We consider preheating in the theory $\frac{1}{4}\lambda \phi^4 + \frac{1}{2}g^2\phi^2\chi^2$, where the classical oscillating inflaton field $\phi(t)$ decays into χ-particles and ϕ-particles. The parametric resonance which leads to particle production in this conformally invariant theory is described by the Lame equation. It significantly differs from the resonance in the theory with a quadratic potential. The structure of the resonance depends in a rather nontrivial way on the parameter g^2/λ. We construct the stability/instability chart in this theory for arbitrary g^2/λ. We give simple analytic solutions describing the resonance in the limiting cases $g^2/\lambda \ll 1$ and $g^2/\lambda \gg 1$, and in the theory with $g^2 = 3\lambda$, and with $g^2 = \lambda$. From the point of view of parametric resonance for χ, the theories with $g^2 = 3\lambda$ and with $g^2 = \lambda$ have the same structure, respectively, as the theory $\frac{1}{4}2\lambda \phi^4$, and the theory $\frac{2}{3N}(\phi^2)^2$ of an N-component scalar field ϕ, in the limit $N \to \infty$. We show that in some of the conformally invariant theories such as the simplest model $\frac{1}{4}2\lambda \phi^4$, the resonance can be terminated by the backreaction of produced particles long before $\langle \chi^2 \rangle$ or $\langle \phi^2 \rangle$ become of the order ϕ^2. We analyze the changes in the theory of reheating in this model which appear if the inflaton field has a small mass.

I. INTRODUCTION

The theory of reheating of the universe is one of the most important and least developed parts of inflationary cosmology. Recently it was found that in many realistic versions of chaotic inflation reheating begins with a stage of parametric resonance [1]. At this stage the energy is rapidly transferred from the inflaton field to other scalar and vector fields interacting with it. This process occurs far away from thermal equilibrium, and therefore we call it preheating. The theory of preheating is rather complicated. In [1] we gave only a brief summary of its basic features. A detailed investigation of preheating in the simplest chaotic inflation model describing a massive inflaton field ϕ interacting with a massless scalar field χ was contained in our recent paper [2]. It was found, in particular, that the resonance in such theories can be efficient only if it is extremely broad. In such a situation preheating in an expanding universe looks like a stochastic process.

In this paper we will concentrate on the theory of preheating in a class of conformally invariant theories such as $\frac{1}{4}2\phi^4 + \frac{1}{2}2\phi^2\chi^2$. Different aspects of preheating in such theories have been studied in Refs. [1,3–10]. A specific feature of these models is that by a conformal transformation one can reduce the investigation of preheating in these theories in an expanding universe to a much simpler theory of preheating in Minkowski space-time [1]. As a result, the parametric resonance does not exhibit the stochasticity found in [2]. However, stochastic resonance may appear again at the late stages of preheating if the fields ϕ and χ have bare masses which break conformal invariance.

We will investigate preheating in the theories of the type of $\frac{1}{4}\phi^4 + \frac{2}{3}2\phi^2\chi^2$ for various relations between the coupling constants g^2 and λ. During this investigation (see specifically Sec. V and XIII), we will discuss how the results of the previous papers on this subject are related to the picture which emerges from the current study. We will show that the development of the resonance in the various conformally invariant theories can be very different, depending on the particular values of parameters and the structure of the theory. For example, the model $\frac{1}{4}\phi^4 + \frac{2}{3}2\phi^2\chi^2$ with $g^2 = \lambda$ or $g^2 = 3\lambda$ has only one instability band, but the structure of the bands and the characteristic exponents μ_k are completely different. It is enough to change the ratio g^2/λ only slightly, and the number of the instability bands immediately becomes infinitely large. For this reason, it is dangerous to extrapolate the results obtained for a theory with one choice of parameters to a theory with another choice of parameters. As we will see, not only is the structure of...
the resonances different in different models, but the self-
consistent dynamical evolution with an account taken of
the backreaction of produced particles can also be qual-
titatively different.

The main purpose of the present paper is to study the
structure of the parametric resonance in the conformally
invariant theories. These theories may describe many
bosons fields χ interacting with the inflaton field ϕ with
different coupling constants:

$$\mathcal{L} = -\frac{M_p^2}{16\pi} R + \frac{1}{2} g^2 \phi \xi^2 - \frac{\lambda}{4} \phi^4 + \frac{1}{2} \sum_m \chi_m, \chi^m \phi^2 - \frac{1}{2} g_m^2 \phi^2 \chi_m^2 - \frac{1}{2} \xi_m R \chi_m^2, \quad (1)$$

Here χ_m stands for the m-th scalar field interacting
with the inflaton field with the coupling constant g_m, and
interacting with curvature R with the coupling constant
ξ_m. The equation for fluctuations in this general model
(18) unifies the equations for fluctuations in the conformal
models mentioned before including $\delta \phi$ fluctuations.

Strictly speaking, this model is conformally invariant
only for a specific choice of the parameters ξ_m: $\xi_m = \frac{1}{\lambda}$. Nevertheless, in this paper we will consider the simplest
models with $\xi_m = 0$. As we will see shortly, this dif-
fERENCE IS NOT GOING TO BE VERY IMPORTANT BECAUSE THE AVERAGE VALUE OF R VANISHES WHEN $\phi \ll M_p$.

We will see that for the conformally invariant theories
the only parameter actually responsible for the struc-
ture of the resonance for the field χ_m is the ratio $\frac{g_m^2}{\lambda}$. Furthermore, we will find that the strength of the reso-
nance and the number and widths of the instability bands
for the field χ_m in the theory (1) depends on $\frac{g_m^2}{\lambda}$ non-
monotonically. To get a general picture, we will construct the stability/instability chart for the equation for fluc-
tuations on the two dimensional plane $(k^2, \frac{q^2}{\lambda})$, see Fig. 3. The stability/instability chart gives us insight into the structure of the resonances in the conformally invariant
theories. From this it will immediately be clear which of the fields χ_n of (1) will be most amplified during preheat-
ing. The stability/instability chart unifies our knowledge
of the resonance for the various conformal models thus
far considered in the literature.

Note that the class of theories we are going to in-
vestigate include in particular the theory $\frac{1}{2}(\sum_{i=1}^{N} \phi_i^2)^2$ of
an N-component scalar field ϕ_i. This theory has $O(N)$ symme-
try. One can identify the inflaton field ϕ in this
theory with the field ϕ_1. Then the quantum fluctua-
tions of this field, just like the quantum fluctuations in
the theory of a one-component field $\frac{1}{2} \phi^2$, will have effective
mass squared $3\lambda \phi^2$, whereas the fluctuations of all
other fields will have effective mass squared $\lambda \phi^2$. There-
fore, the equation for the growth of the fluctuations of
the field $\phi = \phi_1$ (neglecting backreaction) will coincide with
the equation for the growth of fluctuations of the field χ
coupled to the field ϕ with the coupling constant
$g^2 = 3\lambda$. Meanwhile, the equation for the growth of the fluctuations of the fields $\phi_i, i \neq 1$, will coincide with
the equation for the growth of fluctuations of the field χ with
the coupling constant $g^2 = \lambda$. This regime is especially
important in the limit $N \to \infty$, where the main con-
tribution to particle production is given by the modes with
$i \neq 1$. Thus, the cases $g^2 = \lambda$ and $g^2 = 3\lambda$ are especially
interesting and deserve careful investigation.

This paper is organized as follows. In Sec. II we will
describe the evolution of the background inflaton field
$\phi(t)$ after inflation in the theory with the effective poten-
tial $V(\phi) = \frac{1}{4} \lambda \phi^4$. In Sec. II we will give its analytic
solution. Then, in Sec. III, we derive the equations for fluc-
tuations of the fields χ and ϕ in the conformally invari-
tant theory, and reduce these to equations in Minkowski
space-time. We show that these equations can ultimately
be reduced to a single Lame equation with just one pa-
rameter, $\frac{g^2}{\lambda}$. In Sec. IV we solve the resonance equations
numerically for an arbitrary $\frac{g^2}{\lambda}$ and arbitrary momentum,
k, of fluctuations. This allows us to produce the main re-
sult of our paper; we construct the stability/instability
chart for fluctuations in the conformally invariant the-
ories. In Sec. V we discuss the particular ranges and
values of the parameter $\frac{g^2}{\lambda}$ where the analytic methods
for the description of the resonance can be developed. In
Sec. VI - IX we perform an analytic investigation of the
resonance for some particular values of $\frac{g^2}{\lambda}$. For different
values of $\frac{g^2}{\lambda}$ different analytic approaches will be de-
veloped. We report a new method to treat the resonance
when $\frac{g^2}{\lambda} = \frac{n(n+1)}{2}$, where n is an integer. We show that the
solutions for $\frac{g^2}{\lambda} = \frac{n(n+1)}{2}$ can be found in closed, ana-
lytic form. This is done explicitly for the most interesting
cases, $n = 1$ and $n = 3$ (i.e. for $g^2 = \lambda$ and $g^2 = 3\lambda$), in
Sec. VI, VII, and the Appendix. We also consider the
two opposite limits $\frac{g^2}{\lambda} \ll 1$ and $\frac{g^2}{\lambda} \gg 1$ in Sec. VIII
and IX respectively. Sec. X contains a discussion of the
self-consistent dynamics of the system including backre-
action of the created particles. In Sec. XI we describe
the restructuring of the resonance which occurs when the
backreaction is incorporated into the equations for fluc-
tuations. We show that this is the leading effect which
terminates the resonance in the theory $\frac{1}{2} \phi^4$. In Sec. XII
we discuss the modifications of the theory of preheating
which appear when the inflaton field ϕ is massive. This
allows us to unify the results obtained in this paper with
the results of our preceding investigation of preheating
in the theory of the massive inflaton field [2]. Finally, in
Sec. XIII, we give a summary of our results and discuss
their possible implications.

