SMOOTH GROUP ACTIONS ON 4-MANIFOLDS AND
THE SEIBERG-WITTEN INVARIANTS : II

Fuquan FANG

Institut des Hautes Études Scientifiques
35, route de Chartres
91440 – Bures-sur-Yvette (France)

Juin 1997

IHES/M/97/49
Smooth Group Actions on 4-manifolds and the Seiberg-Witten Invariants: II

Fuquan FANG

Abstract

In this paper we study the Seiberg-Witten invariants of 4-manifold with a finite group (or a compact Lie group) acting on. Among other things, we will prove the following result:

Let X be a smooth closed 4-manifold. Suppose $H_1(X, \mathbb{R}) = 0$ and $b_2^+ \geq 2$, where b_2^+ is the rank of $H_2^+(X)$. Let \mathcal{C} be a Spinc-structure on X. Assume that \mathcal{C} is equivariant with respect to an \mathbb{Z}_p action on X, where p is a prime. If \mathbb{Z}_p acts on the space $H_2^+(X, \mathbb{R})$ of harmonic self dual 2-forms trivially. Then the Seiberg-Witten invariant

$$SW(\mathcal{C}) = 0 (\text{mod } p)$$

if $k_i \leq \frac{1}{2}(b_2^+ - 1)$ for $i = 0, 1, \ldots, p - 1$. Here $k_i = m_i - n_i$, m_i and n_i are the dimensions of the ω^i-eigenspaces of the linear \mathbb{Z}_p actions on $\ker D_A$ and $\text{coker } D_A$ respectively, $\omega = e^{2\pi i/p}$ is the p-th unit root. $D_A : \Gamma(W^+) \to \Gamma(W^-)$ is the Dirac operator corresponding to \mathcal{C} and an equivariant connection A on $\text{det } W^+$.

§1 Introduction

In this paper we study the Seiberg-Witten invariant of smooth 4-manifolds with the symmetry of some finite group or compact Lie group. This is a continuation of [3] where we have used the Seiberg-Witten moduli space of a Spin manifold in the presence of a finite group action. We will prove some mod p vanishing theorems for the Seiberg-Witten invariants. The strategy of this work is to use the "finite dimensional approximation" technique due to Furuta to interpret the Seiberg-Witten invariant as certain equivariant degree. In this sequel equivariant K-theory especially the Adams ψ-operation plays a key role. In his celebrated paper [12], E.Witten proved that the Seiberg-Witten invariant for a Kähler manifold is ± 1 for the standard Spinc-structure. C.Taubes [11] has generalized this result to symplectic 4-manifolds. It is may be interesting to compare these with our vanishing theorem, because this would exclude the existence of certain group actions on symplectic 4-manifold.

To state our main results, we need to give some necessary preliminaries. Let X be a closed Riemannian Spinc four manifold. Let \mathcal{C} be a Spinc structure. A Spinc structure
consists of a principal Spin^c-bundle $P_{\text{Spin}^c}(X)$ over X with a Spin^c-equivariant bundle map

$$P_{\text{Spin}^c}(X) \to P_{\text{SO}(X) \times P_{U(1)}(X)}$$

The first Chern class of the bundle $P_{U(1)}(X)$ is called the canonical class of the Spin^c-structure. Let us write W^+ and W^- to denote the associated complex spinor bundles. Let $L = \det W^+$, the determinant line bundle on X. Note that L is the associated line bundle of $P_{U(1)}(X)$.

Let G be a finite group or a compact Lie group acting on X preserving the orientation. We can assume that G preserves the isometries without loss of generality. Hence G acts on the frame bundle $P_{\text{SO}(X)}$. We say that the Spin^c-structure C is preserved by the G-action if $P_{U(1)}(X)$ is a principal G-$U(1)$ bundle, and the product action of G on $P_{\text{SO}(X)} = P_{U(1)}(X)$ lifts to the bundle $P_{\text{Spin}^c}(X)$. We say that C is G-equivariant if the induced G-action on $P_{\text{SO}(X)} = P_{U(1)}(X)$ lifts to a G-action on $P_{\text{Spin}^c}(X)$. For such a Spin^c-structure, if A is a G-connection on L, the Dirac operator D_A is G-equivariant. Therefore the index

$$\text{ind}_G D_A = \ker D_A - \text{coker} D_A \in R(G)$$

In particular, if $G = \mathbb{Z}_p$ is a cyclic group and C is \mathbb{Z}_p-equivariant. Then the eigenvalues of the \mathbb{Z}_p-actions on $\ker D_A$ and $\text{coker} D_A$ are the p-th unit roots of 1. Let $\omega_p = e^{2\pi \sqrt{-1}/p}$ and let $k_i = m_i - n_i$, where m_i and n_i are the dimensions of the ω_p^i-eigenspace of $\ker D_A$ and $\text{coker} D_A$ respectively. Obviously $k_0 + k_1 + \cdots + k_{p-1} = \text{ind} D_A$. For convenience we use b_i to denote the i-th Betti number of X and b_i^+ for the rank of $H^i(X, \mathbb{R})$.

Our main results are as follows

Theorem 1 Let X be a smooth closed Spin^c four manifold with $b_1 = 0$ and $b_2^+ \geq 2$. Let C be a Spin^c structure equivariant with respect to a smooth \mathbb{Z}_p action on X, where p is a prime. If $b_2^+(X/\mathbb{Z}_p) = b_2^+$, then the Seiberg-Witten invariant

$$SW(C) = 0 \text{(mod} p)$$

when $k_i \leq \frac{1}{2}(b_2^+ - 1)$ for $i = 0, 1, \cdots, p - 1$.

Recall that for an oriented 4-manifold X with $H_1(X, \mathbb{Z}_2) = 0$, a Spin^c structure on X is completely determined by its canonical class. In this case, C is equivariant with respect to an \mathbb{Z}_p action on X for an odd p if and only if L is a \mathbb{Z}_p-$U(1)$-bundle. On the other hand, by [6] L is an \mathbb{Z}_p-$U(1)$-bundle if and only if $c_1(L) \in H^2(X, \mathbb{Z})$ is \mathbb{Z}_p-invariant.

However, for p even, sometimes the lifted action to $P_{\text{Spin}^c}(X)$ must have higher order. For example, if $p = 2$ and X is spin, let C be the Spin^c structure with trivial canonical class, then C is \mathbb{Z}_2-equivariant if and only if this \mathbb{Z}_2 action on X has only isolated fixed points [1].

Let $\tau : X \to X$ be an involution preserving the Spin^c-structure C. We say that τ is of even type if C is \mathbb{Z}_2-equivariant, where \mathbb{Z}_2 is generated by τ. Otherwise, we say that τ is of odd type. In the latter case, it is easy to see that

$$\tau : P_{\text{SO}(X) \times P_{U(1)}(X)} \to P_{\text{SO}(X) \times P_{U(1)}(X)}$$
can be lifted to an fiberwise diffeomorphism $\hat{\tau} : P_{\text{Spin}^c}(X) \to P_{\text{Spin}^c}(X)$ such that $\hat{\tau}^2 = -1$. Therefore, the eigenvalues of $\hat{\tau}$ on the spinor bundles W^+ and W^- are $\pm \sqrt{-1}$. If A is a \mathbb{Z}_2-connection on L, the eigenvalues of $\hat{\tau}$ on $\ker D_A$ and $\coker D_A$ are $\pm \sqrt{-1}$. Define $k_+ := m_+ - n_+$ and $k_- := m_- - n_-$, where m_\pm and n_\pm denote the dimensions of $\sqrt{-1}$ and $-\sqrt{-1}$ eigenspaces of $\hat{\tau}$ on $\ker D_A$ and $\coker D_A$ respectively. We have the following

Theorem 2 Let X be a smooth closed Spin^c four manifold. Suppose $b_1 = 0$ and $b_2^+ \geq 2$. Let C be the Spin^c-structure on X. Suppose that $\tau : X \to X$ is a smooth odd type involution with respect to C such that $b_2^+(X/\tau) = b_2^+$. Then the Seiberg-Witten invariant

$$SW(C) = 0(\text{mod}2)$$

if $k_+ \leq \frac{1}{2}(b_2^+ - 1)$.

