Nonlinear Electromagnetic Self-Duality and Legendre Transformations

Mary K. Gaillard and Bruno Zumino

Physics Department, University of California, and
Theoretical Physics Group, Lawrence Berkeley National Laboratory,
Berkeley, California 94720

Abstract

We discuss continuous duality transformations and the properties of classical theories with invariant interactions between electromagnetic fields and matter. The case of scalar fields is treated in some detail. Special discrete elements of the continuous group are shown to be related to the Legendre transformation with respect to the field strengths.
Disclaimer

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Lawrence Berkeley Laboratory is an equal opportunity employer.
1 Duality rotations in four dimensions

The invariance of Maxwell’s equations under “duality rotations” has been known for a long time. In relativistic notation these are rotations of the electromagnetic field strength $F_{\mu\nu}$ into its dual, which is defined by

$$\tilde{F}_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\lambda\sigma} F^{\lambda\sigma}, \quad \tilde{F}_{\mu\nu} = -F_{\mu\nu}. \quad (1.1)$$

This invariance can be extended to electromagnetic fields in interaction with the gravitational field, which does not transform under duality. It is present in ungauged extended supergravity theories, in which case it generalizes to a nonabelian group [1]. In [2, 3] we studied the most general situation in which classical duality invariance of this type can occur. More recently [4] the duality invariance of the Born-Infeld theory, suitably coupled to the dilaton and axion [5], has been studied in considerable detail. In the present note we will show that most of the results of [4, 5] follow quite easily from our earlier general discussion. We shall also present some new results.

We begin by recalling and completing some basic results of [2, 3, 6]. Consider a Lagrangian which is a function of n real field strengths $F_{a\mu\nu}$ and of some other fields χ^i and their derivatives $\chi^i_{\mu} = \partial_{\mu} \chi^i$:

$$L = L \left(F^a, \chi^i, \chi^i_{\mu} \right). \quad (1.2)$$

Since

$$F_{a\mu\nu} = \partial_{\mu} A^a_{\nu} - \partial_{\nu} A^a_{\mu}, \quad (1.3)$$

we have the Bianchi identities

$$\partial^\mu \tilde{F}^a_{\mu\nu} = 0. \quad (1.4)$$

On the other hand, if we define

$$\tilde{G}^a_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\lambda\sigma} G^{a\lambda\sigma} \equiv 2 \frac{\partial L}{\partial F_{a\mu\nu}}, \quad (1.5)$$

we have the equations of motion

$$\partial^\mu \tilde{G}^a_{\mu\nu} = 0. \quad (1.6)$$

We consider an infinitesimal transformation of the form

$$\delta \begin{pmatrix} G \\ F \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} G \\ F \end{pmatrix}, \quad (1.7)$$

$$\delta \chi^i = \xi^i(\chi), \quad (1.8)$$
where A, B, C, D are real $n \times n$ constant infinitesimal matrices and $\xi^i(\chi)$ functions of the fields χ^i (but not of their derivatives), and ask under what circumstances the system of the equations of motion (1.4) and (1.6), as well as the equation of motion for the fields χ^i are invariant. The analysis of [2] shows that this is true if the matrices satisfy

$$A^T = -D, \quad B^T = B, \quad C^T = C, \quad (1.9)$$

(where the superscript T denotes the transposed matrix) and in addition the Lagrangian changes under (1.7) and (1.8) as

$$\delta L = \frac{1}{4} (F B \tilde{F} + G C \tilde{G}). \quad (1.10)$$

The relations (1.9) show that (1.7) is an infinitesimal transformation of the real noncompact symplectic group $Sp(2n, R)$ which has $U(n)$ as maximal compact subgroup. The finite form is

$$\begin{pmatrix} G' \\ F' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} G \\ F \end{pmatrix}, \quad (1.11)$$

where the $n \times n$ real submatrices satisfy

$$c^T a = a^T c, \quad b^T d = d^T b, \quad d^T a - b^T c = 1, \quad (1.12)$$

For the $U(n)$ subgroup, one has in addition

$$A = D, \quad B = -C, \quad (1.13)$$

or, in finite form,

$$a = d, \quad b = -c, \quad (1.14)$$

Notice that the Lagrangian is not invariant. In [2] we showed, however, that the derivative of the Lagrangian with respect to an invariant parameter is invariant. The invariant parameter could be a coupling constant or an external background field, such as the gravitational field, which does not change under duality rotations. It follows that the energy-momentum tensor, which can be obtained as the variational derivative of the Lagrangian with respect to the gravitational field, is invariant under duality rotations. No explicit check of its invariance, as was done in [4, 5, 7, 8], is necessary. Using (1.7) and (1.9) it is easy to verify that

$$\delta \left(L - \frac{1}{4} F \tilde{G} \right) = \delta L - \frac{1}{4} (F B \tilde{F} + G C \tilde{G}), \quad (1.15)$$
so (1.10) is equivalent to the invariance of $L - \frac{1}{4} F \tilde{G}$.