II. EVOLUTION OF THE INFLATON FIELD

We consider chaotic inflation with the potential
$V(\phi) = \frac{1}{4} \lambda \phi^4$. During inflation the leading contribution
to the energy-momentum tensor is given by the inflaton
scalar field ϕ. The evolution of the (flat) FRW universe is described by the Friedmann equation

$$H^2 = \frac{8\pi}{3M_p^2} \left(\frac{1}{2} \dot{\phi}^2 + \frac{\lambda \phi^4}{4} \right), \quad (2)$$

where $H = \dot{a}/a$. Let us note one more useful relationship between $H(t)$ and $\phi(t)$ which follows from the Einstein equations

$$\dot{H} = -\frac{4\pi \dot{\phi}^2}{M_p^2}. \quad (3)$$

The equation for the classical field $\phi(t)$ is

$$\ddot{\phi} + 3H \dot{\phi} + \lambda \phi^3 = 0. \quad (4)$$

For sufficiently large initial values of $\phi > M_p$, the friction term, $3H\dot{\phi}$, in (4) dominates over $\dot{\phi}$ and the potential term in (2) dominates over the kinetic term. This is the inflationary stage, where the universe expands quasiexponentially, $a(t) = a_0 \exp(\int dt H(t))$. With a decrease of the field ϕ below M_p, the “drag” term $3H \dot{\phi}$ gradually becomes less important and inflation terminates at $\phi \sim M_p/2$. After a short stage of fast rolling down, the inflaton field rapidly oscillates around the minimum of $V(\phi)$ with the initial amplitude $\Phi_0 \sim 0.1M_p$. Although this value is below the magnitude needed for inflation, it is still very large.

The character of the classical oscillations of the homogeneous scalar field depends on the shape of its potential $V(\phi)$. In Ref. [2] we considered the theory with the quadratic potential $V(\phi) = \frac{1}{2}m\phi^2$. In that theory the fluctuations are harmonic, $\phi(t) = \Phi(t) \sin mt$, with the amplitude decreasing like $\Phi(t) \approx \frac{M_p}{\sqrt{3\pi mt}} \propto a^{-3/2}$. The scale factor at the stage of oscillations is $a(t) \approx a_0 t^{2/3}$, and the energy density of the inflaton field decreases in the same way as the energy density of nonrelativistic matter $\propto a^{-3}$.

As one can see from Eq. (8), the equation of motion for the field φ in the time variable η does not look exactly as the equation for the theory $\frac{1}{4}\varphi^4$ in Minkowski space. In order to achieve it one would need to add the term $\frac{\dot{\phi}^2}{27} R$ to the Lagrangian. However, this subtlety is not very important. First of all, soon after the end of inflation one has $\frac{1}{4}\dot{\varphi}^4 \gg \frac{\dot{\phi}^2}{27} R$, and $\lambda \varphi^3 \gg \frac{\dot{\phi}^2}{27} \varphi$. Moreover, it is known that the energy-momentum tensor of the field ϕ in the theory $\frac{1}{4}\dot{\varphi}^4$, when averaged over several oscillations, is traceless ($p = \rho/3$) [11]. In this case one has $R = 0$, $a(\eta) \sim \eta$, and $a'' = 0$, so that the last term in Eq. (8) vanishes:

$$\varphi'' + \lambda \varphi^3 = 0. \quad (10)$$

The Friedmann equation (9) averaged over several oscillations of the field ϕ in the regime $\phi \ll M_p$ also takes a very simple form:

$$a'^2 = \frac{8\pi}{3M_p^2} \left(\frac{1}{2} \varphi'^2 + \frac{\lambda \varphi^4}{4} \right) \approx \frac{8\pi \rho}{3M_p^2}, \quad (11)$$

where we have introduced the conformal energy density, $\rho_\varphi = \frac{1}{2} \varphi'^2 + \frac{\lambda}{4} \varphi^4$.
It is convenient to express ρ_ϕ in terms of the amplitude $\tilde{\phi}$ of the oscillations of the field ϕ: $\rho_\phi = \frac{1}{a} \tilde{\phi}^4$. Equation (10) has an oscillatory solution with a constant amplitude and the conformal energy ρ_ϕ. Then from (11) we find

$$a(\eta) = \sqrt{\frac{2\pi \lambda}{3 M_p}} \tilde{\phi} \eta, \quad t = \sqrt{\frac{\pi}{6 M_p}} \eta^2.$$

(12)

As we expected, in this regime the last term $\frac{\pi M_p}{2} \tilde{\phi}^4$ in the equation (10) vanishes.

Eq. (10) can be reduced to the canonical equation for an elliptic function. Indeed, let us use a dimensionless period of the oscillations (in units of x)

$$f = \frac{\pi}{6 M_p} \eta^2.$$

(13)

Then we can rescale the function $\phi \equiv a \phi = \tilde{\phi} f(x)$. The function $f(x)$ has an amplitude equal to unity and obeys the canonical equation for the elliptic function. The integral of this equation, $f'^2 = \frac{1}{2}(1 - f^4)$, has the solution in terms of an elliptic cosine

$$f(x) = \text{cn}(x - x_0, \frac{1}{\sqrt{2}}).$$

(14)

As claimed, oscillations in this theory are not sinusoidal but are given by an elliptic function. The energy density of the field ϕ decreases in the same way as the density of radiation, i.e. as a^{-4}.

![FIG. 2. The exact solution (14) for the oscillations of the inflaton field after inflation in the conformally invariant theory $\frac{1}{4} \lambda \phi^4$. We show the field in rescaled conformal field and time variables, $f(x) = \frac{x}{\sqrt{(x^2)}}$ (solid curve) and the first term, $\text{cos}(0.8472x)$, in its harmonic expansion (15) (dotted curve).](image)

The solution (14) has some interesting properties which are not usually elucidated in the literature. It matches the solution describing the slow rolling of the field ϕ at the end of inflation if one takes $x_0 \approx 2.44$. The period of the oscillations (in units of x) is $T = 4K(\frac{1}{\sqrt{2}}) = \Gamma(1/4) \approx 7.416$. K stands for the complete elliptic integral of the first kind. The effective frequency of oscillations is $2\pi/T \approx 0.8472$ [1]. The value of f^4 averaged over a period is $\frac{1}{4}$. The potential energy density $\frac{1}{4} \lambda \phi^4$ averaged over a period of oscillation is equal to $\frac{1}{2} \rho_\phi$, and the average kinetic energy $\frac{1}{2} \phi'^2$ is given by $\frac{1}{2} \rho_\phi$.

The elliptic cosine can be represented as follows:

$$f(x) = \frac{8\pi \sqrt{2}}{T} \sum_{n=1}^{\infty} e^{-\pi(n-1/2)} \cos \frac{2\pi(2n-1)x}{T}.$$

(15)

The amplitude of the first term in this sum is 0.9550; the amplitude of the second term is much smaller, 0.04305. The full solution (14) is plotted in Fig. 1 (solid curve), alongside the leading harmonic term in the series (15), $\cos 0.8472x$ (dotted curve). Although the first harmonic term is very close to the actual form of oscillations, it will be important for the investigation of the general structure of stability/instability bands in this theory that $f(x)$ is not exactly equal to $\cos \frac{2\pi x}{T}$.

III. EQUATIONS FOR QUANTUM FLUCTUATIONS OF THE FIELDS ϕ AND χ

We will consider here the interaction between the classical inflaton field, ϕ, and the massless, quantum scalar field, χ, with the Lagrangian (1). The Heisenberg representation of the quantum scalar field $\hat{\chi}$ is

$$\hat{\chi}(t, \mathbf{x}) = \frac{1}{(2\pi)^{3/2}} \int d^3 k \left(\hat{a}_k \chi_k(t) e^{-i \mathbf{k} \mathbf{x}} + \hat{a}^+_k \chi^*_k(t) e^{i \mathbf{k} \mathbf{x}} \right),$$

where \hat{a}_k and \hat{a}^+_k are the annihilation and creation operators. For a flat Friedmann background with scale factor $a(t)$, the temporal part of the eigenfunction with comoving momentum \mathbf{k} obeys the following equation:

$$\ddot{\chi}_k + 3 \frac{\dot{a}}{a} \chi_k + \left(\frac{k^2}{a^2} + g^2 \phi^2 \right) \chi_k = 0.$$

(16)

As we mentioned in the previous section, at the stage of oscillations when $\phi \ll M_p$ the average value of the curvature R vanishes, so one can neglect the term $\sim \xi \phi^2 R$.

The self-interaction $\frac{1}{4} \lambda \phi^4$ also leads to the generation of fluctuations of the field ϕ. The equation for the eigenmodes $\phi_k(t)$ is

$$\ddot{\phi}_k + 3 \frac{\dot{a}}{a} \phi_k + \left(\frac{k^2}{a^2} + 3 \lambda \phi^2 \right) \phi_k = 0.$$

(17)

Note that this equation is identical to equation (16) with $g^2 = 3\lambda$. Therefore, the study of the fluctuations ϕ_k in the $\frac{1}{4} \lambda \phi^4$ model is a particular case of the general equation for fluctuations (16).

The physical momentum, $p = \frac{k}{a(t)}$, in equation (16) is redshifted in the same manner as the background field amplitude, $\phi(t) = \frac{\tilde{\phi}}{a(t)}$. Therefore, the redshifting of momenta can be eliminated from the evolution of χ_k. Indeed, let us use the conformal transformation of the mode.
In the next section, we present the two dimensional chart of

\[X''_k + \left(\kappa^2 + \frac{g^2}{\lambda} \text{cn}^2 \left(x, \frac{1}{\sqrt{2}} \right) \right) X_k = 0, \]

(18)

where for simplicity we drop the initial value of \(x_0 = 2.44 \). In this form the equation for fluctuations does not depend on the expansion of the universe and is completely reduced to the similar problem in Minkowski space-time. This is a special feature of the conformally invariant theory \(\frac{1}{4} \lambda \phi^4 + \frac{1}{2} g^2 \phi^2 \chi^2 \).

For the fluctuations of the field \(\varphi = a \phi \) one has

\[\varphi'' + \left(\kappa^2 + 3 \text{cn}^2 \left(x, \frac{1}{\sqrt{2}} \right) \right) \varphi = 0. \]

(19)

Equation (18) will be the master equation for our investigation of the resonance in the conformally invariant theory. The comoving momentum \(k \) enters the equation in the combination

\[\kappa^2 = \frac{k^2}{\lambda \varphi^2}. \]

(20)

Therefore the natural units of the momenta \(k \) is \(\sqrt{\lambda} \varphi \). Equation (18) describes oscillators, \(X_k \), with a variable frequency

\[\omega_k^2 = \kappa^2 + \frac{g^2}{\lambda} \text{cn}^2 \left(x, \frac{1}{\sqrt{2}} \right), \]

(21)

which periodically depends on time, \(x \). It is well known that in this case the solutions \(X_k \) are exponentially unstable: \(X_k(x) \propto e^{\mu_k x} \). If we choose the vacuum positive-frequency initial condition, \(X_k(x) \simeq \frac{\varphi_0}{\sqrt{2\kappa}} \), then we expect the exponentially fast creation of \(\chi \)-particles \((n_k \propto e^{2 \mu_k x}) \) as the inflaton field oscillates. The strength of interaction with the periodic oscillations \(\text{cn}^2 \left(x, \frac{1}{\sqrt{2}} \right) \) is given by the dimensionless coupling parameter \(g^2/\lambda \). This means that the condition of a broad parametric resonance does not require a large initial amplitude of the inflaton field, \(\varphi_0 \), as in the case of the quadratic potential \([1]\). As we will see, the combination of parameters \(g^2/\lambda \) ultimately defines the structure of the parametric resonance in the theory. It turns out that the strength of the resonance depends rather non trivially (non-monotonically) on this parameter.

