The negative binomial distribution is self similar: If the spectrum over the whole rapidity range gives rise to a negative binomial, in absence of correlation and if the source is unique, also a partial range in rapidity gives rise to the same distribution. The property is not seen in experimental data, which are rather consistent with the presence of a number of independent sources. When multiplicities are very large self similarity might be used to isolate individual sources is a complex production process.
One of the first basic evidences observed in the field of many-particle production and nuclear collisions is the distribution of the multiplicity of the produced particles. Multiplicity distributions are measured both by looking at the whole spectrum of the produced particles and by looking only at a restricted segment, typically a rapidity interval. Both for theoretical and experimental reasons, one of the favorite parametrization of the multiplicity distribution [1], also in different rapidity intervals [2], is the negative binomial distributions (\(NB\)). A very detailed discussion of the experimental evidences, of the interpretations and also of the formalism used to deal with this kind of problems has been recently published [3]. In the case of a generic distribution the relation between the multiplicities of a restricted part of the spectrum and those arising from the whole spectrum is not trivial. In the present note we point out that for the \(NB\), on the contrary, a peculiar self-similarity property holds between the distributions obtained from different intervals of the spectrum.

We find convenient to make use of the generating functional formalism to deal with this kind of problems [4,5,6]. Let \(W_n(\xi_1,\ldots,\xi_n)\) be the normalized multiparticle exclusive distributions:

\[
\sum_n \int W_n(\xi_1,\ldots,\xi_n) d\xi_1,\ldots,d\xi_n = 1.
\]

The variables \(\xi\) can have different meanings and also represent more than one physical parameters. In high-energy collisions \(\xi\) could represent the rapidity \(y\) and the transverse momentum, if the distributions refer to incoming partons \(\xi\) could represent the fractional longitudinal momentum \(x\) and the impact parameter. The distributions may be obtained in the usual way from a generating functional \(Z\):

\[
W_n(\xi_1,\ldots,\xi_n) = \frac{1}{n!} \frac{\delta}{\delta J(\xi_1)} \cdots \frac{\delta}{\delta J(\xi_n)} Z[J] |_{J=0}
\]

and the normalization is expressed by \(Z[1] = 1\). Sometimes it will be useful also to use an unrenormalized generator \(G\) with \(Z[J] = G[J]/G[1]\)

The probability of producing \(n\) particles, in any configuration, is evidently given by:

\[
p_n = \int W_n(\xi_1,\ldots,\xi_n) d\xi_1,\ldots,d\xi_n = \frac{1}{n!} \left[\int \frac{\delta}{\delta J(\xi)} Z[J] |_{J=0} \right]^n = \frac{1}{n!} \left[\frac{\partial}{\partial \lambda} \right]^n Z[J+\lambda 1] |_{J=0,\lambda=0}
\]

\[
= \frac{1}{n!} \left[\frac{\partial}{\partial \lambda} \right]^n Z[\lambda 1] |_{\lambda=0} = \frac{1}{n!} \left[\frac{\partial}{\partial \lambda} \right]^n z(\lambda) |_{\lambda=0}.
\]

Let us now consider the situation where the interval in which the variables \(\xi\) lie is divided into two parts. Then for a particular choice of these variables it results:

\[
W_n(\xi_1,\ldots,\xi_n) = W_r(\xi'_1,\ldots,\xi'_r)W_s(\xi''_1,\ldots,\xi''_s)
\]

with \(r + s = n\). Taking into account all the possible choices of \(\xi'\) and \(\xi''\) it results:

\[
W_r(\xi'_1,\ldots,\xi'_r)W_s(\xi''_1,\ldots,\xi''_s) = \frac{1}{r!} \frac{\delta}{\delta J(\xi'_1)} \cdots \frac{\delta}{\delta J(\xi'_r)} \frac{1}{s!} \frac{\delta}{\delta J(\xi''_1)} \cdots \frac{\delta}{\delta J(\xi''_s)} Z[J] |_{J=0}.
\]
If we sum over all configurations in ξ'' the distributions in ξ' are:

$$W_r(\xi'_1, \ldots, \xi'_r) \cdot \sum \int W_s(\xi''_1, \ldots, \xi''_s) d\xi''_1, \ldots, d\xi''_s$$