The symplectic transformation (1.11) can be written in a complex basis as

$$
\begin{pmatrix}
F' + iG' \\
F' - iG'
\end{pmatrix} =
\begin{pmatrix}
\phi_0 & \phi_1^* \\
\phi_1 & \phi_0^*
\end{pmatrix}
\begin{pmatrix}
F + iG \\
F - iG
\end{pmatrix},
$$

(1.16)

where * means complex conjugation and the submatrices satisfy

$$
\phi_0^T \phi_1 = \phi_1^T \phi_0, \quad \phi_0^\dagger \phi_0 - \phi_1^\dagger \phi_1 = 1.
$$

(1.17)

The relation between the real and the complex basis is

$$
\begin{align*}
2a &= \phi_0 + \phi_0^* - \phi_1 - \phi_1^*, \\
2ib &= \phi_0 - \phi_0^* - \phi_1 + \phi_1^*, \\
-2ic &= \phi_0 - \phi_0^* + \phi_1 - \phi_1^*, \\
2d &= \phi_0 + \phi_0^* + \phi_1 + \phi_1^*.
\end{align*}
$$

(1.18)

In [2, 3] we also described scalar fields valued in the quotient space $Sp(2n, R)/U(n)$. The quotient space can be parameterized by a complex symmetric $n \times n$ matrix $K = K^T$ whose real part has positive eigenvalues, or equivalently by a complex symmetric matrix $Z = Z^T$ such that Z^*Z has eigenvalues smaller than 1. They are related by

$$
K = \frac{1 - Z^*}{1 + Z^*}, \quad Z = \frac{1 - K^*}{1 + K^*}.
$$

(1.19)

These formulae are the generalization of the well-known map between the Lobachevskiı̈ unit disk and the Poincaré upper half-plane: Z corresponds to the single complex variable parameterizing the unit disk, iK to the one parameterizing the upper half plane.

Under $Sp(2n, R)$

$$
K \rightarrow K' = (-ib + aK) (d + icK)^{-1}, \quad Z \rightarrow Z' = (\phi_1 + \phi_0^* Z) (\phi_0 + \phi_1^* Z)^{-1},
$$

(1.20)

or, infinitesimally,

$$
\delta K = -iB + AK - KD - iKCK, \quad \delta Z = V + T^* Z - Z T - iZV^* Z,
$$

(1.21)

where

$$
T = -T^\dagger, \quad V = V^T.
$$

(1.22)

The invariant nonlinear kinetic term for the scalar fields can be obtained from the Kähler metric [9]

$$
\Tr \left(dK^* \frac{1}{K + K^*} dK \frac{1}{K + K^*} \right) =
\Tr \left(dZ \frac{1}{1 - Z^* Z} dZ^* \frac{1}{1 - ZZ^*} \right)
$$

(1.23)
which follows from the Kähler potential
\[
\text{Tr} \ln (1 - ZZ^*) \quad \text{or} \quad \text{Tr} \ln (K + K^*),
\]
which are equivalent up to a Kähler transformation. It is not hard to show that the metric (1.23) is positive definite. In this section the normalization of the fields \(F^a_{\mu\nu} \) has been chosen to be canonical when \(iK \) is set equal to the unit matrix, \(i.e., \) when the self-duality group reduces to the \(U(n) \) subgroup; the full \(Sp(2n, R) \) self-duality can be realized when the matrix \(K \) is a function of scalar fields. Throughout this paper we assume a flat background space-time metric; the generalization to a nonvanishing gravitational field is straightforward [2]–[5].

2 Born-Infeld theory

As a particularly simple example we consider the case when there is only one tensor \(F_{\mu\nu} \) and no additional fields. Our equations become
\[
\tilde{G} = 2 \frac{\partial L}{\partial F},
\]
\[
\delta F = \lambda G, \quad \delta G = -\lambda F
\]
and
\[
\delta L = \frac{1}{4} \lambda \left(G\tilde{G} - F\tilde{F} \right).
\]
We have restricted the duality transformation to the compact subgroup \(U(1) \cong SO(2) \), as appropriate when no additional fields are present. So \(A = D = 0, \ C = -B = \lambda \).