From a mathematical point of view, the mode equation (18) belongs to the class of Lame equations \([12]\). In the context of preheating this was first noticed in \([1]\), and then thoroughly studied for \(O(N \to \infty) \) theory (i.e. for \(g^2 = \lambda \)) in \([7]\) and \([8]\). In this paper we perform a numerical and analytical investigation of the parametric amplification of fluctuations in the conformally invariant theory \(\frac{1}{4} \lambda \phi^4 + \frac{1}{2} g^2 \phi^2 \chi^2 \) for an arbitrary parameter \(\frac{g^2}{\chi} \). In the next section, we present the two dimensional chart of the stability/instability bands for the Lame equation (18) in terms of variables \(\kappa^2 \) and \(\frac{g^2}{\chi} \). In subsequent sections, we give a new analytic treatment of the Lame equation in the case \(\frac{g^2}{\chi} = \frac{n(n+1)}{2} \) with integer \(n \). We will also perform an analytical investigation of the resonance for \(\frac{g^2}{\chi} \ll 1 \) and for \(\frac{g^2}{\chi} \gg 1 \).

IV. STABILITY/INSTABILITY CHART IN THE CONFORMAL THEORY

As we shown in the previous section, the equation for vacuum fluctuations interacting with the inflaton oscillations in the conformal theories can be reduced to the similar problem in the Minkowski space. The equation for fluctuations (18) in this case contains only two parameters. The first parameter is \(\frac{g^2}{\chi} \), which features the strength of the interaction. The second parameter is the momentum of vacuum fluctuations \(\kappa \) in units of the frequency of the inflaton oscillations. As is well known, the solutions \(X_k \) of this equation may be stable or unstable depending on the particular values for \(\kappa \) and \(\frac{g^2}{\chi} \) considered. At the stage of the free resonance when we do not take into account the backreaction of the unstable fluctuations, Eq. (18) is an equation with periodic coefficients, which belongs to the class of the Lame equations. The stability/instability chart of another equation with periodic coefficients, the Mathieu equation, is well known and can be found in many textbooks, see e.g. \([13]\). We are unaware of the stability/instability charts for the Lame equation, which describes preheating in the conformally invariant theories. Therefore in this section we present the stability/instability chart Eq. (18) in variables \((\kappa^2, \frac{g^2}{\chi}) \), which we obtained by solving this equation numerically.

Fig. 3 shows a typical resonant solution of equation (18). Though we have plotted the particular case \(\kappa^2 = 1.6, \frac{g^2}{\chi} = 3 \), the form of the resonant solution is generic. The upper plot demonstrates the amplification of the real part of the eigenmode \(X_k(x) \) (solid curve) in the oscillating inflaton background (dotted curve).
In addition to the investigation of the rapidly oscillating functions \(X_k(x) \), it is convenient for analytical and numerical work to consider the evolution of the comoving number density of created \(\chi \)-particles, \(n_k \), with comoving momentum \(k \). This can be defined from the comoving energy density and the energy per particle, \(\omega_d \):

\[
n_k = \frac{\omega_k}{2} \left(|X_k|^2 + |\dot{X}_k|^2 \right) - \frac{1}{2}.
\]

The lower plot of Fig. 3 shows the evolution of the logarithm of \(n_k \) (solid curve) and the inflaton field (dotted curve). For the growing solutions after an initial transitional period the number of particles increases exponentially, \(\ln n_k \approx 2\mu_k x \), where \(\mu_k \) is the characteristic exponent of the unstable solution. In the particular case shown, \(\mu_k \approx 0.035 \).

For arbitrary values of \(\kappa \) and \(g^2 \), we can obtain a numerical solution of equation (18) and exploit the simple relation in \(n_k \approx 2\mu_k x \) to extract the characteristic exponent for the growing modes. For the regions of stability the characteristic exponent formally is imaginary. In this way, the stability/instability chart for the Lame equation, Fig. 4, is constructed. Shaded (unshaded) regions of the chart indicate values of \(\kappa^2 \) for which the solutions are unstable (stable). For the instability bands, a darker shade indicates a larger characteristic exponent. An immediate result is that, for a given range of \(g^2 \), the largest characteristic exponent will occur for \(\kappa^2 = 0 \) between the integer values \(\frac{g^2}{\lambda} = \frac{n(n+1)}{2} \) with \(n \) integer.

This is demonstrated in Fig. 5, where slices of the stability/instability chart show that the characteristic exponent as a function of \(\kappa^2 \) for various values of \(g^2 / \lambda \). The top panel of Fig. 5 plots the cases \(g^2 / \lambda = 1, 1.5, 2, 2.5, 3.0 \), labeled \(a \) through \(e \) respectively. \(g^2 / \lambda = 1 \) corresponds to \(n = 1 \), \(g^2 / \lambda = 3 \) corresponds to \(n = 2 \). As claimed, we see that the largest value of the characteristic exponent occurs for \(\kappa^2 = 0 \) at a value of \(g^2 / \lambda \) between the limits 1 and 3 (curve \(c \)). Similarly, the lower panel of Fig. 5 plots the cases \(g^2 / \lambda = 6.0, 7.0, 8.0, 9.0, 10.0 \), labeled \(a \) through \(e \) respectively. The values \(g^2 / \lambda = 6 \) and 10 correspond to \(n = 3 \) and 4. Again we see that the largest value of the characteristic exponent occurs for \(\kappa^2 = 0 \) at a value of \(g^2 / \lambda \) between the limits 6 and 10 (curve \(c \)).

This stability/instability chart is very similar to the stability/instability chart of the Mathieu equation, but there are important differences as well. For the Mathieu equation there are infinitely many instability bands corresponding to each value of the parameter \(q \), which is analogous to our parameter \(g^2 / \lambda \). Meanwhile for the Lame equation some of the instability bands may occasionally shrink to a point. As a result, for \(g^2 / \lambda = 1 \) and for \(g^2 / \lambda = 3 \) (Fig. 5, curves \(a \) and \(e \) respectively) there is only one instability band. This will be shown analytically in sections VI and VII. From the stability/instability chart for
the characteristic exponent, \(q \approx g \), particular for finite number of instability bands. This is true in particular for the Mathieu equation, all other values of \(\kappa \) are hinted at by the stability/instability chart for the Lame equation, Fig. 4.

V. ANALYSIS OF THE EQUATION FOR FLUCTUATIONS

In this section we begin the analytic investigation of the Lame equation (18) for the fluctuations \(X_2(x) \). In particular, in the next two sections we will try to find the values of the parameter \(q^2/\lambda \) for which an analytical solutions can be obtain in closed form, and construct these solutions.

We will also investigate the resonance in two limiting cases: \(q^2/\lambda \ll 1 \) and \(q^2/\lambda \gg 1 \). In the first case one can use perturbation theory in the small parameter \(q^2/\lambda \ll 1 \), see Section VIII [15]. In the opposite limit, \(q^2/\lambda \gg 1 \), we can implement the method of successive parabolic scattering [2], see Section IX.

It is known that the Lame equation can be solved in terms of the transcendental Jacobi functions, which in turn are given by series expansions. Earlier we reported the result for the characteristic exponent \(\mu = 0.0359 \) for \(\lambda \phi^4 \) theory [14,4]. Analytic investigation of the resonance using these transcendental functions gives the width of the unstable zone and the maximum of the characteristic exponent, \(\mu_k \), in the physically interesting cases of the \(O(N \to \infty) \) theory (\(q^2/\lambda = 1 \) in our convention) and the \(1/4 \lambda \phi^4 \) self-interacting theory (\(q^2/\lambda = 3 \)) [7,8].

However, calculations involving these transcendental functions are extremely tedious. Fortunately, it turns out that for

\[
\frac{q^2}{\lambda} = \frac{n(n+1)}{2},
\]

with \(n \) an integer, one can obtain simple, closed-form solutions to the master equation (18). This includes in particular the most interesting cases \(q^2/\lambda = \lambda \) and \(q^2/\lambda = 3\lambda \).

To find the solutions of the fluctuation equation (18) for \(q^2/\lambda = n(n+1)/2 \), we will rewrite Eq. (18) in the so-called algebraic form. We will use the “time” variable \(z \) instead of \(x \):

\[
z(x) = cn^2(x, \frac{1}{\sqrt{2}}), \quad \frac{d}{dx} = \sqrt{2z(1-z^2)} \frac{d}{dz},
\]

Equation (23) for fluctuations becomes

\[
2z(1-z^2)\frac{d^2X_k}{dz^2} + (1-3z^2)\frac{dX_k}{dz} + (\kappa^2 + \frac{q^2}{\lambda} z)X_k = 0.
\]

Omitting the lower index \(k \) for simplicity, let \(X_1(z) \) and \(X_2(z) \) be two linearly-independent solutions of (25). One of them exponentially grows, another exponentially decreases during the resonance. Let us also introduce the bilinear combinations \(X_1^2 \), \(X_2^2 \), and \(X_1X_2 \). From (25)
Exponentially decreasing one, i.e. $M(z) = X_1(z)X_2(z)$ in the resonance zone. From this, as we will show in the next two sections, one can construct the closed-form solutions $X(z)$. Therefore, in the physically interesting cases $n = 1$ and $n = 2$ we will obtain simple closed form solutions instead of the complicated transcendental functions. This significantly simplifies the study of preheating in these cases. In particular, we will find the form of the characteristic exponent μ_k as a function of κ^2 in each case.

