Decay of Z into Three Pseudoscalar Bosons

E. Keith and Ernest Ma

Department of Physics
University of California
Riverside, California 92521

Abstract

We consider the decay of the Z boson into three pseudoscalar bosons in a general two-Higgs-doublet model. Assuming m_A to be very small, and that of the two physical neutral scalar bosons h_1 and h_2, A only couples to Z through h_1, we find the $Z \to AAA$ branching fraction to be negligible for moderate values of $\tan \beta \equiv v_2/v_1$, if there is no $\lambda_5 (\Phi_1^\dagger \Phi_2)^2 + h.c.$ term in the Higgs potential; otherwise there is no absolute bound but very large quartic couplings (beyond the validity of perturbation theory) are needed for it to be observable.
If the standard $SU(2) \times U(1)$ electroweak gauge model is extended to include two scalar doublets, there will be a neutral pseudoscalar boson A whose mass may be small. In that case, the decay of the Z boson into 3 A’s may not be negligible. This process was first studied\cite{1} in a specific model\cite{2}. It was then discussed\cite{3} in a more general context. More recently, it has been shown\cite{4} that there is a lower bound on m_A of about 60 GeV in the Minimal Supersymmetric Standard Model (MSSM), hence the decay $Z \rightarrow AAA$ is only of interest for models with two scalar doublets of a more general structure. Even in the context of supersymmetry, this is possible\cite{5} if there exists an additional U(1) gauge factor at the TeV scale.

In this paper we consider a general two-Higgs-doublet model and identify the conditions for which the decay $Z \rightarrow AAA$ may be enhanced, despite the nonobservation of $e^+e^- \rightarrow h + A$, where h is either one of the two neutral scalar bosons of the model. We will show that in principle this decay is limited only by the scalar coupling $\lambda_1 - \lambda_2$ as defined below. However, if $\lambda_5 = 0$, which is true in a large class of models\cite{6}, then it may be bounded as discussed below.

Let the Higgs potential V for two $SU(2) \times U(1)$ scalar doublets $\Phi_{1,2} = (\phi_{1,2}^+, \phi_{1,2}^0)$ be given by

$$V = m_1^2\Phi_1^\dagger\Phi_1 + m_2^2\Phi_2^\dagger\Phi_2 + m_{12}^2(\Phi_1^\dagger\Phi_2 + \Phi_2^\dagger\Phi_1) + \frac{1}{2}\lambda_1(\Phi_1^\dagger\Phi_1)^2 + \frac{1}{2}\lambda_2(\Phi_2^\dagger\Phi_2)^2 + \lambda_3(\Phi_1^\dagger\Phi_1)(\Phi_2^\dagger\Phi_2) + \lambda_4(\Phi_1^\dagger\Phi_2)(\Phi_2^\dagger\Phi_1) + \frac{1}{2}\lambda_5(\Phi_1^\dagger\Phi_2)^2 + \frac{1}{2}\lambda_5^*(\Phi_2^\dagger\Phi_1)^2,$$ \hspace{1cm} (1)

where the discrete symmetry $\Phi_1 \rightarrow \Phi_1$ and $\Phi_2 \rightarrow -\Phi_2$ is only broken softly by the m_{12}^2 term. Assume λ_5 to be real for simplicity. Define $\tan \beta \equiv v_2/v_1$ as is customary, where $v_{1,2} = \langle \phi_{1,2}^0 \rangle$ are the usual two nonzero vacuum expectation values. The pseudoscalar neutral Higgs boson is then

$$A = \sqrt{2}(\sin \beta \text{Im}\phi_{1}^0 - \cos \beta \text{Im}\phi_{2}^0),$$ \hspace{1cm} (2)
with mass given by
\[m_A^2 = -m_{12}^2 (\tan \beta + \cot \beta) - 2\lambda_5 v^2, \]
(3)

where \(v^2 \equiv v_1^2 + v_2^2 \), and the charged Higgs boson is
\[h^\pm = \sin \beta \phi_1^\pm - \cos \beta \phi_2^\pm, \]
(4)

with
\[m_{h^\pm}^2 = m_A^2 + (\lambda_5 - \lambda_4) v^2. \]
(5)

To get the maximum \(Z \rightarrow AAA \) rate, we let \(m_A = 0 \), i.e.
\[m_{12}^2 = -2\lambda_5 v^2 \sin \beta \cos \beta. \]
(6)