Let \mathcal{M}_C denote the Seiberg-Witten moduli space. Define $2d$ to be the dimension of \mathcal{M}_C. It is well known [12] that $2d = \frac{1}{4}(c_1(L)^2 - 2\chi(X) - 3\sigma(X))$. By the definition of the Seiberg-Witten invariant, if $d \not\in \mathbb{Z}$ or negative, $SW(C) = 0$. It is conjectured that $SW(C) = 0$ if $d \geq 1$, X is simply connected or $b_1(X) = 0$. Furuta announced an interesting partial result towards this conjecture

Theorem 3 (Furuta) Let X be a Spin^c 4-manifold. Assume that $b_1 = 0$, $b_2^+ \geq 2$. Let C denote the Spin^c structure. Let $2d$ denote the dimension of the moduli space \mathcal{M}_C. Then the Seiberg-Witten invariant $a_iSW(C) \in \mathbb{Z}$ for $1 \leq i \leq d$, where a_i is given by the following power series $\left\{ \frac{\log(1+x)}{x} \right\} = 1 + a_1x + a_2x^2 + \cdots$. Here $l = \frac{b_2^+ - 1}{2}$.

So far we have not seen the details for the proof. For convenience we will include some details of the proof.

If $d = 0$, by the dimension formula it is easy to check that $\text{ind} D_A = l + 1$, where $l = \frac{1}{2}(b_2^+ - 1)$ as above. On the other hand, $\text{ind} D_A \in R(G)$ can be calculated in terms of the fixed point data using the Atiyah-Singer index theorem. Thus $k_0, k_1, \cdots, k_{p-1}$ and k_\pm in theorems 1 and 2 are determined by the local data about the fixed point set.

Corollary 4 Let (X, ω) be a closed simply connected symplectic 4-manifold with $\Lambda^{0,2}T^*(X)$ trivial. Let τ be an involution on X preserving the symplectic structure. If $b_2^+(X) \geq 2$ and τ has no isolated fixed point, then $b_2^+(X/\tau) < b_2^+(X)$.

Proof: By [11] there is a canonical Spin^c-structure on X say C, with determinant line bundle $L = \Lambda^{0,2}T^*(X)$. By assumption, we conclude that C is \mathbb{Z}_2-equivariant and X is a spin manifold.

Suppose $b_2^+(X/\tau) = b_2^+(X)$, in other words τ acts trivially on $H_2^2(X, \mathbb{R})$. By the Atiyah-Singer G-index theorem it is easy to verify that $\text{ind} D_A = 0$, because that τ has no isolated fixed point. Thus $k_+ = k_- = \frac{1}{2} \text{ind} D_A$. Since the moduli space \mathcal{M}_C is zero dimensional, $\text{ind} D_A = l + 1$. By Theorem 2 the Seiberg-Witten invariant $SW(C) = 0(\text{mod}2)$. This contradicts with Taubes’ result [11] that $SW(C) = \pm 1$. Thus we conclude that $b_2^+(X/\tau) < b_2^+(X)$, q.e.d.
To conclude this section, let us give a remark. It is quite obvious that our results can be applied to study \mathbb{Z}_p actions on 4-manifolds with nontrivial Seiberg-Witten invariant. For example, it may be applied to study group actions on K_3-surface. This is related to a question, namely whether there is homologically trivial \mathbb{Z}_p action on K_3 surface. For $p = 2$, it is already shown [10] that no such nontrivial involution even topologically. However, it is not hard to construct such a homologically trivial topological action for odd p.

The rest of this paper is organized as follows. In §2 we briefly recall some necessary details about the Seiberg-Witten theory and the finite dimensional approximation method. A key result for the rest, Theorem 2.4, will be proved. In §3 we give a proof of Theorem 3 following Furuta. In §4 we study the Seiberg-Witten invariant of 4-manifolds with an involution action on. The proof theorem 1 for $p = 2$ and theorem 2 will be given there. In §5 we carry out the analogue of §4 for odd order group action and prove the rest of theorem 1.

This work was carried out during the author’s visit to Institut des Hautes Études Scientifiques. The author wishes to thank IHES for the support and Professor J. Bourguignon for his hospitality. He also wishes to thank Z Shen for reading the first draft of this paper carefully and give many suggestions on the english writing.

§2 Seiberg-Witten Theory

In this section we first give a brief review on Seiberg-Witten theory and Furuta’s “finite dimensional approximation” method. Using this method, we will interpret the Seiberg-Witten invariant of a 4-manifold with a group action as certain equivariant degree.

Throughout the rest of this paper let X be a smooth, closed, connected, oriented Riemannian 4-manifold satisfying $b_1(X) = 0$ and $b_2^+(X) \geq 2$. Recall that there always exist $Spin^c$ structures on X, which are one to one correspondent to classes in $H^2(X, \mathbb{Z})$. Let \mathcal{C} be a $Spin^c$ structure on X. As above we use W^+ and W^- to denote the associated complex spinor bundles. Let $L = \det W^+$, the determinant line bundle on X. Recall that when $H^1(X, \mathbb{Z}_2) = 0$, C is entirely determined by the topology of L.

Let $i = \sqrt{-1}$. Using the Clifford multiplication, we will identify $i\Omega^+$ with the Lie algebra bundle $i su(W^+)$. The Seiberg-Witten’s monopole equations are a pair of equations for a unitary connection A on L and a section $\phi \in \Gamma(W^+)$:

\begin{align*}
D_A \phi &= 0 \\
F_A^+ &= q(\phi)
\end{align*}

Here $q(\phi) := \phi \otimes \phi^* - \frac{|\phi|^2}{2} Id$, $D_A : \Gamma(W^+) \to \Gamma(W^-)$ is the twisted Dirac operator. F_A^+ is the self dual part of the curvature F_A.

The gauge group $\mathcal{G}_L = Map(X, U(1))$ acts on the set of solutions. Let \mathcal{M}_c denote the moduli space, the quotient of the set of solutions by the gauge group.

Let $\mathcal{A} := \{\text{unitary connections on } L\}$. $\Omega^+ := \{\text{self dual part of harmonic 2-forms}\}$.

4
The above equations give a G_L-equivariant map \mathcal{F}

$$
\mathcal{A} \times \Gamma(W^+) \to i\Omega^+ \times \Gamma(W^-) \\
(A, \phi) \mapsto (F_A^+, -q(\phi), D_A \phi)
$$

The moduli space $\mathcal{M}_c = \mathcal{F}^{-1}(0)/G_L$.

To study the moduli space and its property, one has to work in the completed Banach space with suitable Sobolev norm. By [4], one needs to complete $\Gamma(W^+)$ and Ω^1 with the L^2_4-norm and complete $\Gamma(W^-)$ and Ω^2 with the L^2_3-norm. For the sake of simplicity we use the same notations for these completed spaces.

Instead of viewing the moduli space as the orbits space of the gauge group G_L, we consider the restriction of the map \mathcal{F} to a slice at a base point $A_0 \in \mathcal{A}$. Note that $\mathcal{A} = A_0 + i\Omega^1$. The slice is given by $T_{A_0} := \{ A_0 + ia|d_{A_0}^* a = 0 \} \subset \mathcal{A}$. Let Ω^1_{c} denote the space of co-closed 1-forms, i.e., $\Omega^1_{c} = \text{ker}\{d^* : \Omega^1 \to \Omega^0\}$. Observe that T_{A_0} is an affine space diffeomorphic to $i\Omega^1_{c}$. The stabilizer of the gauge group G_L action at A_0 is S^1 since $b_1(X) = 0$.

Let $A - A_0 = ia$. Note that $D_A \phi = D_{A_0} \phi + ia \cdot \phi$ where $i\Omega^1$ acts on $\Gamma(W^+)$ by the Clifford multiplication. Define a map

$$
\mathcal{F}_0 : \quad i\Omega^1_{c} \times \Gamma(W^+) \to i\Omega^+ \times \Gamma(W^-) \\
(ia, \phi) \mapsto (d^+(ia) - q(\phi), D_{A_0} \phi + ia \cdot \phi)
$$

In view of this point, the moduli space \mathcal{M}_c can be naturally identified with $\mathcal{F}_0^{-1}(\mu_0)/S^1$, where $\mu_0 = -F_{A_0}^+ \in i\Omega^+$, S^1 acts on $\Gamma(W^+)$ by the complex multiplication and acts trivially on Ω^1.