VI. CLOSED FORM SOLUTION FOR $\frac{g^2}{\lambda} = 1$

In the case $g^2 = \lambda$ equation (26) in the resonance band gives

$$X_1(z)X_2(z) = M_1(z),$$

(28)

where

$$M_1(z) = z - 2\kappa^2.$$

(29)

The Wronskian of equation (25) for $X(z)$ is

$$X_1 \frac{dX_2}{dz} - X_2 \frac{dX_1}{dz} = \frac{C}{\sqrt{z(1-z^2)}},$$

(30)

where C is some constant, $C = C_1$, to be defined. From (28) and (30) we immediately obtain the closed form solutions

$$X_{1,2}(z) = \sqrt{|M_1(z)|} \exp \left(\pm \frac{C_1}{2} \int \frac{dz}{\sqrt{z(1-z^2)M_1(z)}} \right).$$

(31)

Now, substituting this solution back into equation (25) for $X(z)$, we find the constant C_1:

$$C_1 = \sqrt{\kappa^2(1-4\kappa^4)}.$$

(32)

For exponentially growing solutions, C_1 must be real; therefore the exponentially growing solutions for fluctuations with $\kappa^2 > 0$ take place in a single instability band for which

$$0 < \kappa^2 < \frac{1}{2}.$$

(33)

The growing solution of (18) has the form $X(x) = e^{\mu_k P(x)}$, where $P(x)$ is a periodic function of the conformal time x. Using (31), we can now find the characteristic exponent μ_k as a function of κ. The technical details can be found in the Appendix.

The final answer is

$$\mu_k(\kappa) = \frac{2}{T} \sqrt{2\kappa^2(1-4\kappa^4)} I(\kappa),$$

(34)

where an auxiliary function $I(\kappa)$ is

$$I(\kappa) = \frac{\pi/2}{\int_0^\pi \sin^{1/2} \theta} \frac{d\theta}{1+2\kappa^2 \sin \theta}.$$

(35)

Recall that $T \approx 7.416$. Eq. (34) is one of the most important analytic results of our paper. Some numerical values of μ_k as function of κ^2 for $\frac{g^2}{\lambda} = 1$ calculated with (34) are listed in the upper half of the table below. The analytic form (34) is in excellent agreement with the numerical results for this case plotted in the top panel of Fig. 5 as curve a. The maximum value of the characteristic exponent for $\frac{g^2}{\lambda} = 1$ is $\mu_{\max} \approx 0.1470$ at $\kappa^2 \approx 0.228$, in agreement with the numerical value for μ_{\max} of Fig. 6.

<table>
<thead>
<tr>
<th>g^2/λ</th>
<th>κ^2</th>
<th>μ_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.000</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.1238</td>
</tr>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.1460</td>
</tr>
<tr>
<td>1</td>
<td>0.21</td>
<td>0.1466</td>
</tr>
<tr>
<td>1</td>
<td>0.22</td>
<td>0.1469</td>
</tr>
<tr>
<td>1</td>
<td>0.228</td>
<td>0.1470</td>
</tr>
<tr>
<td>1</td>
<td>0.23</td>
<td>0.1470</td>
</tr>
<tr>
<td>1</td>
<td>0.24</td>
<td>0.1468</td>
</tr>
<tr>
<td>1</td>
<td>0.25</td>
<td>0.1465</td>
</tr>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.1411</td>
</tr>
<tr>
<td>1</td>
<td>0.4</td>
<td>0.1117</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>1.55</td>
<td>0.02981</td>
</tr>
<tr>
<td>3</td>
<td>1.60</td>
<td>0.03570</td>
</tr>
<tr>
<td>3</td>
<td>1.61</td>
<td>0.03595</td>
</tr>
<tr>
<td>3</td>
<td>1.615</td>
<td>0.03598</td>
</tr>
<tr>
<td>3</td>
<td>1.62</td>
<td>0.03594</td>
</tr>
<tr>
<td>3</td>
<td>1.625</td>
<td>0.03583</td>
</tr>
<tr>
<td>3</td>
<td>1.65</td>
<td>0.03427</td>
</tr>
<tr>
<td>3</td>
<td>1.70</td>
<td>0.02460</td>
</tr>
<tr>
<td>3</td>
<td>1.732</td>
<td>0.000</td>
</tr>
</tbody>
</table>
VII. CLOSED FORM SOLUTION FOR $\frac{g^2}{\lambda} = 3$

The method of obtaining a closed-form analytic solution, $X_k(z)$, in the case $g^2 = 3\lambda$ is similar to that of the previous section. In the resonance zone with $g^2 = 3\lambda$, equation (26) gives

$$X_1(z)X_2(z) = M_2(z) \quad (36)$$

where now

$$M_2(z) = z^2 - \frac{2}{3}k^2z - 1 + \frac{4}{9}k^2 \quad (37)$$

The Wronskian of equation (25) is the same as in (30), but with a new constant, $C = C_2$, to be defined for this case. Therefore, the closed form solutions are the same as in (31), but with $M_2(z)$ in place of $M_1(z)$. Substituting this solution into equation (25), we find the constant C_2 in this case

$$C_2 = \sqrt{\frac{32}{81}\kappa^2(\kappa^4 - \frac{9}{4})} \quad (38)$$

Therefore, in the case $\frac{g^2}{\lambda} = 3$ for $\kappa^2 > 0$, there is also only a single instability band corresponding to

$$\frac{3}{2} < \kappa^2 < \sqrt{3} \quad (39)$$

For illustration, we plot the resonant solution $X_k(x)$ in the top panel of Fig. 3. Notice that $X_k(x)$ oscillates twice within one inflaton oscillation. Using the solution (31) with $M_2(z)$ and C_2, we can find μ_k in this case; see the Appendix for details.

The resulting characteristic exponent for $\frac{g^2}{\lambda} = 3$ is

$$\mu_k = \frac{8\sqrt{2}}{9T} \sqrt{\kappa^2(\kappa^4 - \frac{9}{4})(3 - \kappa^4)} J(\kappa) \quad (40)$$

where the auxiliary function $J(\kappa)$ is

$$J(\kappa) = \int_0^{\pi/2} d\theta \frac{\sin^{3/2} \theta}{1 + \frac{2}{3}k^2 \sin \theta + (\frac{4}{9}k^4 - 1) \sin^2 \theta} \quad (41)$$

in this case. Formula (40) is another important result of our paper. Some numerical values of μ_k as a function of κ^2 for $\frac{g^2}{\lambda} = 3$ calculated with (40) are listed in the lower half of the last table. The analytic form (40) is in agreement with the numerical results for this case plotted in the top panel of Fig. 5 as curve e. The maximum value of the characteristic exponent for $\frac{g^2}{\lambda} = 3$ is $\mu_{max} \approx 0.03598$ at $\kappa^2 \approx 1.615$, in agreement with the numerical value for μ_{max} of Fig. 6.

In this section we investigate the equation for fluctuations (18) in the limiting case $\frac{g^2}{\lambda} \ll 1$. Let us recall that $f(x)$ is given by the series (15), and hence, $f^2(x)$ in equation (18) can be decomposed as

$$f^2(x) = F_0 + F_1 \cos \left(\frac{4\pi x}{T}\right) + F_2 \cos \left(\frac{8\pi x}{T}\right) + \ldots \quad (42)$$

where $F_0 = 0.4570$, $F_1 = 0.4973$, $F_2 = 0.04290$ and so on, but $\sum_{k=0}^{\infty} F_k = 1$. One can seek $X_k(x)$ in the form of a harmonic series of terms $\cos \left(\frac{2n\pi x}{T}\right)$ with slowly varying coefficients. If $\frac{g^2}{\lambda}$ is a small parameter, one can develop an iterative solution with respect to $\frac{g^2}{\lambda}$. It is easy to show that the leading contribution to $X_k(x)$ comes from the lower harmonic: $\cos \left(\frac{4\pi x}{T}\right)$. Keeping only this term, the equation for $X_k(x)$ can be reduced to the Mathieu equation

$$\frac{d^2X_k}{dT^2} + (A + 2q \cos 2\tau) X_k = 0 \quad (43)$$

where $\tau = \frac{2\pi x}{T}$, $A = (\frac{T_x}{T})^2$, and $q = \frac{g^2}{\lambda} (\frac{T}{T_x})^2 F_1$. Thus, our theory is effectively reduced to the Mathieu equation only in the limit $q \ll 1$, where it has instabilities in very narrow resonant bands around $\kappa^2 = \frac{2\pi m}{T}$, $m = 1, 2, \ldots$. The results of the numerical investigation of the instability zones plotted in Fig. 4 indeed show that for $\frac{g^2}{\lambda} \ll 1$ the parametric resonance corresponds to that of the Mathieu equation.

![FIG. 6. The maximum value of the characteristic exponent μ_{max} extracted from the stability/instability chart, Fig. 4, is plotted as a function of $\frac{g^2}{\lambda}$ (solid curve). The function $\mu_{max}(\frac{g^2}{\lambda})$ is non-monotonic. The universal upper limit of μ_{max} is 0.2377. The local minima of the function are gradually increasing with $\frac{g^2}{\lambda}$, and asymptotically approach 0.2377. The dotted line is the prediction $\mu_{max} \approx 0.1467 \frac{g^2}{\lambda}$ for $\frac{g^2}{\lambda} \ll 1$, when the mode equation (18) is effectively reduced to the Mathieu equation (43).](image-url)
The exponentially growing solution of the Mathieu equation, $X_k(x) \propto e^{\mu_k x}$, has a maximum characteristic exponent (in the first zone)

$$\mu_{\text{max}} = \frac{g^2}{4\lambda} \left(\frac{T}{2\pi} \right)^2 \cdot F_1 \approx 0.1467 \frac{g^2}{\lambda} . \quad (44)$$

In Fig. 6 we plot the maximum value of the characteristic exponent as a function of $\frac{g^2}{\lambda}$ together with the prediction (44) for μ_{max} from the Mathieu equation. As one can see from Fig. 6, Eq. (44) works extremely well even up to $\frac{g^2}{\lambda} \approx 1$.

IX. ANALYTIC SOLUTION FOR $\frac{g^2}{\lambda} \gg 1$

In this section we consider the limiting case when the parameter $\frac{g^2}{\lambda}$ is very large. In Fig. 7 we plot the time evolution of fluctuations $X_k(x)$ in this case.