Then the mass-squared matrix spanning the two neutral scalar Higgs bosons \(\sqrt{2} \text{Re} \phi_{1,2}^0 \) is given by
\[M^2 = 2v^2 \begin{pmatrix} \lambda_1 \cos^2 \beta + \lambda_5 \sin^2 \beta & (\lambda_3 + \lambda_4) \sin \beta \cos \beta \\ (\lambda_3 + \lambda_4) \sin \beta \cos \beta & \lambda_2 \sin^2 \beta + \lambda_5 \cos^2 \beta \end{pmatrix}. \]
(7)

Consider now the following two linear combinations:
\[h_1 = \sqrt{2}(\sin \beta \text{Re} \phi_1^0 - \cos \beta \text{Re} \phi_2^0), \]
(8)
\[h_2 = \sqrt{2}(\cos \beta \text{Re} \phi_1^0 + \sin \beta \text{Re} \phi_2^0). \]
(9)

It is well-known that \(h_1 \) couples to \(AZ \) but not \(ZZ \), whereas \(h_2 \) couples to \(ZZ \) but not \(AZ \). However, the process \(e^+e^- \rightarrow h + A \) is in general possible because \(h \) will normally have a \(h_1 \) component, thereby putting a constraint on \(m_A \) if kinematically allowed. For our purpose, we will require \(h_1 \) and \(h_2 \) to be mass eigenstates, in which case \(m_A \) is unconstrained by the nonobservation of \(e^+e^- \rightarrow h + A \) even if \(m_2 \) is small, as long as \(m_1 \) is larger than the \(e^+e^- \) center-of-mass energy. This allows us to have the maximum effective coupling of \(Z \) to \(AAA \) as shown below.

The requirement that \(h_1 \) and \(h_2 \) be mass eigenstates leads to the condition
\[\lambda_2 \sin^2 \beta - \lambda_1 \cos^2 \beta + (\lambda_3 + \lambda_4 + \lambda_5)(\cos^2 \beta - \sin^2 \beta) = 0. \]
(10)
As a result, the masses of $h_{1,2}$ are given by

$$m_1^2 = [\lambda_1 \cos^2 \beta + \lambda_2 \sin^2 \beta + \lambda_5 - \lambda_3 - \lambda_4]v^2, \quad (11)$$

$$m_2^2 = [\lambda_1 \cos^2 \beta + \lambda_2 \sin^2 \beta + \lambda_5 + \lambda_3 + \lambda_4]v^2. \quad (12)$$

Note that in the MSSM, Eq. (10) cannot be satisfied in the presence of radiative corrections.

We now extract the $h_1 AA$ coupling from Eq. (1), using Eqs. (2) and (8). We find it to be given by

$$\sin 2\beta \sqrt{2} (\lambda_1 - \lambda_2)v, \quad (13)$$

where Eq. (10) has been used. As a function of β, this expression is obviously maximized at $\sin 2\beta = \pm 1$. On the other hand, our conditions so far do not limit the combination $\lambda_1 - \lambda_2$, hence there is no absolute bound on $Z \rightarrow AAA$ in this general case.

Let us consider the case $\lambda_5 = 0$. This is natural in a large class of models where the two Higgs doublets are remnants[6] of a gauge model larger than the standard model such that they are distinguishable under the larger symmetry. In that case, we have

$$m_1^2 = 2(\lambda_1 - \lambda_3 - \lambda_4)v^2 \cos^2 \beta = 2(\lambda_2 - \lambda_3 - \lambda_4)v^2 \sin^2 \beta, \quad (14)$$

and we can rewrite (13) as

$$-\frac{m_1^2}{v \sqrt{2}} \cot 2\beta. \quad (15)$$

The above expression appears to be unbounded as $\sin 2\beta \rightarrow 0$. However, that would require very large quartic scalar couplings. This can be seen two ways. First, since (15) is equal to (13), we need an extremely large value of $\lambda_1 - \lambda_2$. Second, from Eq. (14), we see also that if $\sin \beta$ is small, then $\lambda_2 - \lambda_3 - \lambda_4$ has to be big, and if $\cos \beta$ is small, then $\lambda_1 - \lambda_3 - \lambda_4$ has to be big. Thus we will choose moderate values of $\tan \beta$ in (15) for the following discussion.