Since \(L \) is a function of \(F \) alone, we can also write
\[
\delta L = \delta F \frac{\partial L}{\partial F} = \lambda G \frac{1}{2} \tilde{G}.
\]
Comparing (2.3) and (2.4), which must agree, we find
\[
G\tilde{G} + F\tilde{F} = 0.
\]
Together with (2.1), this is a partial differential equation for \(L(F) \), which is the condition for the theory to be duality invariant. If we introduce the complex field
\[
M = F - iG,
\]
\[M \bar{M}^* = 0. \] (2.7)

Clearly, Maxwell’s theory in vacuum satisfies (2.5), or (2.7), as expected. A more interesting example is the Born-Infeld theory [7], given by the Lagrangian

\[L = \frac{1}{g^2} \left(-\Delta^{1/2} + 1 \right), \] (2.8)

where

\[\Delta = -\det(\eta_{\mu\nu} + gF_{\mu\nu}) = 1 + \frac{1}{2}g^2F^2 - g^4 \left(\frac{1}{4}F \bar{F} \right)^2. \] (2.9)

For small values of the coupling constant \(g \) (or for weak fields) \(L \) approaches the Maxwell Lagrangian. We shall use the abbreviation

\[\beta = \frac{1}{4}F \bar{F}. \] (2.10)

Then

\[\frac{\partial \Delta}{\partial F} = g^2F - \beta g^4 \bar{F}, \] (2.11)

\[\bar{G} = 2 \frac{\partial L}{\partial F} = -\Delta^{-1/2} \left(F - \beta g^2 \bar{F} \right), \] (2.12)

and

\[G = \Delta^{-1/2} \left(\bar{F} + \beta g^2 F \right). \] (2.13)

Using (2.12) and (2.13), it is very easy to check that \(G \bar{G} = -F \bar{F} \): the Born-Infeld theory is duality invariant. It is also not too difficult to check that \(\partial L/\partial g^2 \) is actually invariant under (2.2) and the same applies to \(L - \frac{1}{4}F \bar{G} \) (which in this case turns out to be equal to \(-g^2\partial L/\partial g^2 \)). These invariances are expected from our general theory.

It is natural to ask oneself whether the Born-Infeld theory is the most general physically acceptable solution of (2.5). This was investigated in [4] where a negative result was reached: more general Lagrangians satisfy (2.5), the arbitrariness depending on a function of one variable. We discuss this in detail in Section 6.

3 Schrödinger’s formulation of Born’s theory

Schrödinger [8] noticed that, for the Born-Infeld theory (2.8), \(F \) and \(G \) satisfy not only (2.5) [or (2.7)], but also the more restrictive relation

\[M \left(\bar{M} \right) - \bar{M}M^2 = \frac{g^2}{8} \bar{M}^* \left(M \bar{M} \right)^2. \] (3.1)
We have verified this by an explicit, although lengthy, calculation using (2.6), (2.12), (2.13) and (2.9). Schrödinger did not give the details of the calculation, presenting instead convincing arguments based on particular choices of reference systems. One can write (3.1) as
\[
\frac{\partial \mathcal{L}}{\partial M} = g^2 \tilde{M}^*,
\tag{3.2}
\]
where
\[
\mathcal{L} = 4 \frac{M^2}{(MM)},
\tag{3.3}
\]
and Schrödinger proposed \(\mathcal{L} \) as the Lagrangian of the theory, instead of (2.8). Of course, \(\mathcal{L} \) is a Lagrangian in a different sense than \(L \), which is a field Lagrangian in the usual sense. Multiplying (3.1) by \(M \) and saturating the unwritten indices \(\mu \nu \), the left hand side vanishes, so that (2.7) follows. Using (3.1) it is easy to see that \(\mathcal{L} \) is pure imaginary: \(\mathcal{L} = -\mathcal{L}^* \). Schrödinger also pointed out that, if we introduce a map
\[
\frac{1}{g^2} \frac{\partial \mathcal{L}}{\partial M} = f(M),
\tag{3.4}
\]
so that (3.1) or (3.2) can be written as
\[
f(M) = \tilde{M}^*,
\tag{3.5}
\]
the square of the map is the identity map
\[
f (f(M)) = M.
\tag{3.6}
\]
This, together with the properties
\[
f(\tilde{M}) = -\tilde{f}(M), \quad f(M^*) = f(M)^*,
\tag{3.7}
\]
does the consistency of (3.1). Schrödinger used the Lagrangian (3.3) to construct a conserved, symmetric energy-momentum tensor. We have checked that, when suitably normalized, his energy-momentum tensor agrees with that of Born and Infeld up to an additive term proportional to \(\eta_{\mu \nu} \).