![Graph showing time evolution of fluctuations](image)

In Fig. 7 we plot the number of particles $n_k(x)$ in a given mode as a function of time x calculated from $X_k(x)$ with Eq. (22). The basic observation is that, for $\frac{g^2}{\lambda} \gg 1$, the evolution of the modes $X_k(x)$ is adiabatic and the number of particles $n_k(x)$ is constant between the zeros of the background field. Changes in the number density of particles occur only near times $x = x_j$ when the amplitude of the inflaton field crosses zero, i.e. $\varphi(x = x_j) = 0$. To describe the effect of a single kick at $x = x_j$, it is enough to consider the evolution of $X_k(x)$ in the interval when $\varphi^2(x)$ is small and can therefore be represented by its quadratic part $\propto (x - x_j)^2$. This process looks like wave propagation in a parabolic potential. Outside of these time intervals, $X_k(x)$ has a simple, semiclassical (adiabatic) form. We can combine the action of the subsequent parabolic potentials to find the net effect of particle creation. This method of successive parabolic scattering was formulated and applied to the broad parametric resonance for the quadratic inflaton potential in [2]. This method, as we see, can also be applied to the conformally invariant theory for $\frac{g^2}{\lambda} \gg 1$.

We expect that the semiclassical solution is valid everywhere but around x_j. Thus, prior to scattering at x_j, the mode function $X_k(x)$ has the adiabatic form

$$X_k^j(x) = \frac{\alpha_k^j}{\sqrt{2\omega_k}} e^{-i\int_0^x \omega_k dx} + \frac{\beta_k^j}{\sqrt{2\omega_k}} e^{+i\int_0^x \omega_k dx} , \quad (45)$$

where the coefficients α_k^j and β_k^j are constant for $x_{j-1} < x < x_j$ and normalization yields $|\alpha_k^j|^2 - |\beta_k^j|^2 = 1$. After scattering when $x = x_j$, $X_k(x)$ in the interval $x_j < x < x_{j+1}$ again has the adiabatic form of equation (45) but with new constant coefficients, α_k^{j+1} and β_k^{j+1}.

The form is essentially the asymptotic expression of the incoming waves (for $x < x_j$) and similarly for the the outgoing waves (for $x > x_j$) scattered from a parabolic potential $(x - x_j)^2$ at the moment x_j. Therefore, the outgoing amplitudes, α_k^{j+1} and β_k^{j+1}, can be expressed in terms of the incoming amplitudes, α_k^j and β_k^j, with the help of the reflection and transmission amplitudes for scattering at a parabolic potential [2]. For this we need the mode equation around a single parabolic potential at $x = x_j$. In the vicinity of x_j, $cn \left(\frac{x - x_j}{\sqrt{2}} \right) \approx (x - x_j)$.

![Graph showing time evolution of fluctuations](image)
Then equation (18) around \(x_j \) is reduced to the simple equation
\[
\frac{d^2 X_k}{d x^2} + \left(\kappa^2 + \frac{g^2}{2\lambda} (x-x_j)^2 \right) X_k = 0. \tag{46}
\]

The mapping of \(\alpha_k^{j+1}, \beta_k^{j+1} \) into \(\alpha_k^{j+1}, \beta_k^{j+1} \) in terms of parameters in equation (46) reads
\[
\begin{pmatrix}
\alpha_k^{j+1} \\
\beta_k^{j+1}
\end{pmatrix} = \begin{pmatrix}
\sqrt{1 + e^{-\pi \epsilon^2}} e^{i\zeta_k} & i e^{-\pi \epsilon^2 + 2i\theta_k} \\
- i e^{-\pi \epsilon^2 - 2i\theta_k} & \sqrt{1 + e^{-\pi \epsilon^2}} e^{-i\zeta_k}
\end{pmatrix} \begin{pmatrix}
\alpha_k^j \\
\beta_k^j
\end{pmatrix} \tag{47}
\]
where \(\zeta_k = \arg \Gamma \left(\frac{1+i\epsilon^2}{2} \right) \) and \(\epsilon^2 = \frac{2\lambda k^2}{\sqrt{\lambda^2 + 2\rho^2}} \).

The phase accumulated by the moment \(x_j \) is \(\theta_k = \int_0^{T/4} dx \omega_k(x) = j \theta_k \), where \(\theta_k = 2 \int_0^{T/4} dx \sqrt{\kappa^2 + \frac{g^2}{2\lambda}} f(x) \) is the phase accumulated within half of a period of the inflaton oscillation.

In the regime when a large number of particles have been created, \(n_k = |\beta_k|^2 \gg 1 \), we have \(|\alpha_k^j| \approx |\beta_k^j| \), so \(\alpha_k^j \) and \(\beta_k^j \) are distinguished by their phases only. In this case there is a simple solution of the matrix equation (47):
\[
\alpha_k^j = \frac{1}{\sqrt{2}} e^{\mu_k (x_j + i\theta_k) j}, \beta_k^j = \frac{1}{\sqrt{2}} e^{i \vartheta}, e^{(\mu_k (x_j - i\theta_k) j}, \tag{48}
\]
where \(\vartheta \) is a constant phase and \(\mu_k \) is the characteristic exponent. \(T \approx 7.416 \) is the period of oscillations of the inflaton field in the variable \(x \), so the number of particles grows as \(e^{2\mu_k x} \). Another solution is similar to (48) but with the substitution \(\theta_k \rightarrow \theta_k + \pi \).

Substituting the solution (48) into equation (47), we get an equation for the parameters \(\mu_k \) and \(\theta_k \)
\[
e^{\mu_k \frac{g^2}{2\lambda}} = \left| \cos(\theta_k - \zeta_k) \sqrt{1 + e^{-\pi \epsilon^2}} \right|
+ \sqrt{1 + e^{-\pi \epsilon^2}} \cos^2(\theta_k - \zeta_k) - 1. \tag{49}
\]

In the instability zones, the parameter \(\mu_k \) of equation (49) should be real. From this we obtain the condition
\[
|\tan(\theta_k - \zeta_k)| \leq e^{-\pi \epsilon^2}. \tag{50}
\]
for the momentum \(k \) to be in a resonance band.

To further analyze the conditions for the strength (50) and widths (49) of the resonance, one should calculate the phase \(\theta_k - \zeta_k \). For \(\frac{g^2}{\lambda} \gg 1 \) we have
\[
\theta_k - \zeta_k = 2 \int_0^{T/4} dx \sqrt{\kappa^2 + \frac{g^2}{2\lambda}} f^2(x) - \arg \Gamma \left(\frac{1+i\epsilon^2}{2} \right)
\approx \pi \sqrt{\frac{g^2}{2\lambda}} + \kappa^2 \frac{\lambda}{8g^2} \ln \frac{g^2}{\lambda}. \tag{51}
\]

Using equations (51), (50), and (49), we find the characteristics of the resonance in the regime \(\frac{g^2}{\lambda} \gg 1 \). From (50) it follows that the resonance is efficient for \(\epsilon^2 \leq \pi^{-1} \), i.e.
\[
\kappa^2 \leq \frac{g^2}{2\pi^2 \lambda}. \tag{52}
\]
Equation (50) transparently shows that, for a given \(\frac{g^2}{\lambda} \), there will be a sequence of stability/instability bands as a function of \(\kappa \). The width of an instability band, where the resonance occurs, is \(\Delta \kappa^2 \approx \frac{g^2}{2\lambda} \). Let the integer part of the large number \(\sqrt{\frac{g^2}{2\lambda}} \) be \(l \). From (51) it follows that if we vary \(\kappa^2 \) within the range \(2\pi^2 \sqrt{\frac{g^2}{2\pi^2 \lambda}} \), then within this interval of \(\kappa^2 \) the phase \(\theta_k - \zeta_k \) reaches either \(l\pi \) or \((l+1)\pi \). Then within this resonance band we get the maximum value \(\mu_{\text{max}} \) defined by the equation (49) with \(|\cos(\theta_k - \zeta_k)| = 1 \):
\[
e^{\frac{2}{T} \mu_{\text{max}}} = \sqrt{1 + e^{-\pi \epsilon^2}} + e^{-\pi \epsilon^2}. \tag{53}
\]
The characteristic exponent \(\mu_{\text{max}} \) is a non-monotonic function of \(\frac{g^2}{\lambda} \). If the value of the parameter \(\frac{g^2}{\lambda} \) is exactly equal to \(2l^2 \) where \(l \) is an integer, then the strongest resonance occurs at \(\kappa^2 = 0 \), and from (53) we get
\[
\mu_{\text{max}} = \frac{2}{T} \ln(1 + \sqrt{2}) \approx 0.2377. \tag{54}
\]
This is actually a general result for the upper limit of \(\mu_{\text{max}} \) for an arbitrary \(\frac{g^2}{\lambda} \), see Fig. 6. If \(\frac{g^2}{\lambda} \) is not exactly equal to \(2l^2 \), then \(\mu_{\text{max}} \) occurs at a non-zero \(\kappa^2 \) and is smaller than 0.2377. It is interesting that in the formal limit \(\frac{g^2}{\lambda} \rightarrow \infty \) the function \(\mu_{\text{max}}(\frac{g^2}{\lambda}) \) asymptotically approaches the value 0.2377 for arbitrary \(\frac{g^2}{\lambda} \) to see this, we have to check that a variation of \(\kappa^2 \sim 2\pi^2 \sqrt{\frac{g^2}{2\pi^2 \lambda}} (\ln \frac{g^2}{\lambda})^{-1} \) is compatible with the condition for an efficient resonance, \(\epsilon^2 \leq \pi^{-1} \). This occurs for \(\frac{g^2}{\lambda} \geq e^{2\pi^2} \approx 10^8 \). In Fig. 6 we see that the minimal value of \(\mu \) as a function of \(\frac{g^2}{\lambda} \) very slowly increases towards 0.2377. Therefore, although \(\mu_{\text{max}} \) is not a monotonic function of \(\frac{g^2}{\lambda} \), for \(\frac{g^2}{\lambda} \gg 1 \) the resonance is stronger both in terms of the characteristic exponent \(\mu_{\text{max}} \) and the width \(\kappa^2 \).

X. BACKREACTION OF CREATED PARTICLES

Thus far we have considered the parametric resonance in the conformally invariant theory (1) in an expanding universe.
The first two terms describe the energy of the classical field \(\varphi \), \(\rho_\varphi \) and \(\rho_X \) correspond to the energy density of \(\varphi \)-particles and \(X \)-particles respectively:

\[
\rho_\varphi = \frac{1}{(2\pi)^3} \int d^3k \sqrt{k^2 + 3\lambda \varphi^2} \ n^\varphi_k , \\
\rho_X = \frac{1}{(2\pi)^3} \int d^3k \sqrt{k^2 + g^2 \varphi^2} \ n^X_k .
\]

Here \(n^\varphi_k \) and \(n^X_k \) correspond to the occupation numbers of the \(\varphi \)-particles and \(X \)-particles. It is easy to show that

\[
\rho_\varphi' = g^2 \langle \varphi^2 \rangle \varphi' \quad \text{and} \quad \rho_X' = 3\lambda \langle \varphi^2 \rangle \varphi' ,
\]

together with Eq. (56) results in the energy density of the \(\varphi \)-particles and \(X \)-particles.