Observe that $\mathcal{F}_0 = \mathcal{D} + \mathcal{Q}$, where

$$
\mathcal{D} = (d^+, D_{A_0}) : \quad i\Omega^1_{c} \times \Gamma(W^+) \to i\Omega^+ \times \Gamma(W^-) \\
(ia, \phi) \mapsto (-q(\phi), ia \cdot \phi)
$$

$$
\mathcal{Q} : \quad \Gamma(W^+) \to i\Omega^+ \times \Gamma(W^-)
$$

For $\nu \in i\Omega^+$, we define $\mathcal{M}_c(\nu) = \mathcal{F}_0^{-1}(\mu_0 + \nu)/S^1$ to be the perturbed moduli space. Under the assumption of $b_2^+(X) \geq 1$, by [7] there is a dense set of ν such that $\mathcal{M}_c(\nu)$ is a closed smooth manifold of dimension $2d = \frac{1}{4}(c_1(L))^2 - (2\chi(X) + 3\sigma(X))$. Moreover, this moduli space does not contain reducible point and nonsmooth point. Consequently S^1 acts freely on $\mathcal{F}_0^{-1}(\mu_0 + \nu)$. By [12] the moduli space $\mathcal{M}_c(\nu)$ has a natural orientation.

If $d = 0$, by Witten's definition, the Seiberg-Witten invariant $Sw(c)$ is the algebraic sum of points in $\mathcal{M}_c(\nu)$ with signs. If $d \geq 0$, $Sw(c) = \chi^d[\mathcal{M}_c(\nu)]$. Here χ is the Euler class of the free S^1 action.

When $b_2^+(X) \geq 2$, it is well known (c.f.[9]) that the Seiberg-Witten invariant is independent of the perturbation and the Riemannian metric on X.

Now let us review Furuta's finite dimensional approximation method. Let $U = \Gamma(W^+)$ and $U' = \Gamma(W^-)$. For each positive real number $\lambda \in \mathbb{R}$, we use U_{λ} and U_1' to denote the vector spaces spanned by the eigenvectors of the operator $D_{A_0}^* D_{A_0}$ and $D_{A_0} D_{A_0}^*$ with
eigenvalues less than or equal to \(\lambda \), respectively. Similarly, we define \(V_\lambda \) and \(V_\lambda' \) to be the vector spaces spanned by the eigenvectors of the operator \(d_+^* d_+ \) and \(d_+d_+^* \) with eigenvalues less than or equal to \(\lambda \), where \(d_+^* : i\Omega^1_c \to i\Omega^+ \). Recall that both \(d_+ \) and \(D_{A_0} \) are elliptic operators. \(U_\lambda, U_\lambda', V_\lambda \) and \(V_\lambda' \) are finite dimensional spaces.

We let \(p_\lambda : U' \times V' \to U'_\lambda \oplus V'_\lambda \) denote the orthogonal projection. The composition of \(p_\lambda \) and the restriction of \(\mathcal{F}_0 \) to \(U_\lambda \oplus V_\lambda \) give a map

\[
\mathcal{F}_\lambda : U_\lambda \oplus V_\lambda \to U'_\lambda \oplus V'_\lambda
\]

Observe that \(\mathcal{F}_\lambda \) is a \(S^1 \)-equivariant map, where \(S^1 \) acts on \(\Omega^1 \) trivially and on \(\Gamma(W^\pm) \) by the complex multiplication.

Using compactness of the moduli space (more precisely the boundness), Furuta proved that

Lemma 2.1: (Furuta [4]) Let \(\mu_0 \) and \(\nu \) be as above. For sufficiently large \(R \in (0, \infty) \), there exists a real number \(\Lambda \in (0, \infty) \) such that for \(\lambda \geq \Lambda \), \(\mathcal{F}_\lambda^{-1}(\mu_0 + \nu) \) does not intersect with the sphere of radius \(R \) in \(U_\lambda \oplus V_\lambda \).

Recall that the moduli space \(\mathcal{M}_c(\nu) \) has no reducible point for a generic \(\nu \). In other words, \(\mathcal{F}_0^{-1}(\mu_0 + \nu) \) does not intersect with \(0 \times V \). The similar idea leads to

Lemma 2.2: (Furuta) For a generic parameter \(\nu \) and sufficiently large \(R \in (0, \infty) \), there exists a real number \(\Lambda \in (0, \infty) \) such that \(\mathcal{F}_\lambda^{-1}(\mu_0 + \nu) \) does not intersect with \(0 \times V_\lambda \cap B_\lambda \) for \(\lambda \geq \Lambda \), where \(B_\lambda \) is the ball of radius \(R \) at the origin in \(U_\lambda \oplus V_\lambda \).

For the sake of simplicity, we write \(W_\lambda = U'_\lambda \oplus V'_\lambda \) and \(\nu_0 = \mu_0 + \nu \). From the above lemmas, one can see that \(\mathcal{F}_\lambda \) gives a \(S^1 \)-equivariant map

\[
\mathcal{F}_\lambda : (B_\lambda, \partial B_\lambda \cup 0 \times V_\lambda \cap B_\lambda) \to (W_\lambda, W_\lambda - \nu_0)
\]

Note that the quotient \(B_\lambda/(\partial B_\lambda \cup 0 \times V_\lambda) \) is equivariantly homotopic to the Thom complex of the product bundle \(S(U_\lambda) \times (V_\lambda \oplus \mathbb{R}) \to S(U_\lambda) \). The pair \((W_\lambda, W_\lambda - \nu_0) \) is equivariantly homotopic to \((W_\lambda, W_\lambda - 0) \). Thus passing to the quotient we get a \(S^1 \)-map

\[
f : S^{W_\lambda \oplus \mathbb{R}} \wedge S(U_\lambda) \to S^{W_\lambda}
\]

Let \(\Phi \in H^*_S(S^{W_\lambda}, \mathbb{Z}) \) denote the equivariant Thom class. By the Thom isomorphism theorem there exists an \(\theta \in H^{2(m-1-d)}_S(S(U_\lambda)) \approx H^{2(m-1-d)}(\mathbb{C}P^{m-1}) \), \(m = \text{dim} U_\lambda \) and \(2d = \text{dim} \mathcal{M}_c \), such that \(f^*(\Phi) = \sigma(\theta) \), where \(\sigma \) is the suspension isomorphism. As \(H^{2(m-1-d)}(\mathbb{C}P^{m-1}) \cong \mathbb{Z} \) with a generator \(x^{m-1-d} \) where \(x \in H^2(\mathbb{C}P^{m-1}) \) is a generator. Hence we can regard \(\theta \) as an integer given by its coefficient of \(x^{m-1-d} \). This integer can also be viewed as the \(S^1 \)-equivariant "degree" of \(f \).

Theorem 2.3 (Furuta): Let \(X \) be a \(\text{Spin}^c \) 4-manifold. Suppose that \(b_1(X) = 0 \) and \(b_2^+ \geq 2 \). Let \(C \) denote the \(\text{Spin}^c \) structure. Then the Seiberg-Witten invariant \(SW(C) = \theta \) for sufficiently large \(\lambda \).

Let \(G \) be a finite group (or a compact Lie group). Suppose \(G \) acts on a Riemannian manifold \(X \) by isometries preserving the \(\text{Spin}^c \)-structure \(C \). Thus \(G \) acts on \(P_{SO}(X) \times \)
$P_{U(1)}(X)$ and this action lifts to an action of a group \hat{G} on the bundle $P_{\text{Spin}^c}(X)$ and hence on \mathcal{W}^\pm. Here \hat{G} is an extension of G.

Without loss of generality we assume that the connection A_0 on L are G-invariant. Hence, $\mu_0 = -F_{A_0}^+ \in \Omega_+^2$ is also G-invariant.

Note that \hat{G} acts on Ω^1, Ω_+^2 factoring through a G action. \hat{G} also acts on $\Gamma(W^\pm)$. It is easy to see that both \mathcal{D} and \mathcal{Q} are equivariant with respect to the $S^1 \times \hat{G}$ actions.

Theorem 2.4: Let X be a Spinc 4-manifold. Assume that $b_2^+ \geq 2$ and $b_1 = 0$. Suppose G acts on X preserving the Spinc-structure \mathcal{C}. If $H_2^+(X/G, \mathbb{R}) \neq 0$. Then there is a $S^1 \times \hat{G}$-map $f : S^V_{\nu} \otimes \ast S(U_\nu) \to S^{W^\nu}$ such that $SW(C) = \theta$ for sufficiently large λ.

Proof: First we warn that, in general it is impossible to choose a self dual G-invariant 2-form ν so that the moduli space $\mathcal{M}_\nu(\nu)$ is regular (i.e., every point is smooth). However, if $b_2^+(X/G) \geq 1$, we can choose a G-invariant $\nu \in i\Omega_+^2$ such that $\mathcal{M}_\nu(\nu)$ has no reducible point.

