alpha \} = 0 = \{ q_i, b_j^\alpha \},
\]

\[
\{ P_i, a_j^\alpha \} = \frac{1}{q_{ij}} (a_i^\alpha - a_j^\alpha) P_i,
\]

\[
\{ P_i, b_j^\alpha \} = (\delta_{ij} - W_{ij} + \frac{1}{q_{ij}} b_j^\alpha + \delta_{ij} \sum_{n \neq i} \frac{1}{nq_{nj}}) P_i,
\]

\[
\{ a_i^\alpha, a_j^\beta \} = \frac{1}{q_{ij}} (a_i^\alpha a_j^\beta + a_j^\beta a_i^\alpha - a_i^\alpha a_j^\alpha - a_j^\alpha a_i^\beta),
\]

\[
\{ b_i^\alpha, b_j^\beta \} = \delta_{ij} (b_i^\beta - b_j^\alpha) + \frac{1}{q_{ij}} (b_i^\alpha b_j^\beta - b_j^\beta b_i^\alpha) + \delta_{ij} \sum_{n \neq i} \frac{1}{q_{in}} (b_n^\beta b_i^\alpha - b_i^\alpha b_n^\beta),
\]

\[
\{ a_i^\alpha, b_j^\beta \} = -\delta^{\alpha\beta} W_{ij} + a_i^\alpha W_{ij},
\]

where \(W \) is given by (3.51). One should point out that the structure (3.53) is Poisson only due to the constraints imposed on the spin variables. Therefore, the rational spin RS model provides a new realization of the Poisson relations (3.50) as well as the \(L \)-operator algebra (3.25).

Now we discuss the problem of generalizing the found Poisson structure for the spin rational RS model to the trigonometric case.

Relaying on the fact that both in the spin and spinless cases the \(L \)-operator algebras may be the same, one can easily derive the trigonometric analog of the Poisson bracket (3.31) for the variables \(f_{ij} \). It follows from the results of [14] that the trigonometric RS model can be described by the \(L \)-operator algebra (3.25), where this time the \(r \)-matrices \(r, \hat{r} \) and \(\hat{\hat{r}} \) are given by

\[
r = \sum_{ij} E_{ij} \otimes E_{ji} + \sum_{i \neq j} \coth (q_{ij}) E_{ii} \otimes E_{jj} + \sum_{i \neq j} \coth (q_{ij}) E_{ij} \otimes E_{ji}
\]

\[
- \sum_{i \neq j} \frac{e^{q_{ij}}}{\sinh (q_{ij})} E_{ij} \otimes E_{jj} + \sum_{i \neq j} \frac{e^{q_{ij}}}{\sinh (q_{ij})} E_{jj} \otimes E_{ij},
\]

\[
\hat{r} = - \sum_{i} E_{ii} \otimes E_{ii} + \sum_{i \neq j} \coth (q_{ij}) E_{ii} \otimes E_{jj} - \sum_{i \neq j} \frac{e^{q_{ij}}}{\sinh (q_{ij})} E_{ij} \otimes E_{jj},
\]

\[
\hat{\hat{r}} = - \sum_{ij} E_{ij} \otimes E_{ji} + \sum_{i \neq j} \coth (q_{ij}) (E_{ii} \otimes E_{jj} - E_{ij} \otimes E_{ji}).
\]

For the spinless trigonometric RS model the \(L \)-operator satisfying (3.25) is of the form

\[
L = \sum_{ij} \frac{e^{q_{ij} + \gamma}}{\sinh (q_{ij} + \gamma)} c_j E_{ij},
\]

where \(c_j \) are some functions of dynamical variables. It is natural to assume that in the spin case the corresponding \(L \)-operator has the form

\[
L = \sum_{ij} \frac{e^{q_{ij} + \gamma}}{\sinh (q_{ij} + \gamma)} f_{ij} E_{ij}.
\]
Then the Poisson relations for f_{ij} follow immediately from the L-operator algebra (3.25):

$$
\{f_{ij}, f_{kl}\} = (\coth (q_{ik}) + \coth (q_{jl}) + \coth (q_{jk}) + \coth (q_{li})) f_{ij} f_{kl} \\
+ (\coth (q_{ik}) + \coth (q_{jl}) + \coth (q_{jk} + \gamma)) f_{ij} f_{kj} \\
+ (\coth (q_{ki}) + \coth (q_{il} + \gamma)) f_{ij} f_{il} + (\coth (q_{jk} + \gamma)) f_{ij} f_{jl} \\
+ (\coth (q_{ki}) - \coth (q_{jk} + \gamma)) f_{ki} f_{kl} + (\coth (q_{il} + \gamma)) f_{ij} f_{kl}
$$

(3.57)

and they look like a trigonometric generalization of (3.31).

Now one can easily verify that equations of motion for f_{ij} are given by (3.36) with the potential $V(q) = \coth(q) - \coth(q + \gamma)$ and with the change of the overall factor $\frac{1}{\gamma}$ by $\frac{e^{\gamma}}{\sinh(\gamma)}$.