A set of semi-inclusive distributions are obtained in this way since everything referring to the variables ξ'' is not observed. The generator of these new distributions is $Z' = Z[J' + \Theta'']$ where J' has as argument only ξ' i.e. $J'($$\xi''\times$) = 0, Θ'' is 1 for $\xi = \xi''$ and 0 for $\xi = \xi'$, Θ' is 1 for $\xi = \xi'$ and 0 for $\xi = \xi''$. The probability of finding n particles in the observed part of the spectrum is then:

$$p'_n = \frac{1}{n!} \left[\frac{\partial}{\partial \lambda} \right]^n Z[\lambda \Theta' + \Theta''] |_{\lambda=0} = \frac{1}{n!} \left[\frac{\partial}{\partial \lambda} \right]^n z'(|\lambda=0). \quad (4)$$

Two particular cases of interest are:

The Poissonian distribution, which is obtained by defining:

$$U = \int J(\xi) \cdot D(\xi) d\xi, \quad \tilde{u} = \int D(\xi) d\xi, \quad G = e^{U[J]}, \quad G_1 = e^{\tilde{u}}$$

and finally: $Z = e^{U[J] - \tilde{u}}$

If one looks only at the spectrum in ξ' by integrating over ξ'', the new generator is

$$G' = e^{U[J(\xi')] + U[\Theta'']}$$

since $\tilde{u} = U[\Theta'] + U[\Theta'']$ it results $Z' = Z$.

The NB distribution, whose generating functional is:

$$f(U) = \frac{(1 - u')^{-k}}{(1 - \tilde{u})^{-k}} \quad (5)$$

while the generator of the semi-inclusive spectra in ξ' is:

$$\frac{(1 - U[J(\xi']) - U[\Theta''])^{-k}}{(1 - \tilde{u})^{-k}}.$$

This corresponds to a pure redefinition of U since one gets the new generator by going from $Z = f\{U\}$ to $Z' = f\{U/(1 - U[\Theta''])\}$. This means that the NB is transformed into a NB, with the same exponent as the original one. Clearly, in both cases, the mean multiplicity is changed.

The generating function of the multiplicity distribution in this case is explicitly given as

$$z(\lambda) = \frac{(1 - \lambda u' - u'')^{-k}}{(1 - \tilde{u})^{-k}}, \quad (6)$$

2
or, after defining \(r = u' / (1 - \bar{u}) \), in a different and sometimes more convenient form

\[
z(\lambda) = [1 + (1 - \lambda)r]^{-k}.
\] (6')

In term of these parameters one gets for the mean multiplicity \(\bar{n} = kr \) and for the dispersion \(D^2 = kr(r + 1) \).

A survey of other kinds of one-body distributions shows that this property of self-similarity if only a part of the spectrum is observed is quite unlikely,* one may therefore wonder whether this property is peculiar of the NB distribution, with the Poissonian distribution as a limiting case, or it is also found in other cases.

It will be shown that in the simplest conditions the property of self-similarity is unique of the NB distribution. In this case one can give for the non normalized generating functional the representation

\[
G = g(U);
\]

the probabilities \(p' \), eq (4), can be obtained from a generating function \(g(\lambda u' + u'') \) where

\[
u' = \int D(\xi')d\xi' , \quad u'' = \int D(\xi'')d\xi'' , \quad u' + u'' = \bar{u}.
\] (7)

The invariance of the functional form of the distribution, when considering only limited parts of the spectrum is expressed as: \(g(x + y) = N(y)g(x \cdot f(y)) \) because in this way the relation \(p'_n = e^n p_n / C \) is produced, and this property can be expressed by saying that the distribution remains the same. The arbitrary normalization \(g(0) = 1 \), which is always possible, gives \(N(y) = g(y) \). So finally:

\[
g(x + y) = g(y)g(x \cdot f(y))
\] (8)

By taking the first and the second derivative with respect to \(x \) and setting then \(x = 0 \), two differential equations for \(g(y) \) are obtained

\[
\dot{g}(y) = \dot{g}(0)g(y)f(y) \quad \ddot{g}(y) = \ddot{g}(0)g(y)f(y)^2.
\] (8')

It follows then

\[
g(y)\ddot{g}(y) = R\dot{g}(y)^2 \quad \text{with:} \quad R = \ddot{g}(0)/\dot{g}(0)^2.
\]

With the usual position

\[
g(y) = \exp\left[\int_0^y q(w)dw\right],
\]

which ensures the correct normalization \(g(0) = 1 \), the equation becomes

\[
\dot{q}(y) = (R - 1)q(y)^2
\] (8'')