Schrödinger’s formulation is very clever and elegant and it has the advantage of being manifestly covariant under the duality rotation \(M \to Me^{i\lambda} \) which is the finite form of (2.2). It is also likely that, as he seems to imply, his formulation is fully equivalent to the Born-Infeld theory (2.8), which would mean that the more restrictive equation (3.1) eliminates the remaining ambiguity in the solutions of (2.7). This virtue could actually be a weakness if one is looking for more general duality invariant theories.
4 General solution of the self-duality equation

The self-duality equation (2.5) can be solved in general as follows. Assuming Lorentz invariance in four dimensional space-time, the Lagrangian must be a function of the two invariants

\[\alpha = \frac{1}{4} F^2, \quad \beta = \frac{1}{4} \tilde{F} \tilde{F}, \quad L = L(\alpha, \beta). \quad (4.1) \]

Now

\[\tilde{G} = 2 \frac{\partial L}{\partial F} = L_\alpha F + L_\beta \tilde{F}, \quad G = -L_\alpha \tilde{F} + L_\beta F, \quad (4.2) \]

where we have used the standard notation \(L_\alpha = \partial L / \partial \alpha, \ L_\beta = \partial L / \partial \beta \). Substituting these expressions in (2.5) we obtain

\[\left[(L_\beta)^2 - (L_\alpha)^2 + 1 \right] \beta + 2L_\alpha L_\beta \alpha = 0. \quad (4.3) \]

This partial differential equation for \(L \) can be simplified by the change of variables

\[x = \alpha, \quad y = \left(\alpha^2 + \beta^2 \right)^{\frac{1}{2}}, \quad (4.4) \]

which gives

\[(L_x)^2 - (L_y)^2 = 1. \quad (4.5) \]

Alternatively one can use the variables

\[p = \frac{1}{2} (x + y), \quad q = \frac{1}{2} (x - y), \quad (4.6) \]

to obtain the form

\[L_p L_q = 1. \quad (4.7) \]

The equation (4.5), or (4.7), has been studied extensively in mathematics and there are several methods to obtain its general solution [10]. (It is interesting that the same equation occurs in a study of 5-dimensional Born-Infeld theory [11].) In our case we must also impose the physical boundary condition that the Lagrangian should approximate the Maxwell Lagrangian

\[L_M = -\alpha = -x = -p - q \quad (4.8) \]

when the field strength \(F \) is small.
According to one of the methods given in Courant-Hilbert, the general solution of (4.7) is given by

\[L = \frac{2p}{v'(s)} + v(s), \tag{4.9} \]
\[q = \frac{p}{|v'(s)|^2} + s, \tag{4.10} \]

where the arbitrary function \(v(s) \) is determined by the initial values:

\[L(p = 0, q) = v(q), \tag{4.11} \]
\[L_p(p = 0, q) = \frac{1}{v'(q)}. \tag{4.12} \]

One must solve for \(s(p, q) \) from (4.10) and substitute into (4.9). To verify [11] that these equations solve (4.7), differentiate (4.9) and (4.10):

\[dL = \frac{2dp}{v'} + \left(v' - \frac{2p}{|v'|^2} v'' \right) ds, \tag{4.13} \]
\[dq = \frac{dp}{v'^2} + \left(1 - \frac{2p}{|v'|^3} v'' \right) ds, \tag{4.14} \]

and eliminate \(ds \) between (4.13) and (4.14) to obtain

\[dL = \frac{1}{v'} dp + v' dq, \tag{4.15} \]

i.e.,

\[L_p = \frac{1}{v'}, \quad L_q = v', \quad L_pL_q = 1. \tag{4.16} \]

The condition that \(L \) should approach the Maxwell Lagrangian for small field strengths implies that

\[v(s) = L(p = 0, s) \approx -s \tag{4.17} \]

for small \(s \).

It is trivial to check the above procedure for the Maxwell Lagrangian, and we shall not do it here. The Born-Infeld Lagrangian (with \(g = 1 \) for simplicity) is given by

\[L_{BI} = -\Delta^{\frac{1}{2}} + 1, \tag{4.18} \]
\[\Delta = (1 + 2p)(1 + 2q), \tag{4.19} \]
in terms of the variables p and q. Setting $p = 0$ we see that this corresponds to

$$v(s) = -(1 + 2s)^{\frac{1}{2}} + 1, \quad (4.20)$$

$$v'(s) = -(1 + 2s)^{-\frac{1}{2}}. \quad (4.21)$$

Then (4.10) gives

$$q = p(1 + 2s) + s, \quad (4.22)$$

which is solved by

$$s = \frac{q - p}{1 + 2p}, \quad 1 + 2s = \frac{1 + 2q}{1 + 2p}. \quad (4.23)$$

Using (4.9), we reconstruct the Lagrangian

$$L_{BI} = -2p \left(\frac{1 + 2q}{1 + 2p} \right)^{\frac{1}{2}} - \left(\frac{1 + 2q}{1 + 2p} \right)^{\frac{1}{2}} + 1 = -[(1 + 2p)(1 + 2q)]^{\frac{1}{2}} + 1. \quad (4.24)$$