On the other hand, these equations follow from eqs.(3.38) and (3.39). The problem of describing the Poisson structure of the trigonometric spin RS model would be completely solved if one finds such Poisson brackets for variables a_i and c_i that induce the ones (3.57) for f_{ij}. The straightforward generalization of eqs.(3.21-3.24) to the case at hand by replacing $\frac{1}{q_{ij}}$ by $\coth(q_{ij})$ is failed. At the moment we can not offer a solution of the problem.

4 Euler-Calogero-Moser model

We start this section with discussing the degeneration of the spin RS system to the rational ECM model. For this purpose we rescale $\log p_i = p_i \rightarrow \epsilon p_i$ and $q_i \rightarrow \frac{1}{\epsilon} q_i$, and consider the limit $\epsilon \rightarrow 0$. The constraint (3.49) implies that in this limit

$$
\sum_{\alpha} a_i^\alpha b_i^\alpha = S_{ii} - \gamma
$$

(4.58)

and W_{ij} has the following expansion

$$
W_{ij} = \delta_{ij} + \epsilon(1 - \delta_{ij}) \frac{S_{ij}}{q_{ij}} - \epsilon \delta_{ij} \frac{S_{ik}}{q_{ik}} + o(\epsilon),
$$

where $S_{ij} = \sum_{\alpha} a_i^\alpha b_j^\alpha$. The corresponding expansion of the L-operator produces in the first order in ϵ the L-operator \mathcal{L} of the rational ECM model:

$$
\mathcal{L}_{ij} = \delta_{ij} \left(p_i - \sum_{k \neq i} \frac{S_{ik}}{q_{ik}} \right) + (1 - \delta_{ij}) \frac{S_{ij}}{q_{ij}}.
$$

(4.59)

In the limit $\epsilon \rightarrow 0$ the Poisson structure (3.53) reduces to

$$
\{q_i, p_j\} = \delta_{ij}, \quad \{q_i, a_j^\alpha\} = 0 = \{q_i, b_j^\alpha\},
$$

$$
\{p_i, a_j^\alpha\} = \frac{1}{q_{ij}} (a_i^\alpha - a_j^\alpha),
$$

$$
\{p_i, b_j^\alpha\} = \delta_{ij} \left(\sum_{k \neq i} \frac{S_{ik}}{q_{ik}} - (1 - \delta_{ij}) \frac{S_{ij}}{q_{ij}} \right) + \frac{1}{q_{ij}} b_j^\alpha + \delta_{ij} \frac{1}{q_{nj}} b_n^\alpha,
$$

$$
\{a_i^\alpha, a_j^\beta\} = 0,
$$

$$
\{b_i^\alpha, b_j^\beta\} = \delta_{ij} (b_i^\beta - b_j^\alpha),
$$

$$
\{a_i^\alpha, b_j^\beta\} = -\delta^{\alpha\beta} \delta_{ij} + a_i^\alpha \delta_{ij},
$$

(4.60)
Introducing new momenta

\[p_i = p_i - \sum_{k \neq i} \frac{S_{ik}}{q_{ik}}, \]

one can check that they have vanishing Poisson brackets with \(a_i^\alpha \) and \(b_j^\beta \). The \(L \)-operator \(\mathcal{L} \) turns into the standard one used in description of the ECM system [2]-[5]:

\[\mathcal{L}_{ij} = \delta_{ij} p_i + (1 - \delta_{ij}) \frac{S_{ij}}{q_{ij}}. \]

(4.61)

To make a contact with the usual description of the ECM system we introduce \(lN \) pairs of canonical variables: \(\{ a_i^\alpha, b_j^\beta \} = -\delta_{ij} \delta^{\alpha\beta} \). Then the invariant variables \(a_i^\alpha \) and \(b_j^\beta \) with the Poisson algebra (4.60) can be realized as

\[a_i^\alpha = \frac{a_i^\alpha}{\sum_{\beta} a_i^\beta}, \quad b_i^\alpha = b_i^\alpha \sum_{\beta} a_i^\beta. \]

It is interesting to note that the Poisson algebra of the variables \(S_{ij} \) coincides with the defining relations of the Frobenius Lie algebra:

\[\{ S_{ij}, S_{kl} \} = \delta_{il} (S_{ij} - S_{kj}) + \delta_{jl} (S_{kj} - S_{ij}) + \delta_{jk} (S_{il} - S_{kl}). \]

(4.62)

These relations are compatible with the constraint \(S_{ii} = \gamma \).