The solution of eq. \((8'') \) is:

\[
q(y) = \frac{1}{(1 - R)y + S}^{-1}.
\]

* e.g. the NB is a particular case of a hypergeometric distribution, but a generic hypergeometric distribution does not have this kind of self-similarity
Redefining the constants as $k = 1/(R - 1)$ and $u = (R - 1)/S$ one obtains

$$g_u(y) = [1 - uy]^{-k},$$

(9)

This expression is the generating functional of a binomial distribution whose exponent is, in general, not integer. The meaning of the function $g(\xi)$ requires that it be positive together with all its derivatives in the origin, this certainly happens if the exponent is negative, i.e. $R > 1$ and the parameter u is positive. A different possibility is given by positive integer exponent and negative u. This corresponds, however to a distribution with only a finite number of terms.

The two differential equations eq.(8’) are not completely equivalent to the functional relation eq.(8), but they follow from it. The conclusion is that the self similarity implies the NB (which could be not sufficient) but it has already shown that the NB implies the self similarity, so the two properties are equivalent. The generating functional of the NB is more conveniently expressed by writing $g_u(\lambda)$ as $g_1(\lambda u)$ and suppressing from now on the index 1; the normalized distribution is given by $z(\lambda) = g(\lambda u)/g(u)$.

The limit $R \to 1$ gives rise to the solution $g(y) = \exp[y/S]$ i.e. it yields the generating function for a Poissonian distribution.

The experimental evidences and their elaboration [7,8] show that the NB distribution holds well for different intervals of observed rapidity but that the parameters present strong variations. Real world does not shows the sharp self-similarity property discussed above. The actual analysis was done in a frame where $Z = f\{U\}$ so that case genuine two-body correlation were absent.

When correlations are present the relation between exclusive and semi-inclusive distribution is more complicated and there is no obvious reason for the self similarity to hold. However this way does not seems too promising: either the effect of the correlations is so strong that the NB distribution is destroyed or the overall effect is not very important but then the parameters of the NB distribution are changed too little to agree with the experimental evidence. An example will be shown in the Appendix.

A more interesting possibility is given by the often considered possibility [1,2,8] of considering multiple sources in the rapidity range.

Let us consider a simple case where a source extends in rapidity from y_o to y_1 and another source is present from y_1 to y_2: when we observe the produced particles in a rapidity range that ends at $y_f < y_1$ then the second source in inactive, the parameter r grows with y_f and does the multiplicity, the parameter k stays evidently constant. When y_f goes beyond y_1 the first source is frozen (r has attained its final value) and the second gives a contribution still growing with y_f. The generating function is now

$$z(\lambda) = [1 + (1 - \lambda)r]^{-k} \cdot [1 + (1 - \lambda)r_f]^{-k}$$

(10)

and does not yield a NB distribution. One could force the function $z(\lambda)$ to become a NB-generating function:

$$z_e(\lambda) = [1 + (1 - \lambda)r_e]^{-k_e}$$

(11)
by defining the equivalent parameters in such a way that multiplicity and dispersion acquire the correct values. The prescription is expressed through the auxiliary parameter \(\rho = r_f/r \).

\[
 r_e = r(1 + \rho^2)/(1 + \rho), \quad k_e = k(1 + \rho^2)/(1 + \rho^2).
\]

In order to explore how good this representation it is useful to calculate the higher central momenta \(\mu_s = \langle (n - <n>)^s \rangle \). The third central momentum indicates that the worst situation is produced for \(r_f \approx \frac{1}{3}r \) and a similar indication is obtained by examining the fourth cumulant \(\kappa_4 = \mu_4 - 3D^2 \); in this situation the error cannot exceed 12%. One can also examine in details the individual distribution of the multiplicity produced respectively by the generating functions eq.(10) and eq.(11); it results that the approximation is better than it could seems at first sight because large deviations between the two series of numbers is found for multiplicities very large, typically a discrepancy of the order 12% arises for multiplicities of the order of 25 which gives sizeable contributions to the higher momenta but are not very relevant in the analysis of the data; for values form 6 to 9, where the maximum of the production rate lies the difference is less than 1%. These values are obtained for \(r_f \approx \frac{1}{3}r \), in other cases the discrepancy is definitely smaller. Anyhow, without dwelling furthermore on a particular form of approximation the conclusion that we try to draw is that a number of sources each of them giving rise to a strict NB distribution within a definite range of rapidity yields a distribution not very different when taken over the whole rapidity range.