Unfortunately, in spite of this elegant method for finding solutions of the self-duality equation, it seems very difficult to find new explicit solutions given in terms of simple functions. The reason is that, even for a simple function $v(s)$, solving the equation (4.10) for s gives complicated functions $s(p, q)$.

5 **Axion, dilaton and $SL(2, R)$**

It is well known that, if there are additional scalar fields which transform nonlinearly, the compact group duality invariance can be enhanced to a duality invariance under a larger noncompact group (see, e.g., [2] and references therein). In the case of the Born-Infeld theory, just as for Maxwell’s theory, one complex scalar field suffices to enhance the $U(1) \cong SO(2)$ invariance to the $SU(1, 1) \cong SL(2, R)$ noncompact duality invariance. This is pointed out in [5], but it also follows from the considerations of our paper [2]. In the example under consideration, K is a single complex field, not an $n \times n$ matrix. In order to agree with today’s more standard notation we shall use

$$S = iK = S_1 + iS_2 = a + ie^{-\phi}, \quad S_2 > 0, \quad (5.1)$$

where ϕ is the dilaton and a is the axion. For $SL(2, R) \cong Sp(2, R)$, the matrices A, B, C, D are real numbers and $A = -D, \quad B$ and C are independent. Then the infinitesimal $SL(2, R)$ transformation is

$$\delta S = B + 2AS - CS^2, \quad (5.2)$$
and the finite transformation is

\[S' = \frac{aS + b}{cS + d}, \quad ad - bc = 1. \] (5.3)

For the \(SO(2) \cong U(1) \) subgroup, \(A = 0, C = -B = \lambda \),

\[\delta S = -\lambda - \lambda S^2. \] (5.4)

The scalar kinetic term, proportional to

\[\frac{\partial_\mu S^* \partial^\mu S}{(S - S^*)^2}, \] (5.5)

is invariant under the nonlinear transformation (5.2) which, in terms of \(S_1, S_2 \), takes the form

\[\delta S_1 = B + 2AS_1 - C \left(S_1^2 - S_2^2 \right), \quad \delta S_2 = 2AS_2 - 2CS_1S_2. \] (5.6)

Since the scalar kinetic term is separately invariant, we assume from now on that \(\hat{\mathcal{L}}(S,F) \) does not depend on the derivatives of \(S \).

The full noncompact duality transformation on \(F_{\mu\nu} \) is now

\[\delta G = AG + BF, \quad \delta F = CG + DF, \quad D = -A, \] (5.7)

and we are seeking a Lagrangian \(\hat{\mathcal{L}}(S,F) \) which satisfies

\[\delta \hat{\mathcal{L}} = \frac{1}{4} \left(FB\tilde{F} + GC\tilde{G} \right), \] (5.8)

where

\[\delta \hat{\mathcal{L}} = \delta F \frac{\partial \hat{\mathcal{L}}}{\partial F} + \delta S_1 \frac{\partial \hat{\mathcal{L}}}{\partial S_1} + \delta S_2 \frac{\partial \hat{\mathcal{L}}}{\partial S_2}, \] (5.9)

and now

\[\tilde{G} = 2 \frac{\partial \hat{\mathcal{L}}}{\partial F}. \] (5.10)

Equating (5.8) and (5.9) we see that \(\hat{\mathcal{L}} \) must satisfy

\[\frac{1}{4} \left(CG\tilde{G} - BF\tilde{F} \right) - \frac{1}{2} AF\tilde{G} + \delta S_1 \frac{\partial \hat{\mathcal{L}}}{\partial S_1} + \delta S_2 \frac{\partial \hat{\mathcal{L}}}{\partial S_2} = 0. \] (5.11)

This equation can be solved as follows. Assume that \(\mathcal{L}(\mathcal{F}) \) satisfies (2.1) and (2.5), \(i.e. \)

\[G\tilde{G} + \mathcal{F}\tilde{\mathcal{F}} = 0, \] (5.12)
where
\[\tilde{G} = 2 \frac{\partial L}{\partial \mathcal{F}}. \] (5.13)