To see this, note that $(A, 0)$ is a point of $\mathcal{M}_\nu(\nu)$ if and only if $d^+ (i\omega) = \nu + \mu_0$, where $iA = A - A_0$, and that $d^+ (i\Omega^1) \subset i\Omega_+^2$ is a codimension $b_2^+(X)$ subspace, say \mathcal{H}. Hence for any ν such that $\nu + \mu_0$ is not in \mathcal{H}, the moduli space $\mathcal{M}_\nu(\nu)$ has no reducible solution. Note that μ_0 is G-invariant as A_0 is a G-invariant connection.

As $H_2^+(X/G, \mathbb{R}) \neq 0$, we can choose a G-invariant self dual harmonic 2-form ν such that $\nu + \mu_0 \notin \mathcal{H}$. Thus $\mathcal{M}_\nu(\nu)$ consists of irreducible solutions. Moreover, G acts on the moduli space $\mathcal{M}_\nu(\nu)$. Notice that $\mathcal{M}_\nu(\nu)$ is not necessary regular.

Next we choose a perturbation ν' such that the moduli space $\mathcal{M}_\nu(\nu')$ consists of irreducible smooth points. Hence $\nu' + \mu_0 \notin \mathcal{H}$. By assumption $b_2^+(X) \geq 2$, we conclude that $\Omega_+^2 - \mathcal{H}$ is connected. Choose an arc in $\Omega_+^2 - \mathcal{H}$, say $\nu(t)$ with $0 \leq t \leq 1$, to join $\nu' + \mu_0$ and $\nu + \mu_0$. For the same reason as above, $\mathcal{M}_\nu(\nu(t))$ has no reducible solution for all t. In other words, $\mathcal{F}_0^{-1}(\nu(t)) \subset (U - 0) \times \mathcal{V}$, where U and \mathcal{V} are as above.

For each t, $\mathcal{M}_\nu(\nu(t))$ is compact. That is, $\mathcal{F}_0^{-1}(\nu(t))$ is compact. It is easy to adapt the proofs of Lemmas 2.1 and 2.2 to show that there is a map

$$\mathcal{F}_\nu(3) : (B_\lambda, \partial B_\lambda \cup 0 \times V_\lambda \cap B_\lambda) \to (W_\lambda, W_\lambda - \nu(t))$$

Note that S^1 acts on $\nu(t)$ trivially. The pair $(W_\lambda, W_\lambda - \nu(t))$ has the same S^1-equivariant homotopy type as $(W_\lambda, W_\lambda - 0)$. Thus as above, by passing to the Thom complex, $\mathcal{F}_\nu(0)$ and $\mathcal{F}_\nu(1)$ give two maps $f, f' : S^V_{\nu} \otimes \ast S(U_\nu) \to S^{W_\lambda}$. Moreover, f and f' are S^1-equivariant homotopic. f is a $S^1 \times \hat{G}$-equivariant map since ν is G-invariant.

By regarding f as an S^1-equivariant map, we get an integer θ as before, which is essentially the equivariant degree of f. On the other hand, by Theorem 2.3 the Seiberg-Witten invariant $SW(C)$ is equal to θ'. Clearly $\theta = \theta'$ because $f \simeq_{S^1} f'$. This proves the theorem. q.e.d.

§3 Seiberg-Witten Invariant of 4-manifolds of Non-simple Type

A smooth closed Spinc four manifold is called of simple type if its Seiberg-Witten invariant is zero, provided the moduli space is of nonzero dimensional. It is still a wide
open problem that whether every Spin\(^c\) four manifold is of simple type. In [5] Furuta announced an interesting theorem, Theorem 3, which asserts that the Seiberg-Witten invariant is divisible by certain integer related to the dimension of the moduli space. In this section we give a detailed proof of his theorem, Theorem 3. We include a proof here since so far we have not yet seen the details.

Proof of Theorem 3: Let \(f : S^{v_{\Lambda} \oplus \mathbb{R}} \wedge S(U_\Lambda) \to S^{U_{\Lambda} \oplus V_\Lambda} \) be the \(S^1 \)-equivariant map in \(\S 2 \). Note that \(S^1 \) acts on \(V_\Lambda \) and \(V_{\Lambda}' \) trivially. Let \(ES^1 \to BS^1 \) denote the universal circle bundle. There is a map

\[
\hat{f} : ES^1 \times_{S^1} (S^{V_\Lambda \oplus \mathbb{R}} \wedge S(U_\Lambda)) \to ES^1 \times_{S^1} S^{U_{\Lambda} \oplus V_\Lambda}
\]

Notice that the \(S^1 \) action on \(S^{U_{\Lambda} \oplus V_\Lambda} \) has a fixed point \(\infty \). Hence the sphere bundle
\(ES^1 \times_{S^1} S^{U_{\Lambda} \oplus V_\Lambda} \to BS^1 \) has a section sending every point \(p \in BS^1 \) to \(\infty \), say \(s(\mathbb{S}^1) \).

Clearly the quotient
\(ES^1 \times_{S^1} S^{U_{\Lambda} \oplus V_\Lambda}/s(\mathbb{S}^1) = T(\xi) \)

is the Thom complex of \(\xi \). Here \(\xi = ES^1 \times_{S^1} (U_{\Lambda}' \oplus V_{\Lambda}') \to BS^1 \) is the associated vector bundle.

It is easy to see that \(\xi = m' H \oplus \varepsilon n' \), where \(H \) is the Hopf complex line bundle on \(BS^1 \), and \(\varepsilon \) is the trivial real line bundle. \(m' \) is the complex dimension of \(U_{\Lambda} \) and \(n' \) the real dimension of \(V_{\Lambda} \).

On the other hand, because that \(S^1 \) acts freely on \(S(U_\Lambda) \),
\[
ES^1 \times_{S^1} (S^{V_{\Lambda} \oplus \mathbb{R}} \wedge S(U_\Lambda)) \simeq S^{V_{\Lambda} \oplus \mathbb{R}} \wedge \mathbb{C}P^{m-1}
\]
where \(m = \text{dim} U_{\Lambda} \).

By Theorem 2.3 we have
\[
\sigma(SW(C)x^{m-d-1}) = \hat{f}^*(\Phi_{\xi})
\]
where \(\sigma \) is the suspension isomorphism, \(\Phi_{\xi} \in H^{2m'+n'}(T(\xi), \mathbb{Z}) \) is the Thom class and \(x \in H^2(\mathbb{C}P^{m-1}, \mathbb{Z}) \) is a generator.

Without loss of generality we assume that \(n' \) is even. Otherwise, we can suspend the map \(\hat{f} \) once. Note that the \(S^1 \)-equivariant degree is the same under the suspension. For an even \(n' \), we can regard the real trivial bundle \(\varepsilon n' \) as a trivial complex line bundle of dimension \(\frac{n'}{2} \). By the definition, for \(d \not\equiv \mathbb{Z}, SW(C) \) is defined to be zero. Thus we assume that \(d \in \mathbb{Z} \). It follows that \(l = \frac{1}{2}(b^2_d - 1) \in \mathbb{Z} \).

Let \(\tau_{\xi} \in K(T\xi) \) denote the Thom class of K-theory. By [8] the Chern character
\[
ch(\tau_{\xi}) = \left\{ \frac{1 - \varepsilon x}{x} \right\}^{m'} \Phi_{\xi}
\]
Recall that \(K(\mathbb{C}P^{m-1}) \simeq \mathbb{Z}[T]/T^m = 0 \), where \(T = H - 1 \in K(\mathbb{C}P^{m-1}) \) and \(H \) is the Hopf line bundle. Let \(y = \log(1 + T) \in K(\mathbb{C}P^{m-1}) \). It is easy to show that \(ch(H) = e^x \) and \(ch(y) = x \).
Consider the homomorphism
\[\hat{f}^* : K(T\xi) \to K(S^{V_{\Lambda}} \otimes \mathbb{C}P^{m-1}) \]
As the Chern character commutes with f^*,
\[ch(\hat{f}^*\tau_{\xi}) = \left(1 - \frac{e^x}{x}\right)^{m'} \hat{f}^*(\Phi_{\xi}) = SW(C)(1 - e^x)^{m'}x^l = (-1)^{m'} SW(C)ch(T^{m'}y') \]
Here $l = \frac{1}{2}(b^+_2 - 1) = m - m' - d - 1$ by the dimension formula for the moduli space.