If one would try to construct a model for high-energy particle production which implies sources extended in rapidity, one would like to determine the extension in rapidity of the individual sources. A qualitative examination of the distributions associated to events with 2,3,4 jets suggests that the extension of the individual source cannot be the same in the different families of events but, better, that it is larger in the 2-jets events an becomes narrower and narrower in passing to the configurations with 3 and 4 jets. The extension in \(y \) of the sources cannot become too narrow, if this should happen so that the number of sources grows too much, the generating function would approach the corresponding expression for the Poissonian distribution.

When many sources are active the present description of the multiple production acquires many similarities with the “clan” description [8]. On the other hand a feature of the two-source model discussed previously is that it is possible that only a part of the source is active, the description we start with is in fact differential in \(y \). The model lacks informations on the transverse dynamics which certainly enters also in the multiplicity distributions. In fact the total multiplicity is larger when the jets number is larger [7,8], in the description here presented this would require that more than one source is active in the same rapidity interval, what looks very artificial if we neglect the transverse degrees of freedom but becomes quite natural when transverse degrees of freedom are taken into account The model of multiple sources just described is anyhow still rather rough, in particular one would not expect sharp beginning and a sharp end for the rapidity range where the source is active. The present accuracy of the experimental data, however, does not allow to discriminate the actual model from different possibilities. A further point is that the sources have been taken as equivalent: the presence of internal quantum numbers, which may affect the production mechanism [10] have not been taken into account.
A rather general feature, associated with the presence of different sources ordered in rapidity is a weak, long-range correlation in rapidity among the particles. This may be seen in the following way: the generating functional eq.(5) is substituted by a product

$$f(U) = \prod_n \frac{[1 - U_n]^{-k}}{[1 - \tilde{u}_n]^{-k}}; \quad (5')$$

every factor n acts in a different range of rapidity. If the two particles lie in the same rapidity interval, two body distribution is

$$D(\xi_1, \xi_2) = Ak(k + 1)D(\xi_1)D(\xi_2)[1 - \tilde{u}_{n'}]^2;$$

whereas if the two particles lie in different rapidity intervals it results

$$D(\xi_1, \xi_2) = Ak^2D(\xi_1)D(\xi_2)[1 - \tilde{u}_{n'}][1 - \tilde{u}_{n''}].$$

In both cases $A = \prod_n [1 - \tilde{u}_n]^k$.

In conclusion the main points of the present analysis are summarized: The success of the NB in describing the multiparticle distributions supports the possibility that the NB is the actual distribution arising from a single source. The characterizing property of the NB is the self similarity: if the source is unique, when considering a part of the spectrum one obtains the same NB distribution which describes the total spectrum. The large variation of the NB parameters as a function of the rapidity interval in multiparticle production in therefore a strong indication for the presence of many sources. The alternative possibility is the presence of correlation within a single source. If the distribution in the whole spectrum is a NB, correlations most probably produce different distributions when looking at different parts of the spectrum. On the contrary, as in the model discussed above, the superposition of different sources, each giving rise to a NB distribution, can easily produce distributions which are close to a NB with altered parameters.

Hence one could consider, in high energy processes with very high multiplicity, to use the self similarity property in order to isolate different sources which are active in a complex production process. Events could be organized by considering different topologies e.g. number of jets, impact parameter (in heavy ion collisions) etc. and one could look at multiplicity distributions in different regions of phase space. The individual sources are isolated when, subdividing further the phase space regions, the corresponding multiplicity distributions are self similar.

Acknowledgments

This work was partially supported by the Italian Ministry of University and of Scientific and Technological Research by means of the Fondi per la Ricerca scientifica - Università di Trieste.
In this appendix only the two-body correlations are studied, so beyond the linear term
\[U[J] = \int J(\xi)D(\xi)d\xi \] also a term \[V[J, J] = \frac{1}{2} \int C(\xi_1, \xi_2)J(\xi_1)J(\xi_2)d\xi_1d\xi_2 \] is used with the condition \(V[1, 1] = 0 \). Then a generating functional, with these restrictions, can be expressed as:
\[Z = g(U[J], V[J, J])/g(U[1]) \] so that the corresponding generating function for the multiplicities is
\[z(\lambda) = g(\lambdau)/g(\bar{u}). \] If one looks only to one part of the spectrum, the one can define the corresponding multiplicities according to eq (4) and the result is:
\[z(\lambda) = g(\lambda u' + u'', \lambda^2 v' + 2\lambda \bar{v} + v'')/g(\bar{u}). \] (A1)