To close the set of self-consistent equations we need the equations for the modes \(\varphi_k(x) \) and \(X_k \):

\[
\varphi_k''(\eta) + \left(k^2 + 3\lambda \varphi^2(\eta) \right) \varphi_k = 0 , \\
X_k''(\eta) + \left(k^2 + \Pi_X + g^2 \varphi^2(\eta) \right) X_k = 0 .
\]

The polarization operator \(\Pi_\varphi \) consists of \(\Pi_\varphi^1 = 3\lambda \langle \varphi^2 \rangle + g^2 \langle X^2 \rangle \) and the non-local term \(\Pi_\varphi^2 \) which emerges in the one-loop approximation beyond the Hartree diagram, see Fig. 8.

FIG. 8. The diagrams for the polarization operator of the field \(\varphi_k \). Thin and thick lines represent the fields \(\phi \) and \(\chi \) respectively. Vertical lines correspond to the oscillating background field \(\varphi(t) \). \(\Pi_\varphi^1 \) corresponds to the Hartree approximation which takes into account the contribution of \(\langle X^2 \rangle \) and \(\langle \varphi^2 \rangle \). The contributions of \(\Pi_\varphi^2 \) and \(\Pi_\varphi^3 \) to the effective mass of \(\varphi \)-particles can be comparable to each other.

The calculation of the polarization operator \(\Pi_\varphi^2 \) in the regime of parametric resonance is rather complicated. Estimates of \(\Pi_\varphi^2 \) performed in [2] indicate that it can be of the same order of magnitude as the standard Hartree polarization operator \(\Pi_\varphi^1 \). The polarization operator \(\Pi_\varphi^2 \) was not taken into account in the previous treatment of the self-consistent equations for the eigenmodes in the \(1 \over N \) approximation [6,7], but in fact it may survive in the limit \(N \to \infty \) [2].

Similarly, the polarization operator \(\Pi_X \) is equal to \(g^2 \langle \varphi^2 \rangle \), plus an additional non-local term \(\Pi_X^1 \). We expect that \(\Pi_\varphi \geq 0, \Pi_X \geq 0 \), as suggested by the Hartree approximation.

A complete calculation of the polarization operators \(\Pi_\varphi \) and \(\Pi_X \) is outside the scope of this paper. Fortunately, as we will see in the next section, one need not really know exact expressions for \(\Pi_\varphi \) and \(\Pi_X \) in order to make an estimate of the density of produced particles at the time when the feedback of the amplified fluctuations terminates the parametric resonance.

XI. DYNAMICAL RESTRUCTURING OF THE RESONANCE

In this paper we found that the structure of the parametric resonance in terms of its strength and width...
How does the resonance develops if the backreaction of the accumulating fluctuations is taken into account? The answer to this question also strongly depends on the parameters of the model. For example, the parametric resonance in the simplest conformally invariant theory \(\frac{1}{4} \lambda \phi^4 + \frac{1}{2} g^2 \phi^2 \chi^2 \) is very different from that in the theory \(\frac{1}{2} m_\phi \phi^2 + \frac{1}{2} g^2 \phi^2 \chi^2 \) [2]. In the simplest conformally invariant theories which we consider in this paper the structure of the resonance is determined by the combination \(g^2 / \lambda \).

For illustration we consider the model of the self-interacting inflaton field \(\frac{1}{2} \lambda \phi^4 \), no \(\chi \) field is involved. In this case we shall take \(g^2 = 0 \) in all the equations (56), (61), (62). As we already mentioned, if one neglects backreaction, the equations describing the resonance for the modes \(\phi_k \) in this theory coincide with the equations for the modes \(\chi_k \) in the theory with \(g^2 = 3 \lambda \). Thus, we can use the results of the investigation of the theory with \(g^2 = 3 \lambda \) obtained in Sec. VII for our analysis.

Historically, the model \(\frac{1}{2} \lambda \phi^4 \) was one of the first models illustrating the general idea of preheating. The investigation of the stability/instability chart for the Lame equation has shown that this model in a certain sense is the least favorable for the development of the resonance: it has only one resonance band, and the characteristic exponent \(\mu \) for this theory is anomalously small, see Figs. 4, 6. Originally it was expected that preheating in this model would rapidly transfer about half of the energy of the oscillating scalar field to the \(\phi \)-particles, after which the decay of the field \(\phi \) would continues at a much slower pace. However, the results of computer simulations of preheating in this theory indicated that the stage of efficient preheating ends as soon as the fluctuations of produced particles \(\langle \phi^2 \rangle \) grow to 0.05 \(\phi^2 \) [5]. The interpretation of this result, however, was not quite clear. It was conjectured that the resonance terminates because of rescattering of the \(\phi \)-particles. It was not clear also whether the decay of the field \(\phi \) continues at a slower pace until this field completely decays, or its decay eventually shuts down.

A complete investigation of this issue is rather difficult. First of all, the theory of rescattering is not fully developed: various approximations often break down near the end of preheating when the occupation numbers of particles are anomalously large \(n_k \sim \lambda^{-1} \) [1,2]. Even in the Hartree approximation (or in the 1/N-approximation) an investigation is extremely complicated [7,8] because it is very difficult to work with the solutions of equations for the growing modes in terms of the transcendental Jacobi functions. It may be easier to work with the solutions obtained in Sec. VI and VII. We will not perform a complete investigation of this issue here because, as we argued in the previous section, one may need to calculate the polarization operator beyond the Hartree approximation, see [2]. Instead, we will make some simple estimates which will allow us to elucidate the mechanism which terminates the resonance in the theory \(\frac{1}{2} \lambda \phi^4 \).

As we will see, the main reason for the termination of the resonance in the theory \(\frac{1}{2} \lambda \phi^4 \) is the restructuring of the resonance band due to the backreaction of created particles. This process occurs at \(\langle \phi^2 \rangle \ll \phi^2 \) because the resonance band is very narrow. In the beginning of preheating in the theory \(\frac{1}{2} \lambda \phi^4 \) the instability band is given by the condition \(1.5 \lambda \phi^2_0 < k^2 < 1.73 \lambda \phi^2_0 \), where \(\phi_0 \) is the initial amplitude of the oscillations of the field \(\varphi \) (39). It is sufficient to shift the position of the resonance band in momentum space by few percent, and the leading resonant modes \(\chi_k \) which have been growing since the start of the parametric resonance will not grow anymore. This will effectively shut down the resonance.

There are two different effects which lead to a restructuring of the resonance band, and these effects act in opposite directions. First of all, particle production reduces the energy of the scalar field, and therefore reduces the amplitude of its oscillations. This effect tends to reduce the frequency of the oscillations and to move the resonance band towards smaller \(k \). On the other hand, the effective mass of the field \(\varphi \) grows due to its interaction with the \(\phi \)-particles. This effect increases the frequency of oscillations and tends to shift the resonance band towards larger \(k \). We will consider here both of these effects.

To investigate the decrease of the amplitude of the oscillations due to particle production, one should compare the total energy of the system before and after the appearance of \(\langle \phi^2 \rangle \):
\[
\frac{\lambda}{4} \phi_0^4 \approx \frac{\lambda}{4} \phi^4(\eta) + \frac{1}{(2\pi)^3} \int d^3k \sqrt{k^2 + 3\lambda \phi^2} \ n_k .
\]

Here we calculate the energy density at the moment when \(\varphi' = 0 \), and the oscillating field is equal to its amplitude \(\varphi(\eta) \). This amplitude is smaller than \(\phi_0 \) due to the transfer of energy to the created particles.

The resonance is most efficient in a small vicinity of \(k^2 \approx 1.6 \lambda \phi^2 \). Therefore, the leading contribution to \(\rho_\phi \) is given by integration near \(k^2 = 1.6 \lambda \phi^2 \):
\[
\rho_\phi \approx \frac{1}{(2\pi)^3} \int d^3k \sqrt{4.6 \lambda \phi^2} \ n_k = \sqrt{4.6 \lambda} \bar{\varphi} n_\phi .
\]

Eqs. (63) and (64) give
\[
\bar{\varphi}(\eta) \approx \phi_0 - \frac{\sqrt{4.6 \lambda} n_\phi}{\varphi^2} ,
\]

Thus, the creation of \(\varphi \)-particles diminishes the frequency of oscillations, because the frequency of oscillations of the field \(\varphi \) in the theory \(\frac{1}{2} \lambda \phi^4 \) is proportional to its amplitude. To evaluate the significance of this effect one may express it in terms of \(\langle \phi^2 \rangle \) calculated at \(\varphi(\eta) = \bar{\varphi} \):
\[
\langle \phi^2 \rangle \approx \frac{1}{(2\pi)^3} \int \frac{d^3k \ n_k}{\sqrt{k^2 + 3\lambda \phi^2}} \approx \frac{n_\phi}{\sqrt{4.6 \lambda}} .
\]
which leads to a proportional shift of the resonance band towards smaller k^2. This indicates that even a very small amount of fluctuations $\langle \phi^2 \rangle \sim 10^{-2}\phi_0^2$ may shift the resonance band away from its original position, which may terminate the resonance for the leading modes φ_k.

This effect is partially compensated by the growth of the effective mass of the field φ. We will analyse this effect in the Hartree approximation, in which the field φ acquires the effective mass squared $\Pi_\phi = 3\lambda \langle \varphi^2 \rangle$. One may relate $\Pi_\phi = 3\lambda \langle \varphi^2 \rangle$ to the number density of φ-particles in the following way:

$$\Pi_\phi \approx \frac{3\lambda}{(2\pi)^3} \int \frac{d^3k}{\sqrt{k^2 + 3\lambda \varphi^2}} \approx \frac{3\lambda n_\phi}{(2\pi)^3} \int \frac{d^3k}{\sqrt{1.6\varphi^2 + 3\lambda \varphi^2}} = \frac{3\lambda n_\phi(\eta)}{\sqrt{1.6\varphi^2 + 3\lambda \varphi^2}}. \quad (68)$$

Note, that this quantity is time-dependent. It oscillates, its magnitude changes considerably several times within a single oscillation of the inflaton field, and it also grows exponentially during the resonance. The number density of φ-particles also oscillates and grows exponentially, but typically its oscillations are less wild than the oscillations of $\langle \varphi^2 \rangle$. In the first approximation, we will neglect the oscillations of $n_\phi(\eta)$. Also, we are trying to find the time when the resonance terminates, and at that time the average number density of particles n_ϕ becomes nearly constant. It is still difficult to find an analytic solution for φ_k with the time-dependent polarization operator (68), but one can easily find the solution numerically.