Since $ch : K(\mathbb{C}P^{m-1}) \to H^*(\mathbb{C}P^{m-1})$ is a rational isomorphism. By the above identity we conclude that
\[\hat{f}^*(\tau_{\xi}) = (-1)^{m'} SW(C)\left(\frac{log(1 + T)}{T}\right)^{iT^{m'-d-1}} \in \frac{Z[T]}{T^m = 0} \]
Thus the coefficients of the right side of the above equality must be integers. It follows that $a_i SW(C) \in Z$ for $i \leq d$, where a_i is the coefficient of T^i of the power series $\left(\frac{log(1 + T)}{T}\right)^i$.
q.e.d.

§4 Seiberg-Witten Invariant and Involutions on 4-manifolds

Let X be a $Spin^c$ 4-manifold and let C be the $Spin^c$-structure. Suppose $b_1(X) = 0$ and $b^+_2(X) \geq 2$. For convenience we assume that the signature of X, $\sigma(X)$, is nonpositive. In this section we will apply Theorem 2.4 to study the Seiberg-Witten invariant of X in the case when there exists an involution on X preserving C. We assume that the involution acts on the space of self dual harmonic 2-forms, $H^2_\Sigma(X, \mathbb{R})$, trivially throughout the rest. However, the argument of this section can be easily adapted to consider other cases.

As before we let \mathcal{M}_Λ to denote the Seiberg-Witten moduli space. $dim\mathcal{M}_\Lambda = 2d$. By the definition, if $d \not\in Z$, $SW(C) = 0$. Thus we only need to consider the case of $d \in Z$.

Our goal is to prove Theorem 2 and Theorem 1 in the case of $p = 2$ advertised in the introduction.

As in §2, for any $\Lambda \in \mathbb{R}$, let U_Λ, U'_Λ denote the direct sums of the λ-eigenspaces of $D_{\Lambda_0}D_{\Lambda_0}$ and $D_{\Lambda_0}D_{\Lambda_0}$ for $\lambda \leq \Lambda$ respectively, A_0 is an equivariant connection with respect to the Z_2-action on the bundle L.

4.0 Even Type Involution Let us consider the case of an even type involution acting on X as above. In this case, Z_2 acts on the bundle $P_{Spin^c}(X)$. Hence U_Λ, U'_Λ are complex Z_2-modules. We define $m := dim_{\mathbb{C}} U_\Lambda$ and m_+, m_- to be the dimensions of the $+1$ and -1 eigenspaces. Similarly $n := dim_{\mathbb{C}} U'_\Lambda$ and n_+, n_- for the $+1$ and -1 eigenspaces of the Z_2-action on U'_Λ. Clearly $m_+ + m_- = m$ and $n_+ + n_- = n$.

By Theorem 2.4 there exists a $S^1 \times Z_2$-equivariant map $f : S^{V_{\Lambda}} \otimes S(U_\Lambda) \to S^{W_\Lambda}$. Here $W_\Lambda = U'_\Lambda \oplus V'_\Lambda$. By the construction in §2 we have that $V'_\Lambda \cong H^2_\Sigma(X, \mathbb{R}) \oplus V_\Lambda$ as a real Z_2-module. By assumption Z_2 acts on $H^2_\Sigma(X, \mathbb{R})$ trivially. Thus, as a real Z_2-module, $V'_\Lambda \oplus V_\Lambda \cong V_{\Lambda} \otimes \mathbb{C} \oplus \mathbb{C}^{l+1}$ where $l = \frac{1}{2}(b^+_2 - 1)$ is an integer. This is because that d is an integer.
Obviously $V_A \oplus V_A \oplus \mathbb{R} \oplus \mathbb{R}$ is the realization of the complex $S^1 \times \mathbb{Z}_2$-module $(V_A \oplus \mathbb{R}) \otimes \mathbb{C}$. $V_A \oplus \mathbb{R} \oplus W_A$ is the realization of the complex $S^1 \times \mathbb{Z}_2$-module $U_A \oplus V_A \otimes \mathbb{C} \oplus \mathbb{C}^{+1}$. Here S^1 acts on $(V_A \oplus \mathbb{R}) \otimes \mathbb{C}$ and $V_A \otimes \mathbb{C} \oplus \mathbb{C}^{+1}$ trivially.

Suspending f by $S^{V_A \oplus \mathbb{R}}$ we have a map $\sigma(f) : S^{(V_A \oplus \mathbb{R}) \otimes \mathbb{C}} \wedge S(U_A) \to S^{V_A \oplus \mathbb{R}} \wedge S^{W_A}$. Notice that the S^1-equivariant degree of f and $\sigma(f)$ are the same. But for the latter it is more convenient to use K-theory.

By the Thom isomorphism theorem $K_{S^1 \times \mathbb{Z}_2}((S^{W_A \oplus V_A \oplus \mathbb{R}}) \otimes \mathbb{C}) \cong R(S^1 \times \mathbb{Z}_2)$. Let $\tau \in K_{S^1 \times \mathbb{Z}_2}((S^{W_A \oplus V_A \oplus \mathbb{R}}) \otimes \mathbb{C}) \cong K_{S^1 \times \mathbb{Z}_2}(S(U_A))$ denote the K-theory Thom class. Similarly, we have

$$K_{S^1 \times \mathbb{Z}_2}((S^{V_A \oplus \mathbb{R}}) \otimes \mathbb{C}) \wedge S(U_A)) \cong K_{S^1 \times \mathbb{Z}_2}(S(U_A))$$

Applying the $K_{S^1 \times \mathbb{Z}_2}$-functor to the equivariant map $\sigma(f)$, we get a class $\beta_f \in K_{S^1 \times \mathbb{Z}_2}(S(U_A))$ such that

$$\sigma(f)^*(\tau) = \beta_f \tau_{V_A \oplus \mathbb{R} \oplus \mathbb{C}} \quad (4.1)$$

Note that $R(S^1) \cong \mathbb{Z}[t, t^{-1}]$, where t corresponds to the standard 1-dimensional complex representation. Let $\xi \in R(\mathbb{Z}_2)$ denote for the irreducible 1-dimensional complex representation.

Lemma 4.1: $K_{S^1 \times \mathbb{Z}_2}(S(U_A)) \cong R(S^1 \times \mathbb{Z}_2)/(1-t)^{m+}(1-\xi t)^{m-}$.

Proof: Since the unit ball $B(U_A)$ is equivariantly contractible to the origin, $K_{S^1 \times \mathbb{Z}_2}(D(U_A)) \cong R(S^1 \times \mathbb{Z}_2)$. By the Thom isomorphism theorem, $K_{S^1 \times \mathbb{Z}_2}(S^{U_A}) \cong R(S^1 \times \mathbb{Z}_2)$. On the other hand, the K-theoretical Euler class for the bundle $U_A \to 0$ is $(1-t)^{m+}(1-\xi t)^{m-}$. By the exact sequence

$$0 \to K_{S^1 \times \mathbb{Z}_2}(S^{U_A}) \to K_{S^1 \times \mathbb{Z}_2}(D(U_A)) \to K_{S^1 \times \mathbb{Z}_2}(S(U_A)) \to 0$$

for the cofibration $S(U_A) \to D(U_A) \to S^{U_A}$ it follows that $K_{S^1 \times \mathbb{Z}_2}(S(U_A))$ is the cokernel of the homomorphism

$$(1-t)^{m+}(1-\xi t)^{m-} : R(S^1 \times \mathbb{Z}_2) \to R(S^1 \times \mathbb{Z}_2)$$

This completes the proof. q.e.d.

Now we want to use the Adams ψ-operation to the both sides of the equation (4.1). Recall that for a complex vector bundle γ on Y, the Thom class $\tau_\gamma \in K(T\gamma)$,

$$\psi^q(\tau_\gamma) = \rho^q(\gamma)\tau_\gamma$$

Here $\rho^q(\gamma) \in K(Y)$ is the Bott canibalistic class of γ. Recall that $\rho^q(1) = q$ and

$$\rho(\eta) = (1 + \eta + \cdots + \eta^{q-1})$$

if η is a line bundle.