For instance, the Born-Infeld Lagrangian \(L(\mathcal{F}) \) does this. Then
\[\hat{L}(S, F) = L(S^{\frac{1}{2}} F) + \frac{1}{4} S_1 F \tilde{F} \] (5.14)
satisfies (5.11). Indeed
\[\frac{\partial \hat{L}(S, F)}{\partial F} = \frac{\partial L}{\partial \mathcal{F}} S^{\frac{1}{2}} + \frac{1}{2} S_1 \tilde{F}. \] (5.15)

So
\[\tilde{G} = \tilde{G} S^{\frac{1}{2}} + S_1 \tilde{F}, \] (5.16)
\[G = G S^{\frac{1}{2}} + S_1 F, \] (5.17)
where we have defined
\[\mathcal{F} = S^{\frac{1}{2}} F, \] (5.18)
and \(\tilde{G} \) is given by (5.13). Now
\[G \tilde{G} = G \tilde{G} S_2 + S_1 F \tilde{F} + 2 S_1 \mathcal{F} \tilde{G}. \] (5.19)

Using (5.12) in this equation we find
\[G \tilde{G} = (S_1^2 - S_2^2) F \tilde{F} + 2 S_1 \mathcal{F} \tilde{G}. \] (5.20)

We also have
\[F \tilde{G} = \mathcal{F} \tilde{G} + S_1 F \tilde{F}. \] (5.21)

On the other hand, since
\[\frac{\partial L}{\partial S_2^{\frac{1}{2}}} = \frac{\partial L}{\partial \mathcal{F}} F = \frac{1}{2} \tilde{G} F, \] (5.22)
we obtain
\[\frac{\partial \hat{L}}{\partial S_2^{\frac{1}{2}}} = \frac{\partial L}{\partial S_2^{\frac{1}{2}}} S_2^{\frac{1}{2}} = \frac{1}{4} \tilde{G} S_2^{\frac{1}{2}} F = \frac{1}{4} \tilde{G} \mathcal{F} S_2^{-1}. \] (5.23)

In addition
\[\frac{\partial \hat{L}}{\partial S_1} = \frac{1}{4} F \tilde{F}. \] (5.24)
Using (5.20), (5.21), (5.23) and (5.24), together with (5.6), we see that (5.11) is satisfied. It is easy to check that the scale invariant combinations F and G, given by (5.18) and (5.13) have the very simple transformation law

$$\delta F = S_2 C G, \quad \delta G = -S_2 C F,$$

i.e., they transform according to the $U(1) \cong SO(2)$ compact subgroup just as F and G in (2.2), but with the parameter λ replaced by $S_2 C$. If $L(F)$ is the Born-Infeld Lagrangian, the theory with scalar fields given by \hat{L} in (5.14) can also be reformulated à la Schrödinger. From (5.17) and (5.18) solve for F and G in terms of F, G, S_1 and S_2. Then $M = F - ig$ must satisfy the same equation (3.1) that M does when no scalar fields are present.

6 Duality as a Legendre transformation

We have observed that, even in the general case of $Sp(2n, R)$, although the Lagrangian is not invariant, the combination [see (1.15)]

$$\hat{L} - \frac{1}{4} F \tilde{G}$$

(6.1)

is invariant. Here we restrict ourselves to the case of $SL(2, R)$, one tensor $F_{\mu \nu}$ and one complex scalar field $S = S_1 + is_2$. As in Section 5, we use the notation \hat{L} to denote the part of the Lagrangian that depends on the scalar fields, as well as on $F_{\mu \nu}$, but not on scalar derivatives. Then

$$\hat{L}(S_1, S_2, F) - \frac{1}{4} F \tilde{G} = \hat{L}(S'_1, S'_2, F') - \frac{1}{4} F' \tilde{G'},$$

(6.2)

where

$$\begin{pmatrix} G' \\ F' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} G \\ F \end{pmatrix}, \quad S' = \frac{aS + b}{cS + d}, \quad ad - bd = 1,$$

(6.3)

$$\tilde{G} = 2 \frac{\partial \hat{L}}{\partial F}.$$

(6.4)