In Figure 1 we show the diagram for the decay $Z \rightarrow AAA$ with an intermediate virtual h_1. To maximize this rate, we minimize m_1 to be just above the maximum experimental
e^+e^- center-of-mass energy, which is 172 GeV up to now but will soon be 183 GeV. As for h_2, it interacts exactly as the one Higgs boson of the standard-model, from which we have the experimental limit\[7\] of $m_2 > 65$ GeV. However, m_2 is not directly involved in the h_1AA coupling here. Note also that λ_4 by itself must be large and negative so that m_{h^\pm} of Eq. (5) can be greater than $m_t - m_b$ for $m_A = 0$, so as to prevent the decay $t \rightarrow b + h^\pm$. This condition is not satisfied in the MSSM where $\lambda_4 = -g_2^2/2$, hence $m_A = 0$ is not allowed there\[4\].

Assuming $\lambda_5 = 0$ and using Eq. (15) with $m_1 = 180$ GeV and $|\cot 2\beta| = 1$ (i.e. $\tan \beta = 0.4$ or 2.4), we now calculate the $Z \rightarrow AAA$ decay rate, following Ref. [1]. The amplitude is given by

$$\mathcal{M} = g_Z m_1^2 \sqrt{2} v \left[\frac{\epsilon \cdot k_1}{(p-k_1)^2 - m_1^2} + \frac{\epsilon \cdot k_2}{(p-k_2)^2 - m_1^2} + \frac{\epsilon \cdot k_3}{(p-k_3)^2 - m_1^2} \right], \quad (16)$$

where $g_Z = e / \sin \theta_W \cos \theta_W$, p is the four-momentum of the Z boson, and $k_{1,2,3}$ are those of the A's. The effective coupling used in Ref. [1] is now determined to be

$$\lambda_{\text{eff}} = \frac{m_1^2 \sqrt{2}}{v^2} \approx 1.5. \quad (17)$$

Using the estimate of Ref. [1], this $Z \rightarrow AAA$ rate is then about 1.0×10^{-7} GeV. Hence its branching fraction is about 4×10^{-8} which is clearly negligible. To obtain a branching fraction of 10^{-6}, we need $\cot 2\beta = 5$ (i.e. $\tan \beta = 0.1$ or 10). In this case, either $\lambda_1 - \lambda_3 - \lambda_4$ or $\lambda_2 - \lambda_3 - \lambda_4$ in Eq. (14) has to be about 53.5. If $\lambda_5 \neq 0$, then we cannot use Eqs. (14) and (15), but Eq. (13) is still valid. To obtain a branching fraction of 10^{-6}, we will then need $|\lambda_1 - \lambda_2|$ to be about 53.5. Thus in both scenarios, one or more quartic scalar couplings have to be very large and beyond the validity of perturbation theory.

If h_1 and h_2 are not exact mass eigenstates, then there is an additional contribution from $h_1 - h_2$ mixing which is necessarily very small from the constraint of experimental data if
m_2 is below 172 GeV. The h_2AA coupling is given by

$$
\frac{v}{\sqrt{2}} \left(\frac{m_2^2}{2v^2} - 2\lambda_5 [1 - \sin^2 \beta \cos^2 \beta] \right). \quad (18)
$$

If $\lambda_5 = 0$, this expression is bounded independent of $\tan \beta$ and the overall contribution (including the small $h_1 - h_2$ mixing) is negligible. If $\lambda_5 \neq 0$, then its value has to be huge for the process to be observable.

The reason that $\Gamma(Z \to AAA)$ is so small is twofold. One is that with the higher energy reached by LEP2, the nonobservation of $Z \to h + A$ forces m_1 to be much greater than M_Z. The other is that for $m_1 >> M_Z$, the leading term in M vanishes because $\epsilon \cdot (k_1 + k_2 + k_3) = 0$, resulting in a very severe suppression factor[1]. Our conclusion is that the decay $Z \to AAA$ is not likely to be observable in a general two-Higgs-doublet model with parameters in the perturbative regime.

ACKNOWLEDGEMENT

This work was supported in part by the U. S. Department of Energy under Grant No. DE-FG03-94ER40837.
References

Figure Caption

Fig. 1. One of 3 diagrams for the decay $Z \rightarrow AAA$. The other 2 are obvious permutations.