Applying ψ^q to the equality (4.1) it follows that

$$\psi^q(\beta_f)\rho^q(V_A \otimes \mathbb{C} \oplus \mathbb{C})\tau_{V_A \otimes \mathbb{R} \oplus \mathbb{C}} = \beta_f\rho^q(U_A' \oplus V_A \otimes \mathbb{C} \oplus \mathbb{C}^{+1})\tau_{V_A \otimes \mathbb{R} \oplus \mathbb{C}}$$
Hence

$$\psi^q(\beta_f) = q^{l} \beta_f \rho^q(U'_A)$$

On the other hand, because that \mathbb{Z}_2 acts on U'_A with n_+-times $(+1)$-eigenvalues and n_--times (-1)-eigenvalues. S^1 acts on U'_A by the complex multiplication. Therefore $U'_A \cong n_+ t + n_- t \xi$ as a $S^1 \times \mathbb{Z}_2$-module. From the multiplicative property of Bott class it follows that

$$\rho^q(U'_A) = (1 + t + \cdots + t^{q-1})^{n_+} (1 + t \xi + \cdots + t^{q-1} \xi^{q-1})^{n_-}$$

Substituting this into the above equation we have

$$\psi^q(\beta_f) = q^{l} \beta_f (1 + t + \cdots + t^{q-1})^{n_+} (1 + t \xi + \cdots + t^{q-1} \xi^{q-1})^{n_-} \quad (4.2)$$

It is easy to verify that:

Lemma 4.2: There is a short exact sequence

$$0 \to R(S^1 \times \mathbb{Z}_2)/(1-\xi t)^{m-} \to R(S^1 \times \mathbb{Z}_2)/(1-t)^{m+} (1-\xi t)^{m-} \to j \to R(S^1 \times \mathbb{Z}_2)/(1-t)^{m+} \to 0$$

Here $i(z) = (1-t)^{m-} z$ and $j(z) = z$ the forgetful homomorphism.

Now we want to study the class β_f defined in the equation (4.1). By Lemma 4.1 we understand β_f as an element of the ring $R(S^1 \times \mathbb{Z}_2)$ subject to the the relation $(1-t)^{m+}(1-\xi t)^{m-} = 0$. If we ignore the \mathbb{Z}_2 action, the image of β_f in $R(S^1)/(1-t)^{m+} = 0$ gives an β. That is, $\beta = \beta_f(t,1)$, substitute 1 for ξ in an expression of β_f. The following result is already proved in §3 during the proof of Theorem 3.

Proposition 4.3: $\beta = (-1)^n SW(C)(\frac{\log(1+T)}{T})^l \psi^{m-d-1}$, where $T = 1-t$.

Now let us first consider the case of $d = 0$, i.e., the moduli space is zero dimensional.

Lemma 4.4: If $d = 0$ and $0 < k^+ = m_+ - a_+ < l + 1$, then $j(\beta_f) = 0$.

Proof: Let $T = 1-t$ and $y = 1-\xi \in R(\mathbb{Z}_2)$. Recall that $\xi^2 = 1$.

Let $\beta_f = \sum_j (a_j + b_j \xi) T^j$. By Proposition 4.3, $\beta_f(t,1) = c T^{m-1}$ and up to sign, c is the Seiberg-Witten invariant. Thus $a_j + b_j = 0$ if $j < m - 1$.

Now let us prove that $a_j = 0$ if $j \leq m_+ - 1$. Substituting $q = 3$, $t = 1-T$ and $\xi = 1-y$ to the equation (4.2), we get

$$\sum_j (a_j + b_j \xi) (3T - 3T^2 + T^3)^j = 3^l (3 - 3T + T^2)^{n_+} (3 - y - 3T + y T + T^2)^{n_-} \sum_j (a_j + b_j \xi) T^j$$

If $j < m - 1$ is the minimal number such that $a_j \neq 0$. The coefficients of T^j in the both sides of the above equation give

$$3^l a_j y = 3^{l+n_+} (3 - y)^{n_-} a_j y$$

It is easy to show that for any nonnegative integer r, $(3 - y)^r y \equiv y$. Thus the above identity holds only if $a_j = 0$, provided $j < l + n_+$.

11
By $d = 0$ we get that $m - 1 = n + l$. On the other hand, by the assumption $m_{+} \leq l_{+} n_{+}$. Therefore $a_{j} = 0$ for $j \leq m_{+} - 1$ and hence the image of β_{f} in $R(S^{1} \times \mathbb{Z}_{2})/(1 - t)^{m_{+}}$ is zero. q.e.d

From Lemmata 4.4 and 4.2 it follows that there is an $f(t, \xi) \in R(S^{1} \times \mathbb{Z}_{2})/(1 - t)^{m_{-}}$ such that $\beta_{f} = (1 - t)^{m_{+}} f(t, \xi)$.

Lemma 4.5: If $d = 0$ and $0 < k_{+} < l + 1$, then there is an integer a such that $f(t, \xi) = a(1 + \xi)(1 - t)^{m_{-}}$.

Proof: Let $T = 1 - t \xi$ for this moment. Let us write $f(t, \xi) = \sum_j (a_{j} + b_{j} \xi)T_{j}$. By Proposition 4.3, $\beta_{f}(t, 1) = c(1 - t)^{m_{-}}$. Thus $a_{j} + b_{j} = 0$ for $j < m_{-} - 1$.

Let $j_{0} = m_{-} - 1$ and $\theta = (3 - 3T + T^{2})$. Applying the equation (4.2) with $q = 3$ we get

$$
(1 + t + t^{2})^{k_{+}} \left\{ \sum_{j \leq m_{-} - 2} a_{j} y(T\theta)^{j} + (a_{j_{0}} + b_{j_{0}} \xi)(T\theta)^{j_{0}} \right\} = 3^{L} \theta^{m_{-} - 1} \left\{ \sum_{j \leq m_{-} - 2} a_{j} y T^{j} + (a_{j_{0}} + b_{j_{0}} \xi) T^{j_{0}} \right\}
$$

Note that $1 + t + t^{2} = 3 - 3T + T^{2} + (T - 1)y$. Therefore, as in the proof of the above lemma, comparing the coefficients of T^{j} in this equation we get $a_{j} = 0$ for $j \leq m_{-} - 2$. The rest of the equation reads

$$
3^{L} (3 - y)^{k_{+}} (a_{j_{0}} + b_{j_{0}} \xi) T^{j_{0}} = 3^{L} \theta^{m_{-} - 1} (a_{j_{0}} + b_{j_{0}} \xi) T^{j_{0}}
$$

(4.3)

Note that $c = a_{j_{0}} + b_{j_{0}}$ and $a_{j_{0}} + b_{j_{0}} \xi = c - b_{j_{0}} y$. It is easy to verify that

$$
(3 - y)^{k_{+}} = \frac{1}{2} (1 - 3^{k_{+}}) y + 3^{k_{+}}
$$

and $y(3 - y)^{k_{+}} = y$. The assumption $d = 0$ implies that $k_{+} + k_{-} = l + 1$ and so it is easy to verify that $l + n_{-} = j_{0} + k_{+}$. Substituting these to (4.3) we get

$$
(3^{L} - 3^{j_{0}}) b_{j_{0}} = 3^{j_{0}} c 3^{k_{+} - 1} - \frac{c}{2}
$$

Therefore $c = 2b_{j_{0}}$ if $k_{+} = 0$ and hence $a_{j_{0}} = b_{j_{0}}$. Let $a = a_{j_{0}}$. We get $f(t, \xi) = a(1 + \xi)(1 - t)^{m_{-}, -1}$. q.e.d

Proof of Theorem 1 for $p = 2$: By Lemmata 4.4 and 4.5, if $d = 0$ and $0 < k_{+} \leq l$, $\beta_{f} = a(1 + \xi)(1 - t)^{m_{+}}(1 - t \xi)^{m_{-}}$. Substituting $\xi = 1$ we get $\beta = 2a(1 - t)^{m_{-}}$. By Proposition 4.3, this implies that the Seiberg-Witten invariant $SW(C)$ is even. This proves Theorem 1 for $p = 2$ and $d = 0$. The proof for $d \geq 1$ is similar. One only needs to replace m by $m - d$ in the proof of lemmanata 4.4 and 4.5 and consider the image of β_{f} in the truncated ring $R(S^{1} \times \mathbb{Z}_{2})/(1 - t)^{m_{+} - d}(1 - t \xi)^{m_{-}}$. q.e.d

REMARK: It is possible to get a stronger conclusion for $d \geq 1$ by a more careful calculation. We will not do this here since $d = 0$ is the most interesting case in the Seiberg-Witten theory and also for the applications.
4.6 Odd Type Involutions. Let us consider a Spinc 4-manifold X with an odd type involution. In this case, there is an \mathbb{Z}_4-action on the principal bundle $P_{\text{Spin}^c}(X)$ and the spinor bundles W^\pm, where the generator of $\mathbb{Z}_2 \subset \mathbb{Z}_4$ acts as $-id$ on W^\pm. Hence for a generator $g \in \mathbb{Z}_4$, the eigenvalues of the induced linear action of g on the eigenspaces of $D_{A_0}D^*_{A_0}$ and $D^*_{A_0}D_{A_0}$ are $\pm \sqrt{-1}$. As in the subsection 4.0, for $\Lambda \geq 0$, let U_Λ and U'_Λ denote the direct sum of eigenspaces of $D_{A_0}D^*_{A_0}$ and $D^*_{A_0}D_{A_0}$ with eigenvalues no larger than Λ. Let m_+ and m_- for the dimensions of U_Λ and U'_Λ respectively. Note that $m_+ - n_+$ and $m_- - n_-$ are independent of Λ. Let $k_+ = m_+ - n_+$, $k_- = m_- - n_-$.