The appearance of the Frobenius spin variables in the rational ECM model is not accidental. In fact, the same phenomenon takes place for the general elliptic ECM model. To elucidate this fact we recall that the elliptic ECM system is described by the Hamiltonian

\[H = \frac{1}{2} \sum_i p_i^2 - \frac{1}{2} \sum_{i \neq j} S_{ij} S_{ji} V(q_{ij}), \]

where \(V(q_{ij}) = \mathcal{P}(x) \) is the Weierstrass \(\mathcal{P} \)-function and \(S_{ij} \) are the spin variables defined by (2.7) and having the Poisson bracket:

\[\{ S_{ij}, S_{kl} \} = \delta_{jk} S_{il} - \delta_{il} S_{kj}. \]

The model is described by the \(L \)-operator [5]

\[L = \sum_i (p_i + \zeta(z) S_{ii}) E_{ii} + \sum_{i \neq j} \Phi(z, q_{ij}) S_{ij} E_{ij}, \]

where \(\Phi(z, q) = \sigma(z + q) / \sigma(z) \sigma(q) \). This \(L \)-operator satisfies the Poisson algebra

\[\{ L_1(z), L_2(w) \} = [r_{12}(z, w), L_1(z)] - [r_{21}(w, z), L_2(w)] + \sum_{i \neq j} \frac{\partial}{\partial q_{ij}} \Phi(z - w, q_{ij}) (S_{ii} - S_{jj}) E_{ij} \otimes E_{ji}, \]

(4.63)

with the dynamical \(r \)-matrix

\[r_{12}(z, w) = \zeta(z - w) \sum_i E_{ii} \otimes E_{ii} + \sum_{i \neq j} \Phi(z - w, q_{ij}) E_{ij} \otimes E_{ji}. \]

(4.64)

Due to the last term in (4.63) the model is not integrable. However, the Hamiltonian is invariant under the symmetry \(a_i \to k_i a_i, \quad b_i \to \frac{1}{k_i} b_i \) generated by \(S_{ii} \). The integrability is obtained on the
reduced space $S_{ii} = \text{const}$. As in the case of the RS system, to perform the reduction we define the gauge-invariant L-operator $L = tLt^{-1}$ with $t_{ij} = \delta_{ij} \sum_{\alpha} a_i^{\alpha}$ or explicitly

$$L = \sum_i (p_i + \zeta(z))E_{ii} + \sum_{i \neq j} \Phi(z, q_{ij})S_{ij}E_{ij},$$

(4.65)

where the gauge-invariant spin variables appeared

$$S_{ij} = S_{ij} \sum_{\alpha} a_i^{\alpha} \sum_{\alpha} a_j^{\alpha}.$$

Computing the Poisson bracket of S_{ij}, we obtain that it precisely coincides with (4.62).

Now it is easy to establish that the Poisson algebra of the L-operator (4.65) has the form

$$\{L_1(z), L_2(w)\} = [r_{12}(z, w), L_1(z)] - [r_{21}(w, z), L_2(w)],$$

where a matrix r literally coincides with the r-matrix of the elliptic Calogero-Moser model [19, 20]:

$$r_{12}(z, w) = (\zeta(z - w) + \zeta(w)) \sum_i E_{ii} \otimes E_{ii} + \sum_{i \neq j} \Phi(z - w, q_{ij})E_{ij} \otimes E_{ji} + \sum_{i \neq j} \Phi(w, q_{ij})E_{jj} \otimes E_{ij}.$$

Thus, the ECM model corresponds to a representation of the L-operator algebra of the Calogero-Moser model that depends not only on q_i and p_i but also on the additional spin variables S_{ij} with the bracket (4.62). As to the spectral-dependent L-operator of the spin RS model, it does not satisfy the L-operator algebra found for the spinless case [21, 22]. This algebra is quadratic what fixes the form of the corresponding L-operator almost uniquely.

5 Conclusion

In this paper we presented a detailed description of the Poisson structure for the rational spin RS model by using the Hamiltonian reduction technique. The results obtained can not be extended to the trigonometric spin RS model in a straightforward manner. It was shown in [9] that the trigonometric RS model can be obtained by means of the Poisson reduction technique applied to the Heisenberg double D associated to $G = \text{GL}(N, \mathbb{C})$. Therefore, one may hope to describe the Poisson structure of the trigonometric spin RS model in the same fashion starting from the phase space $D \times G^*$, where G^* is a Poisson-Lie group dual to G.

As is known [2] the rational ECM model possesses the current algebra symmetry and, as we have established, the same symmetry occurs in the rational spin RS model. On the other hand, the trigonometric ECM model has the Yangian symmetry. Thus, for the trigonometric spin RS model it is natural to expect the appearance of the Yangian symmetry.

The elliptic case is much more involved since at the moment a reduction procedure leading to the elliptic spin RS model remains to be unknown.

Another interesting open problem is to quantize the spin RS models. In the rational case one could use the quantum Hamiltonian reduction procedure developed in [13].

ACKNOWLEDGMENT The authors are grateful to A. Zabrodin for valuable discussions. This work is supported in part by the RFBI grants N96-01-00608, N96-01-00551 and by the ISF grant a96-1516.
References

[22] Yu.B.Suris, Elliptic Ruijsenaars-Schneider and Calogero-Moser hierarchies are governed by the same r-matrix, solv-int/9603011.