There are several interesting special cases of this invariance statement. The first corresponds to $a = d = 1, c = 0, b$ arbitrary, which gives

$$G' = G + bF, \quad F' = F, \quad S'_1 = S_1 + b, \quad S'_2 = S_2.$$

(6.5)
The second corresponds to $b = c = 0$, $d = 1/a$, a arbitrary, which gives
\begin{equation}
G' = aG, \quad F' = \frac{1}{a}F, \quad S' = a^2S, \quad S'_1 = a^2S_1, \quad S'_2 = a^2S_2.
\end{equation}
(6.6)
The third corresponds to $a = d = 0$, $b = -1/c$, c arbitrary, which gives
\begin{equation}
G' = -\frac{1}{c}F, \quad F' = cG, \quad S' = -\frac{1}{c^2S}, \quad S'_1 = -\frac{S_1}{c^2|S|^2}, \quad S'_2 = \frac{S_2}{c^2|S|^2}.
\end{equation}
(6.7)
Using (6.5) in (6.2) we find
\begin{equation}
\hat{L}(S_1, S_2, F) - \frac{1}{4}F\tilde{G} = \hat{L}(a^2S_1, a^2S_2, \frac{1}{a}F) - \frac{1}{4}F\tilde{G},
\end{equation}
(6.8)
Taking $b = -S_1$, we obtain
\begin{equation}
\hat{L}(S_1, S_2, F) = \hat{L}(0, S_2, F) + \frac{1}{4}S_1FF\tilde{F},
\end{equation}
(6.9)
which gives the dependence of \hat{L} on S_1, in agreement with (5.14). This choice for the constant b is allowed because this part of the Lagrangian, which does not include the kinetic term for the scalar fields, does not contain derivatives of the scalar fields. Using (6.6) in (6.2) we find
\begin{equation}
\hat{L}(S_1, S_2, F) - \frac{1}{4}F\tilde{G} = \hat{L}(a^2S_1, a^2S_2, \frac{1}{a}F) - \frac{1}{4}F\tilde{G},
\end{equation}
(6.10)
i.e.,
\begin{equation}
\hat{L}(S_1, S_2, F) = \hat{L}(a^2S_1, a^2S_2, \frac{1}{a}F).
\end{equation}
(6.11)
Setting $S_2 = 0$ in this equation, we see that $\hat{L}(S_1, 0, F)$ is a function of S_1^2F, in agreement with the more precise statement (6.9). Setting instead $S_1 = 0$, we find that $\hat{L}(0, S_2, F)$ is a function of S_2^2F, in agreement with (5.14).

Using (6.7) in (6.2) we find
\begin{equation}
\hat{L}(S_1, S_2, F) - \frac{1}{4}F\tilde{G} = \hat{L}\left(-\frac{S_1}{c^2|S|^2}, \frac{S_2}{c^2|S|^2}, cG\right) + \frac{1}{4}G\tilde{F},
\end{equation}
(6.12)
i.e.,
\begin{equation}
\hat{L}\left(-\frac{S_1}{c^2|S|^2}, \frac{S_2}{c^2|S|^2}, cG\right) = \hat{L}(S_1, S_2, F) - \frac{1}{2}F\tilde{G},
\end{equation}
(6.13)
or
\begin{equation}
\hat{L}\left(-\frac{1}{c^2S}, cG\right) = \hat{L}(S, F) - \frac{1}{2}F\tilde{G}.
\end{equation}
(6.14)
We have shown that the Ansatz (5.14) of Section 5 is a natural consequence of the invariance of $\hat{L} - \frac{1}{4} F\tilde{G}$. Equation (6.14) with (6.4) can be interpreted as a Legendre transformation. Given a Lagrangian $\hat{L}(S, F)$, define the dual Lagrangian $\hat{L}_D(S, F_D)$, a function of the dual field F_D, by

$$\hat{L}_D(S, F_D) + \hat{L}(S, F) = \frac{1}{2} FF_D,$$

(6.15)

$$F_D = 2\frac{\partial \hat{L}}{\partial F}, \quad F = 2\frac{\partial \hat{L}_D}{\partial F_D}.$$

(6.16)

With these definitions, the dual of the dual of a function equals the original function.\(^1\) In general, the dual Lagrangian is a very different function from the original Lagrangian. For a self-dual theory, if we set

$$F_D = \tilde{G}, \quad \tilde{F}_D = -G,$$

(6.17)

we see from (6.14) that

$$-\hat{L} \left(-\frac{1}{c^2 S}, cG \right) = \hat{L}_D(S, \tilde{G}),$$

(6.18)

which must be independent of c, since G is.