The argument to show Theorem 2 is parallel to the case for an even type involution. Thus we only give a sketch of the proof. In this case, by the similar argument we get an equation

$$\beta_f \in K_{S^1 \times \mathbb{Z}_4}(S(U_\Lambda)) \cong R(S^1) \otimes R(\mathbb{Z}_4)/(1 - t \zeta)^{m_+}(1 - t \zeta^3)^{m_-}$$

Here $\zeta \in R(\mathbb{Z}_4)$ is an irreducible 1-dimensional representation. Moreover, β_f satisfies the following analogue equation of (4.2):

$$\psi^3(\beta_f) = q t^s \beta_f(1 + t \zeta + \cdots + t^{s-1} \zeta^{s-1})^{n_+}(1 + t \zeta^3 + \cdots + t^{s-1} \zeta^{3(s-1)})^{n_-}$$

(4.4)

To understand this element β_f, it is convenient to consider the forgetful homomorphism

$$\iota : R(S^1) \otimes R(\mathbb{Z}_4)/(1 - t \zeta)^{m_+}(1 - t \zeta^3)^{m_-} \to R(S^1) \otimes R(\mathbb{Z}_2)/(1 - t \zeta)^{m_+ + m_-}$$

Note that $\iota(\beta_f)$ can be regarded as the class corresponding to the trivial involution on X but acting as $-id$ on W^\pm. First let us present the following analogue of lemma 4.2:

Lemma 4.7: There is an extension

$$0 \to R(S^1 \times \mathbb{Z}_4)/(1 - \zeta)^{m_-} \to R(S^1 \times \mathbb{Z}_4)/(1 - \zeta t)^{m_+}(1 - \zeta^3 t)^{m_-} \to R(S^1 \times \mathbb{Z}_4)/(1 - \zeta t)^{m_+} \to 0$$

Here $i(z) = (1 - \zeta)^{m_+} z$ and $j(z) = z$ the forgetful homomorphism.

Proof of Theorem 2: We claim that $j(\beta_f) = 0$ if $d = 0$. A useful point is to consider the image of β_f under ι as produced from an \mathbb{Z}_2 action on the spinor bundles W^\pm by -1 but on X trivially. Thus most of the arguments of the last subsection can be carried over to show that $\iota(\beta_f) = (a + b \zeta)(1 - t \zeta)^{m-1}$ for some integers a, b. However, a and b are not necessary the same, since the final assumption on k_+ does not hold for the trivial involution.

Let $T = 1 - \zeta t$ and

$$\beta_f = \sum_i (a_i + b_i \zeta + c_i \zeta^2 + d_i \zeta^3) T^i$$

The above fact about $\iota(\beta_f)$ implies that $a_i + c_i = 0$ and $b_i + d_i = 0$ for $i < m - 1$. To show that β_f has zero image under the homomorphism j, it suffices to show that $a_i = b_i = 0$ for $i < m_+ - 1$.

Similarly substituting $q = 3$ to the equation (4.4) we get

$$\psi^3(\beta_f) = 3^i \beta_f(1 + t \zeta + t^2 \zeta^2)^{n_+}(1 + t \zeta^{-1} + t \zeta^2)^{n_-}$$
The same argument of lemma 4.4 applies to prove that $a_i = b_i = 0$ for $i \leq l + n_+$. Hence $j(\beta_f) = 0$ for $d = 0$ because $m_+ - 1 \leq l + n_+$ in this case.

Consequently, we can write $\beta_f = (1 - t^i t^m) f(t, \zeta) / (1 + \zeta^2)^m$ by Lemma 4.7. The argument of Lemma 4.5 can be modified to show that, if $d = 0$ and $0 < k_+ \leq l$, there are integers a, b such that $\beta_f = (a + b \zeta)(1 + \zeta^2)^m f(t, \zeta)$. Substituting $\zeta = 1$ to β_f we get $\beta_f(t, 1) = 2(a + b) T^{-m - 1}$. Thus the Seiberg-Witten invariant $SW(C)$ is even by Proposition 4.3. The case of $d \geq 1$ is similar, just as in the case for even type involution. q.e.d.

§5 Odd Order Group Action and Seiberg-Witten Invariant

In this section we study the Seiberg-Witten invariants of Spin^c 4-manifolds with some \mathbb{Z}_p action for p an odd prime. We will give a proof of Theorem 1 for the case of p odd. Recall that U_Λ and U'_Λ are the direct sum of the eigenspaces of the Dirac operators $D_{A_0} D_{A_0}$ and $D_{A_0} D'_{A_0}$ with eigenvalues less than or equal to Λ. Notice that \mathbb{Z}_p acts linearly on U_Λ and U'_Λ. Similarly, \mathbb{Z}_p acts linearly on V_Λ and V'_Λ. Let $\omega = e^{2\pi i p}$ be the p-th unit root. Let $m_0, m_1, \ldots, m_{p-1}$ denote the dimensions of $1, \omega, \ldots, \omega^{p-1}$ eigenspaces of a generator of the \mathbb{Z}_p action on U_Λ. Similarly define $n_0, n_1, \ldots, n_{p-1}$ for U'_Λ.

As we have learned in §2, there exists an $S^1 \times \mathbb{Z}_p$-equivariant map

$$\mathcal{F}_{\Lambda} : U_\Lambda \oplus V_\Lambda \to U'_\Lambda \oplus V'_\Lambda$$

such that the truncated moduli space $\mathcal{F}_{\Lambda}^{-1}(\nu_0)$ is compact in a sufficiently large ball. Moreover, $\mathcal{F}_{\Lambda}^{-1}(\nu_0)$ has no reducible points. Here $\nu_0 \in \Omega^2_\Lambda$ is \mathbb{Z}_p invariant. By Theorem 2.4, the Seiberg-Witten invariant $SW(C)$ is equal to the S^1-equivariant degree of certain map constructed from \mathcal{F}_Λ. Let $\xi \in R(\mathbb{Z}_p)$ denote an irreducible complex \mathbb{Z}_p-module. As an additive group, $R(\mathbb{Z}_p)$ is generated by $1, \xi, \ldots, \xi^{p-1}$. For convenience we can add the \mathbb{Z}_p-modules $1, \xi, \ldots, \xi^{p-1}$ to U_Λ and U'_Λ and consider the map

$$id \oplus \mathcal{F}_\Lambda : \oplus_{k=0}^{p-1} \xi^k \oplus U_\Lambda \oplus V_\Lambda \to \oplus_{k=0}^{p-1} \xi^k \oplus U'_\Lambda \oplus V'_\Lambda$$

Notice that the preimages of $\mathcal{F}_{\Lambda}^{-1}(\nu_0)$ and $(id \oplus \mathcal{F}_\Lambda)^{-1}(\nu_0)$ are the same. Thus it is easy to show that the S^1-degree of $id \oplus \mathcal{F}_\Lambda$ and \mathcal{F}_Λ are the same. This is just the Seiberg-Witten invariant $SW(C)$.