The terms \(\bar{u}, u', u'' \) have been already defined in eq.(5), the definition of the \(v \)-terms, where the symmetry of \(C \) has been used, is:
\[v' = \frac{1}{2} \int C(\xi_1', \xi_2')d\xi_1'd\xi_2', \quad \bar{v} = \frac{1}{2} \int C(\xi_1', \xi_2')d\xi_1'd\xi_2', \quad v'' = \frac{1}{2} \int C(\xi_1'', \xi_2'')d\xi_1''d\xi_2''. \] (A2)

the initial condition \(V[1, 1] = 0 \) is translated into \(v' + 2\bar{v} + v'' = 0 \) which will be used in order to eliminate the term \(\bar{v} \).

Now one can look to particular cases and the most interesting seems to be precisely a distribution which produces a \(NB \) multiplicity when integrated over the whole spectrum but contains two-body correlations. The simplest form in which the generating functional may be written is:
\[Z = f(\mathcal{U}) = \left[\frac{1 - \mathcal{U} - \mathcal{V}}{1 - \bar{u}} \right]^{-k} \] (A3)

and when only a part of the spectrum is observed and the rest is integrated over the generating function of the multiplicity is:
\[z(\lambda) = \frac{[1 - \bar{u}]^k}{[1 - (u'' + \lambda u') - (\lambda^2 v' + 2\lambda \bar{v} + v'')]^k} \] (A4).

It is useful to write the same expression in a more compact form \(i.e. \):
\[z(\lambda) = N \cdot [1 - \lambda a - \lambda^2 b]^{-k}, \] (A5)

having defined
\[a = \frac{u' - v' - v''}{1 - u'' - v''}, \quad b = \frac{v'}{1 - u'' - v''}, \quad N = [1 - a - b]^k = \left[\frac{1 - \bar{u}}{1 - u'' - v''} \right]^k \] (A6)

The new expression for the multiplicity distribution is now obtained by expanding \(z(\lambda), \) as given in eq (A5), in powers of \(\lambda \); the result is
\[z(\lambda) = N \cdot \sum_n (i\lambda \sqrt{b})^n C_n^{(k)}(ia/2\sqrt{b}), \] (A7)

where \(C_n^{(k)} \) represents the Gegenbauer polynomial \([9] \) of index \(k \) and order \(n \). This kind of expansion does not look very transparent, anyhow from the explicit form of the Gegenbauer
polynomials it is easily seen that every term of the sum is real, as obviously it must be; it is also straightforward to verify that when the effect of the correlations vanishes, so v', v'', b go to zero, the usual binomial distribution is recovered.

If the correlations are present but not very strong the terms v will be small and one can perform an expansion in b. To the first order in b the expression of $z(\lambda)$ is

$$z(\lambda) = N \cdot \left[(1 - \lambda a)^{-k} (1 - 2kb/a^2) + \left((1 - \lambda a)^{-k+1} + (1 - \lambda a)^{-k-1} \right) kb/a^2 \right]. \quad (A8)$$

With this expansion the original binomial distribution is reproduced, with some small correction for the parameter, but other satellite binomial distributions arise, whose exponent is shifted by ± 1, so that the distance from the original distribution increases with the power of the of small parameter representing the effect of the correlations.

Also in presence of correlation there is the limiting relation between the NB and the Poissonian distribution. In formal way this may be obtained through the definitions:

$$U = P/k, \quad V = Q/k, \quad u = p/k, \quad v = q/k$$

then in the limit $k \to \infty$ out of eq.s (A3,A4) it results

$$Z = \exp[P + Q - p_1]$$

$$z(\lambda) = \exp[-(p' + q'') + \lambda(p' - q' - q'') + \lambda^2 q']$$

and for what concerns eq (A7) one can use the limiting expressions of the Gegenbauer polynomials yielding the Hermite polynomials [9].

What appears, beyond the details of the calculations that necessarily refer to simplified examples, is that in presence of two-body correlations the partial spectra are necessarily different from the complete ones: if the correlations play a minor role, then the NB distribution is approximately preserved, but with the too strong result of having a constant k-parameter, strong correlations may simulate a variable k-parameter but modify strongly the distribution, which is no longer a NB-distribution, not even approximately.
References

5. R. Blankenbecler Phys. Rev. D8, 1611 (1973)