The above argument can be inverted. Let the Legendre transformation (6.15) produce a dual Lagrangian given by (6.18) with $c = 1$, or

$$\hat{L}_D(S, F_D) = -\hat{L} \left(-\frac{1}{S}, -\tilde{F}_D \right) = -\hat{L} \left(-\frac{1}{S}, G \right).$$

(6.19)

It then follows that $\hat{L} - \frac{1}{4} F\tilde{G}$ is invariant under (6.7) with $c = 1$, i.e.,

$$G' = -F, \quad F' = G, \quad S' = -\frac{1}{S}.$$

(6.20)

If we now assume that it is also invariant under (6.5) with arbitrary b, it follows that it is invariant under the entire group $SL(2, R)$. Indeed, if we call t_b the transformation (6.5) and s the transformation (6.20), the product $t_b s t_b s t_b'$ gives the most general transformation of $SL(2, R)$.

If we normalize the scalar field differently, taking e.g., instead of S,

$$\tau = cS, \quad L' (\tau, F) = \hat{L}(S, F),$$

(6.21)

\(^1\) The unconventional factor $1/2$ on the right hand side of (6.15) is introduced to avoid overcounting when summing over the indices of the antisymmetric tensors F and F_D.

14
\[L'_D(\tau, F'_D) + L'(\tau, F) = \frac{1}{2c} F F'_D, \]
(6.22)

and write the Legendre transformation as
\[2 \frac{\partial L'(\tau, F)}{\partial F} = \frac{1}{c} F'_D, \quad 2 \frac{\partial L'_D(\tau, F'_D)}{\partial F'_D} = \frac{1}{c} F', \]
(6.23)

we see that
\[F'_D = c F_D = c \tilde{G}, \]
(6.24)

and
\[L'_D(\tau, F'_D) = \hat{L}_D(S, F_D) = - \hat{L} \left(-\frac{1}{c^2 S}, -c \tilde{F}_D \right) = -L' \left(\frac{1}{c S}, -c \tilde{F}_D \right) = \hat{L} \left(-\frac{1}{\tau}, -\tilde{F}_D \right), \]
(6.25)

for a self-dual theory.

A standard normalization \[12, 13\] is \(c = 4\pi \), in which case the expectation value of the field \(\tau \) is
\[< \tau > = \frac{\theta}{2\pi} + \frac{4\pi}{g'^2}. \]
(6.26)

In the presence of magnetically charged particles and dyons (both electrically and magnetically charged) the invariance of the charge lattice restricts \[14\] the \(SL(2, R) \) group to the \(SL(2, Z) \) subgroup generated by
\[\tau \rightarrow -\frac{1}{\tau}, \quad \tau \rightarrow \tau + 1. \]
(6.27)

At the quantum level the Legendre transformation corresponds to the integration over the field \(F \) in the functional integral, after adding to the Lagrangian \(\hat{L} \) a term \(-\frac{1}{2} F F'_D \).

7 Concluding remarks

Nonlinear electromagnetic Lagrangians, like the Born-Infeld Lagrangian, can be supersymmetrized \[15, 16\] by means of the four-dimensional \(N = 1 \) superfield formalism, and this can be done even in the presence of supergravity. When the Lagrangian is self-dual, it is natural to ask whether its supersymmetric extension possesses a self-duality property that can be formulated in a supersymmetric way. We were not able to do this in the nonlinear case. When the Lagrangian is quadratic in the fields \(F'_{\mu\nu} \), the problem as been solved.
in [17], where the combined requirements of supersymmetry and self-duality were used to constrain the form or the weak coupling ($S_2 \rightarrow \infty$) limit of the effective Lagrangian from string theory, in which one neglects the nonabelian nature of the gauge fields.

The $SL(2, Z)$ subgroup of $SL(2, R)$ that is generated by the elements $4\pi S \rightarrow -1/4\pi S$ and $S \rightarrow S + 1/4\pi$ relates different string theories [18] to one another.

The generalization of [2] to two dimensional theories [19] has been used to derive the Kähler potential for moduli and matter fields in effective field theories from superstrings. In this case the scalars are valued on a coset space \mathcal{K}/\mathcal{H}, $\mathcal{K} \in SO(n, n)$, $\mathcal{H} \in SO(n) \times SO(n)$. The kinetic energy is invariant under \mathcal{K}, and the full classical theory is invariant under a subgroup of \mathcal{K}. String loop corrections reduces the invariance to a discrete subgroup that contains the $SL(2, Z)$ group generated by $T \rightarrow 1/T$, $T \rightarrow T - i$, where $\text{Re}T$ is the squared radius of compactification in string units.

Acknowledgements. We are grateful for the hospitality provided by the Isaac Newton Institute where this work was initiated. We thank Gary Gibbons, David Jackson, Bogdan Morariu, David Olive, Harold Steinacker, Kelly Stelle and Peter West for inspiring conversations. This work was supported in part by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098 and in part by the National Science Foundation under grant PHY-95-14797.

References