In view of this, we may assume that $m_i \geq 1$ for $i = 0, \ldots, p - 1$ without loss of generality. Notice that the representation of $S^1 \times \mathbb{Z}_p$ on U_Λ splits as the orthogonal sum of $m_0 l + m_1 l \xi + \cdots + m_{p-1} l \xi^{p-1}$. Let $k_0 = m_0 - n_0, k_1 = m_1 - n_1, \ldots, k_{p-1} = m_{p-1} - n_{p-1}$. As in §4 we have

Lemma 5.1: $K_{S^1 \times \mathbb{Z}_p}(S(U_\Lambda)) = \frac{R(S^1) \otimes \mathbb{R}(\mathbb{Z}_p)}{(1 - t)^{m_0} (1 - t \xi)^{m_1} \cdots (1 - t \xi^{p-1})^{m_{p-1}}}$

Proof of Theorem 1 for p odd: First let us assume that the moduli space is of zero dimension, i.e., $d = 0$. As in §4, there is a class $\beta_f \in K_{S^1 \times \mathbb{Z}_p}(S(U_\Lambda))$ satisfying the analogue equation of (4.2):

$$\psi^t(\beta_f) = q^t (1 + t + \cdots + t^{p-1})^{n_0} (1 + t \xi + \cdots + t^{p-1} \xi^{p-1}) n_1 \cdots (1 + t \xi^{p-1} + \cdots + t^{p-1} \xi^{p(p-1)})^{n_{p-1}}$$

(5.1)
Substituting $q = 2$ to this equality we get

$$
\psi^2(\beta_f) = 2^l(1 + t)^{n_0}(1 + t\xi)^{n_1} \cdots (1 + t\xi^{p-1})^{n_{p-1}} \quad (5.2)
$$

We want to prove that there is an $a \in \mathbb{Z}$ such that

$$
\beta_f = a(1 + \xi + \xi^2 + \cdots + \xi^{p-1})(1 - t)^{m_0}(1 - t\xi)^{m_1} \cdots (1 - t\xi^{p-2})^{m_{p-2}} (1 - t\xi^{p-1})^{m_{p-1}}
$$

To show this, as in §4, we first prove that the image of β_f in the truncated representation ring $R(S^1) \otimes R(\mathbb{Z}_p)/(1 - t)^{m_0}$ is zero if $k_0 \leq l$.

Let $T = 1 - t$ and let us write $\beta_f = \sum_{i=0}^{p-1} \sum_{j=0}^{\xi^j} (a_{i}^j \xi^j)T^i$ with integral coefficients.

Assume that i is the minimal number so that the coefficient of T^i is nonzero in the above expression. Note that $\psi^2(\xi) = \xi^2$, $\psi^2(t) = t^2$ and ψ^2 is a ring homomorphism. By comparing the coefficients of T^i in the equation (5.2) we get an identity

$$
2^l \sum_{j=0}^{p-1} (a_{i}^j \xi^j) = 2^{l+n_0}(1 + \xi)^{n_1} \cdots (1 + \xi^{p-1})^{n_{p-1}} \left(\sum_{j=0}^{p-1} a_{i}^j \xi^j\right) \quad (5.3)
$$

Substituting 1 for ξ, we obtain that $\sum_{j=0}^{p-1} a_{i}^j = 0$ if $i < l + n$, note that $n = \sum_{j=0}^{p-1} n_j$.

When $d = 0$, the dimension formula for the moduli space implies $l + n = m - 1$. Thus $m_0 - 1 < l + n$ because $m_i \geq 1$ for all i. From these we conclude that $\sum_{j=0}^{p-1} a_{i}^j = 0$ for $i \leq m_0 - 1$.

Taking $\xi = \omega, \omega^2, \cdots, \omega^{p-1}$ in (5.3) we get $p - 1$ equalities. As p is an odd prime, $(1 + \omega)(1 + \omega^2) \cdots (1 + \omega^{p-1}) = 1$. Multiply these equations together and substituting the identity for ω we get

$$
2^{(p-1)l} \prod_{k=1}^{p-1} \sum_{j=0}^{p-1} a_{i}^j \omega^{2kj} = 2^{(p-1)(l+n_0)} \prod_{k=1}^{p-1} \sum_{j=0}^{p-1} a_{i}^j \omega^{kj}
$$

Notice that $\prod_{k=1}^{p-1}(\sum_{j=0}^{p-1} a_{i}^j \omega^{2kj})$ and $\prod_{k=1}^{p-1}(\sum_{j=0}^{p-1} a_{i}^j \omega^{kj})$ are the same. Thus, for $i < l + n_0$, there exists at least a zero term among this product. Hence there is an k with $1 \leq k \leq p-1$ such that

$$
\sum_{j=0}^{p-1} a_{i}^j \omega^{kj} = 0
$$

This implies that $a_{i}^0 = a_{i}^1 = \cdots = a_{i}^{p-1}$, since the polynomial $1 + x + x^2 + \cdots + x^{p-1}$ is irreducible over rational.

On the other hand, we have already proved that the sum of these a_{i}^j is zero. Thus $a_{i}^0 = a_{i}^1 = \cdots = a_{i}^{p-1} = 0$, provided $i < l + n_0$. If $k_0 \leq l$, then $m_0 \leq l + n_0$ and so
\(m_0 - 1 < l + n_0 \). Thus the image of \(\beta_f \) in the ring \(R(S^1) \otimes R(\mathbb{Z}_p)/(1 - t)^{m_0} \) is zero. Consequently \(\beta_f = (1 - t)^{m_0} \beta'_f \) for some element \(\beta'_f \in R(S^1) \otimes R(\mathbb{Z}_p) \).

Next let us prove that the image of \(\beta'_f \) in \(R(S^1) \otimes R(\mathbb{Z}_p)/(1 - t)^{m_1} \) is zero if \(k_1 \leq l \).

For the sake of simplicity, we let \(T = (1 - t^\xi) \) for this moment. Let us write \(\beta'_f = \sum_{j=0}^{p-1} \sum (a^i_j \xi^j)T^i \). The equation (5.2) for \(\psi^2(\beta_f) \) gives rise to the following identity

\[
(1 + t)^{k_0} \psi^2(\beta'_f) = 2^l \beta'_f (1 + t^\xi)^{n_1} \cdots (1 + t^\xi^{p-1})^{n_{p-1}}
\]

(5.4)

If \(i \) is the minimal index so that the coefficient of \(T^i \) in the expression of \(\beta'_f \) nonzero. With the same argument as above, comparing coefficients in (5.4) we get

\[
2^i (1 + \xi^{p-1})^{k_0} \sum_{j=0}^{p-1} a^i_j \xi^{2j} = 2^l \sum_{j=0}^{p-1} a^i_j \xi^{j} (1 + \xi)^{n_j} \cdots (1 + \xi^{p-2})^{n_{j+1}}
\]

Taking \(\xi = 1 \), we get

\[
2^i + k_0 \left(\sum_{j=0}^{p-1} a^i_j \right) = 2^l \sum_{j=0}^{p-1} a^i_j
\]

Therefore \(\sum_{j=0}^{p-1} a^i_j = 0 \) if \(i + k_0 < l + n - n_0 \). Hence \(\sum_{j=0}^{p-1} a^i_j = 0 \) for \(i \leq m_1 - 1 \) because \(m_0 \geq 1, m_1 \geq 1, \ldots, m_{p-1} \geq 1 \).

Now taking \(\xi = \omega, \omega^2, \ldots, \omega^{p-1} \) and multiplying these identities, we get

\[
2^i (p-1) \prod_{k=1}^{p-1} \left(\sum_{j=0}^{p-1} a^i_j \omega^{2ik} \right) = 2^l (p_1)(p-1) \prod_{k=1}^{p-1} \left(\sum_{j=0}^{p-1} a^i_j \omega^{ik} \right)
\]

For \(i < l + n_1 \), this implies that there is an \(1 \leq k \leq p - 1 \) such that

\[
\sum_{j=0}^{p-1} a^i_j \omega^{ik} = 0
\]

As before this shows that \(a^i_0 = a^i_1 = \cdots = a^i_{p-1} \) and so they are all zero. Thus \(\beta'_f \) has zero image in the ring \(R(S^1 \times \mathbb{Z}_p)/(1 - t)^{m_1} \). Hence, \(\beta_f = (1 - t)^{m_0} \beta'_f \) is zero in the truncated ring \(R(S^1) \otimes R(\mathbb{Z}_p)/(1 - t)^{m_0}(1 - t^\xi)^{m_1} \).

Continuing this procedure, one can check that, under the assumption of Theorem 1 and \(d = 0 \),

\[
\beta_f = a(1 + \xi + \xi^2 + \cdots + \xi^{p-1})(1 - t)^{m_0}(1 - t^\xi)^{m_1} \cdots (1 - t^\xi^{p-1})^{m_{p-1}} - 1
\]

for some \(a \in \mathbb{Z} \). Therefore \(\beta_f(t, 1) = pa(1 - t)^{m-1} \). By Proposition 4.3, this proves that \(SW(C) = 0(modp) \).

The proof for \(d \geq 1 \) is similar. One only needs to consider an over truncated ring by replacing \(m_0 \) by \(m_0 - d \) and replacing \(m \) by \(m - d \). \(\bullet \)
References

Nankai Institute of Mathematics, Nankai University, Tianjin 300071, P.R.C

Current address IHES, 35 Route de Chartres, F-91440 Bures sur Yvette, France