The result of the combined investigation of the two effects discussed above shows that the resonance on the leading modes φ_k effectively terminates as soon as $\langle \phi^2 \rangle$ grows up to

$$\langle \phi^2 \rangle \approx 0.05 \phi_0^2. \quad (69)$$

Note that even after this moment the resonance may continue for a while for the new modes which can be amplified in the restructured resonance band. However, this process is much less efficient. Thus, in the pure $\lambda \phi^4$ theory the rapid development of the resonance ends when the dispersion of amplified fluctuations is about 20% of the amplitude of the inflaton field, which corresponds to only 0.2% of the total energy. This result is based on rather rough estimates neglecting rescattering. It is interesting, however, that it is in complete agreement with the result of the lattice simulation of the parametric resonance in the theory $\lambda \phi^4$ [5].

We should emphasize that there are several specific reasons why the resonance in the particular case of the theory $\lambda \phi^4$ is relatively inefficient. First of all, the resonance band in this theory is very narrow and the characteristic exponent μ is extremely small. This is no longer the case when one considers, for example, the theory describing a χ-field with $g^2 = \lambda$ or with $g^2 = 2\lambda$. In these theories the characteristic exponent is much greater, the resonance band is rather broad, and it begins at $k = 0$. As a result, it is much more difficult to shut down the resonance in such theories.

In the theories with a massive inflaton field there is an additional effect which makes the resonance more stable. Broad parametric resonance in such theories is stochastic, which makes it more difficult to shut down [2]. Now we are going to study what happens to the resonance in the conformally invariant theories if this invariance is broken by a small mass term. As we will see, stochastic resonance may appear in such theories as well.

XII. Preheating in the Theory of a Massive Self-Interacting Inflaton Field

In our previous paper [2] we investigated parametric resonance in the theory $m^2 \phi^2 + \frac{g^2}{2} \phi^2 \chi^2$. We have found that reheating can be efficient in this theory only if $g^2 \Phi \gg m$, where Φ is the amplitude of oscillations of the inflaton field. This amplitude is extremely large immediately after inflation, $\phi \sim 10^{-1} M_p$, and later it decreases as

$$\Phi \sim \frac{M_p}{3m_t}. \quad (70)$$

Due to this decrease, the ratio $\frac{m^2 \phi^2}{m^2 \chi^2}$ rapidly changes. As a result, the broad parametric resonance regime in this theory is a stochastic process, which we called stochastic resonance.

Here we studied the theory $\frac{\lambda}{4} \phi^4 + \frac{g^2}{2} \phi^2 \chi^2$ for various relations between the coupling constants g^2 and λ. In this theory the amplitude of the field ϕ also decreases in an expanding universe, but it does not make the resonance stochastic because all parameters of the resonance scale in the same way as Φ due to the conformal invariance. One may wonder, what is the relation between these two theories? Indeed, neither of these two theories is completely general. In the theory of the massive scalar field one may expect terms $\sim \frac{\lambda}{4} \phi^4$ to appear because of radiative corrections. On the other hand, in many realistic theories the effective potential is quadratic with respect to ϕ near the minimum of the effective potential.

To address this question, let us study the theory $m^2 \phi^2 + \frac{\lambda}{4} \phi^4 + \frac{g^2}{2} \phi^2 \chi^2$. One may expect that for $\phi \gg \frac{m}{\sqrt{\lambda}}$, parametric resonance in this theory occurs in the same way as in the model $\frac{\lambda}{4} \phi^4 + \frac{g^2}{2} \phi^2 \chi^2$, whereas for $\phi \ll \frac{m}{\sqrt{\lambda}}$ the resonance develops as in the theory $m^2 \phi^2 + \frac{g^2}{2} \phi^2 \chi^2$. Let us check whether this is really the case, ignoring for
where each time period Δt, because the condition $\sqrt{\lambda \phi} = m$ (analogous to the condition $g\phi > m$ for the production of χ-particles [2]) is violated. In such a case χ-particles can be produced if $10^{-1} g M_p > m$. The theory of this process is described in [2]; we do not have anything new to add here.

Another possibility, which we are going to study here in more detail, is that $\frac{m}{\sqrt{\lambda}} \ll 10^{-1} M_p$. Then in the beginning the mass term $m^2 \phi^2$ does not affect the frequency of the oscillating scalar field ϕ. Therefore, one could expect that as the amplitude Φ decreases from $10^{-1} M_p$ to $\frac{m}{\sqrt{\lambda}}$, the theory of parametric resonance coincides with the one described in this paper.

However, for large $\frac{m}{\sqrt{\lambda}}$ the situation is more complicated. Even though the mass term for $10^{-1} M_p > \Phi \gg \frac{m}{\sqrt{\lambda}}$ does not affect the frequency of the broad parametric resonance by inducing an additional rotation of the phase of the modes χ_k.

The reason why the broad resonance in the theory $\frac{m^2}{2} \phi^2 + \frac{\lambda}{2} \phi^4 + \frac{g^2}{2} \phi^2 \chi^2$ was stochastic can be explained as follows. The χ-particles are produced when the field $\phi(t)$ comes close to the point $\phi = 0$, which happens once during each time period $\Delta t = \frac{\pi}{m}$. During this time the phase of each mode χ_k grows approximately by $g \Phi(t) \pi m^{-1}$. During the next half of a period of an oscillation it changes by $g \Phi(t + \frac{\pi}{m}) \pi m^{-1} \approx g \Phi(t) \pi m^{-1} + g \Phi(t) \pi m^{-2}$. This destroys the phase coherence required for the ordinary resonance and makes the resonance stochastic if $\int |g \Phi(t) \pi m^{-2}| \geq 1$.

The condition for the stochastic resonance in the theory $\frac{m^2}{2} \phi^2 + \frac{\lambda}{2} \phi^4 + \frac{g^2}{2} \phi^2 \chi^2$ can be obtained from Eq. (70):

$$\Phi \gtrsim \sqrt{\frac{m M_p}{g}}.$$

In particular, for $\Phi = \frac{m}{\sqrt{\lambda}}$ it gives $\frac{g}{\sqrt{\lambda}} \gtrsim \frac{\sqrt{m M_p}}{m}$. Note that by our assumption $\frac{\sqrt{m M_p}}{m} \gg 1$.

The generalization of this result for the theory $\frac{m^2}{2} \phi^2 + \frac{\lambda}{2} \phi^4 + \frac{g^2}{2} \phi^2 \chi^2$ is straightforward, but the result is somewhat unexpected. As a rough estimate of the time Δt one can take $\pi(2\Phi M_p^2 + m^2)^{-1/2} = \pi(2\lambda \phi^2 a^{-2}(t) + m^2)^{-1/2}$, where $\phi \equiv \Phi a^{-1}(t)$ is the time-independent amplitude. The phase shift during this time is given by $g \phi \pi (2\lambda \phi^2 + m^2 a^2(t))^{-1/2}$. Thus, for $m = 0$ this quantity is time-independent, and one can have a regular stable resonance. In the limit $\Phi \gg \frac{m}{\sqrt{\lambda}}$ one can represent the phase shift as $\frac{g \pi}{\sqrt{2\lambda}} (1 - \frac{m^2 \alpha^2(t)}{4\lambda M_p^2})$. The change in this shift during one oscillation is $\frac{g^2 m^2 H}{4\lambda M_p^2}$, where $H = \frac{\dot{a}}{a} = \frac{\sqrt{2\pi \lambda \phi^2}}{\sqrt{3} M_p}$. This gives the following condition for stochastic resonance:

$$\Phi \gtrsim \frac{g}{\sqrt{\lambda}} \frac{\pi M_p^2}{3\lambda M_p^2}.$$

Again, for $\Phi = \frac{m}{\sqrt{\lambda}}$ it gives $\frac{m}{\sqrt{\lambda}} \gtrsim \frac{\sqrt{m M_p}}{m}$.

This conclusion is illustrated by Fig. 9, where we show the development of the resonance both for the massless theory with $\frac{\lambda}{\phi} \sim 1700$, and for the theory with a small mass m. As we see, in the purely massless theory the logarithm of the number density n_k for the leading growing mode increases linearly in time x, whereas in the presence of a mass m, which we took to be much smaller than $\sqrt{\lambda \phi}$ during the whole process, the resonance becomes stochastic.

![FIG. 9. Development of the resonance in the theory $m^2 \phi^2 + \frac{\lambda}{2} \phi^4 + \frac{g^2}{2} \phi^2 \chi^2$ for $\frac{m}{\sqrt{\lambda}} = 5200$. The upper curve corresponds to the massless theory, the lower curve describes stochastic resonance with a theory with a mass m which is chosen to be much smaller than $\sqrt{\lambda \phi}$ during the whole period of calculations. Nevertheless, the presence of a small mass term completely changes the development of the resonance.](image)
FIG. 10. Development of the resonance in the theory $\frac{m^2}{\lambda} \phi^2 + \frac{\lambda^2}{\phi} \phi^4 + \frac{\lambda^2}{\chi^2} \phi^2 \chi^2$ with $m^2 \ll \lambda \phi^2$ for $\frac{m}{\sqrt{\lambda}} = 240$. In this particular case the resonance is not stochastic. As time x grows, the relative contribution of the mass term to the equation describing the resonance also grows. This shifts the mode from one instability band to another.

Thus we see that the presence of the mass term $\frac{m^2}{\lambda} \phi^2$ can modify the nature of the resonance even if this term is much smaller than $\frac{1}{\lambda} \phi^4$. This is a rather unexpected conclusion, which is an additional manifestation of the nonperturbative nature of preheating. This subject deserves separate investigation.

Different regimes of parametric resonance in the theory $\frac{m^2}{\lambda} \phi^2 + \frac{\lambda^2}{\phi} \phi^4 + \frac{\lambda^2}{\chi^2} \phi^2 \chi^2$ are shown in Fig. 11. We suppose that immediately after inflation the amplitude $\Phi(t)$ of the oscillating inflaton field is greater than $\frac{m}{\sqrt{\lambda}}$. If $\frac{g}{\sqrt{\lambda}} \lesssim \frac{\lambda M_p}{m}$, the χ-particles are produced in the regular stable resonance regime until the amplitude $\Phi(t)$ decreases to $\frac{m}{\sqrt{\lambda}}$, after which the resonance occurs as in the theory $\frac{m^2}{\lambda} \phi^2 + \frac{\lambda^2}{\chi^2} \phi^2 \chi^2$ [2]. The resonance never becomes stochastic.

If $\frac{g}{\sqrt{\lambda}} \gtrsim \frac{\lambda M_p}{m}$, the resonance originally develops as in the conformally invariant theory $\frac{\lambda}{4} \phi^4 + \frac{g^2}{\chi^2} \phi^2 \chi^2$, but with a decrease of $\Phi(t)$ the resonance becomes stochastic. Again, for $\Phi(t) \lesssim \frac{m}{\sqrt{\lambda}}$ the resonance occurs as in the theory $\frac{m^2}{\lambda} \phi^2 + \frac{\lambda^2}{\phi} \phi^2 \chi^2$. In all cases the resonance eventually disappears when the field $\Phi(t)$ becomes sufficiently small. As we already mentioned in [1,2], reheating in this class of models can be complete only if there is a symmetry breaking in the theory, i.e. $m^2 < 0$, or if one adds interaction of the field ϕ with fermions. In both cases the last stages of reheating are described by perturbation theory [16,17].

FIG. 11. Schematic representation of different regimes which are possible in the theory $\frac{m^2}{\lambda} \phi^2 + \frac{\lambda^2}{\phi} \phi^4 + \frac{\lambda^2}{\chi^2} \phi^2 \chi^2$ for $\frac{m}{\sqrt{\lambda}} \ll 10^{-1} M_p$, and for various relations between g^2 and λ in an expanding universe. The theory developed in this paper describes the resonance in the white area above the line $\Phi = \frac{m}{\sqrt{\lambda}}$. The theory of preheating for $\Phi < \frac{m}{\sqrt{\lambda}}$ is given in [2]. A complete decay of the inflaton is possible only if additional interactions are present in the theory which allow one inflaton particle to decay to several other particles, for example, an interaction with fermions $\bar{\psi} \psi \phi$.

Adding fermions does not alter the description of the stage of parametric resonance. Meanwhile the change of sign of m^2 does lead to substantial changes in the theory of preheating, see Fig. 12. We will investigate preheating in the theory $\frac{m^2}{\lambda} \phi^2 + \frac{\lambda^2}{\phi} \phi^4 + \frac{\lambda^2}{\chi^2} \phi^2 \chi^2$ in a separate publication [18]. Here we will briefly describe the structure of the resonance for various g^2 and λ neglecting effects of backreaction. This will give us a more general perspective on the theory of reheating.

First of all, at $\Phi \gg \frac{m}{\sqrt{\lambda}}$ the field ϕ oscillates in the same way as in the massless theory $\frac{\lambda}{4} \phi^4 + \frac{g^2}{\chi^2} \phi^2 \chi^2$. Moreover, the condition for the resonance to be stochastic remains the same as before: $\Phi \lesssim \frac{m}{\sqrt{\lambda}} \frac{\lambda M_p}{m}$, see Eq. (72).

However, as soon as the amplitude Φ drops down to $\frac{m}{\sqrt{\lambda}}$, the situation changes dramatically. First of all, depending on the values of parameters the field rolls to one of the minima of its effective potential at $\phi = \pm \frac{m}{\sqrt{\lambda}}$. The description of this process is rather complicated. Depending on the values of parameters and on the relation between $\sqrt{\langle \phi^2 \rangle}$, $\sqrt{\langle \chi^2 \rangle}$ and $\sigma \equiv \frac{m}{\sqrt{\lambda}}$, the universe may become divided into domains with $\phi = \pm \sigma$, or it may end up in a single state with a definite sign of ϕ. We will describe this bifurcation period in [18]. After this transitional period the field ϕ oscillates near the minimum of the effective potential at $\phi = \pm \frac{m}{\sqrt{\lambda}}$ with an amplitude $\Phi \ll \sigma = \frac{m}{\sqrt{\lambda}}$. These oscillations lead to parametric resonance with χ-particle production which can be (approximately) described as a narrow resonance in the first instability band of the Mathieu equation with
We have found that the behavior of the resonance with respect to χ-particle production is a non-monotonic function of g^2/λ. For example, for $g^2 = \lambda$ and for $g^2 = 3\lambda$ equation for the perturbations of the field χ has only one instability band, for $g^2 = \frac{n(n+1)}{2}$ there is only a finite number of instability bands, whereas for all other values of g^2 the number of instability bands is infinite.

It is interesting that χ-particle production is least efficient for $g^2 \ll \lambda$ and for $g^2 = 3\lambda$. For example, the characteristic exponent μ_{\max} for $g^2 = 2\lambda$ and for $g^2 = 8\lambda$ is almost 7 times greater than μ_{\max} for $g^2 = 3\lambda$, see Fig. 6. Meanwhile the characteristic exponent for the production of ϕ-particles in the theory $\frac{1}{2} \phi^4$ coincides with that of the field χ for $g^2 = 3\lambda$. Therefore χ-particle production is typically more efficient than the production of ϕ-particles (unless $g^2 \ll \lambda$).

In the conformally invariant theories the expansion of the universe does not hamper the resonance, so it ends only due to the backreaction of the produced particles. There are several different mechanisms which may terminate the parametric resonance. First of all, creation of particles leads to a decrease in the amplitude of oscillations of the field $\varphi = a\phi$, which otherwise would remain constant. This leads to a proportional decrease in the frequency of oscillations in terms of the conformal time η, which may shift the position of the instability band towards smaller momenta. There is also an opposing effect which increases the frequency of oscillations due to the interaction of the homogeneous inflaton field with the produced particles. Finally, quantum fluctuations of the fields ϕ and χ acquire contributions to their masses, which changes their spectra. A combination of all these effects leads to restructuring of the instability bands. This terminates the amplification of the leading modes which have been growing from the very beginning of preheating. Additionally, one may envisage effects related to rescattering of produced particles, which may terminate the resonance even somewhat earlier. In this respect it is interesting that our estimates ignoring the process of rescattering give results which are in a very good numerical agreement with the results of computer simulations of reheating in the theory $\lambda \phi^4$ performed in [5] where all of these effects including rescattering have been taken into account.

Rescattering may be more important for $g^2 \gg \lambda$ [9,10]. However, in this regime one may need to take into account possible small mass terms which should be present in realistic versions of the theory. As we have found, for $g^2 \gg \lambda$ these mass terms lead to a radical change in the structure of the resonance not at $\Phi \lesssim m/\sqrt{\lambda}$, as one...
could naively expect, but much earlier, at $\Phi \lesssim \sqrt{\frac{\pi^2 m^2}{3M_p^2}}$. In this regime the resonance becomes stochastic, the effective width of the resonance band increases, making it much more stable with respect to various backrereaction effects including rescattering [2].

We should emphasize again that preheating is but the first stage of reheating, which does not lead to a complete decay of the inflaton field in any models which we studied so far. The last stages of preheating are always described by the perturbation theory [16], which will be developed further in our subsequent publication [17]. To illustrate this point, we described the development of the inflationary universe scenario may be dramatically different from the standard lore of the hot Big Bang cosmology.

ACKNOWLEDGMENTS

The authors are grateful to Igor Tkachev for useful discussions. This work was supported by NSF grant AST95-29-225. The work by A.L. was also supported by NSF grant PHY-9219345. A.S. was supported by the Russian Foundation for Basic Research, grant 96-02-17591. A.L and A.S. thank the Institute for Astronomy, University of Hawaii for hospitality.

APPENDIX

Here we show how one can derive Eq. (34) or (40) for the characteristic exponent μ_k from the analytic solution (31). For simplicity, we will consider here the case $g^2 = \lambda$. Eq. (31) describes both solutions, $X_1(z)$ and $X_2(z)$. The resonant solution $X(z)$ consists of four monotonic parts within a single period of the inflaton oscillation, see Fig. 3. It turns out that at different quarters of the period either $X_1(z)$ or $X_2(z)$ correspond to the exponentially growing solution. Indeed, the square of the resonant solution within the first quarter of a period is

$$X_{1/4}^2(z) = X_0^2 \exp \left[\int_0^z \frac{dz}{M_1(z)} \left(1 - \frac{C}{\sqrt{z(1-z^2)}} \right) \right],$$

where $M_1(z)$ is given by (29), C is given by (32), and X_0^2 is the square of the resonant solution in the beginning of the period when $z = 0$.

Within the second quarter one has

$$X_{1/2}^2(z) = X_{1/4}^2(1) \exp \left[\int_1^z \frac{dz}{M_1(z)} \left(1 + \frac{C}{\sqrt{z(1-z^2)}} \right) \right].$$

Then the value of X^2 after half of a period is

$$X_{1/2}^2(z = 0) = X_0^2(z = 1) \exp \left(-2C \int_0^1 \frac{dz}{M_1(z)\sqrt{z(1-z^2)}} \right),$$

where the integral is understood as its principal value. The resonant solution has the generic form $X(z) = P(\pi z)e^{i\mu z}$, where $P(z)$ is a periodic function. Since P
has a period equal to half of the period of the inflaton oscillation, Eq. (75) is sufficient to find μ:

$$\frac{\mu T}{2} = -C \int_0^1 \frac{dz}{M_1(z) \sqrt{z(1-z^2)}} > 0.$$ (76)

The integral in this equation can be reduced to $I(\kappa^2)$ given by (35):

$$- \int_0^1 \frac{dz}{M_1(z) \sqrt{z(1-z^2)}} = \int_0^{\pi/2} d\theta \frac{\sin^{1/2} \theta}{1 + 2\kappa^2 \sin \theta} = I(\kappa^2).$$ (77)

[15] One could try to investigate the resonance in the theory $\frac{1}{2} \lambda \partial^4 \phi$ using an iteration series in the small parameter λ [3]. Unfortunately, this approach is not very informative since the actual parameter defining the strength of the resonance is not λ but $g^2/\lambda = 3$, which is not small.