Quantum structure of spacetime and blackhole entropy

T. Padmanabhan*

IUCAA, Post Bag 4, Ganeshkhind, Pune 411 007, India.

The gap between a microscopic theory for quantum spacetime and the semiclassical physics of blackholes is bridged by treating the blackhole spacetimes as highly excited states of a class of nonlocal field theories. All the blackhole thermodynamics is shown to arise from asymptotic form of the dispersion relation satisfied by the elementary excitations of these field theories. These models involve, quite generically, fields which are: (i) smeared over regions of the order of Planck length and (ii) possess correlation functions which have universal short distance behaviour.

Simple thought experiments suggest that there exists an operational limitation in measuring lengths (and times) smaller than the Planck length \(L_P \equiv (G \hbar / c^3)^{1/2} \) (see for example, ref. [1]). The correct theory of quantum gravity should incorporate this limitation in a natural manner just as the correct quantum mechanical theory (based on non commuting operators) incorporates the uncertainty principle. String theories as well as the spin network formalism based on Ashtekar variables do seem to have ingredients to describe the quantum microstructure of spacetime in such a manner that \(L_P \) arises as a natural lower bound to lengthscales [2,3]. In these approaches, the spacetime continuum arises as a nonperturbative quantum condensate of the basic variables. The description of spacetime geometry as a solution to Einstein equation is analogous to the description of, say, a gaseous system by macroscopic parameters through an equation of state. Given the microscopic theory, there should exist certain well defined procedure for obtaining the continuum description.

Unfortunately, we do not yet have a clearly spelt out quantum theory of gravity. It is therefore important to ask whether one could obtain some general features of such a theory based on our knowledge of the macroscopic description. It is obvious that such an “inverse” process — which is similar to an attempt in understanding the quantum nature of radiation field, given the macroscopic description of the blackbody radiation — will not possess a unique solution; however, some key features, which must be respected by any underlying quantum description of spacetime, should arise from such an analysis.

Since quantum structure of spacetime is likely to reveal itself only at energies close to Planck energy, \(E_P = L_P^{-1} \), its effects are most likely to influence description of virtual processes taking place at Planck energies and above. In general, such virtual processes cannot be described without knowing the details of the theory. One fortunate exception occurs in classical spacetimes containing compact infinite redshift surfaces. I give detailed arguments elsewhere [4] to suggest that blackhole evaporation can be thought of as the deexcitation of degrees of freedom located within a few Planck lengths from the event horizon. The existence of infinite redshift allows virtual processes at super Planckian energies to manifest as phenomena at sub Planckian energies which are describable in terms of semiclassical continuum physics. It follows that the existence of blackhole evaporation will put certain constraints on the correct description of quantum microstructure though it is still likely to leave fair amount of liberty as regards the details [5].

I show below that it is possible to construct toy effective field theories which correctly describe the semi classical thermodynamics of blackholes. This analysis helps to delineate those features of the effective field theories which are essential to reproduce the correct behaviour and reveals the tremendous amount of freedom which still exists as regards the microscopic description.

Let the quantum microstructure of spacetime be described by certain degrees of freedom \(q_A \) and energy levels \(\epsilon_j \). Classical, asymptotically flat, spacetimes with mass-energy \(M \gg E_P \) will be made of large number of degrees of freedom combining together in a coherent manner. Normally, these elementary degrees of freedom will remain in their ground state. An exception occurs in the description of classical spacetimes possessing a compact, infinite redshift surface. In such a case, highly excited states of the basic degrees of freedom can be populated, at least around the event horizon, due to the presence of virtual excitations of arbitrarily high energies. (The role of infinite redshift surfaces, which distinguishes a star of mass \(M \) from a blackhole of mass \(M \), will be elaborated in ref. 4; the details are irrelevant for this paper). A blackhole spacetime of mass \(M \) will correspond to a highly excited quantum state of

* paddy@iucaa.ernet.in
For a description of such a state, with the least amount of additional assumptions, I will rely on pure combinatorics used in conventional statistical mechanics. In such a description the mean energy can be written in the form

$$E(\beta) = -\frac{\partial}{\partial \beta} \ln Z(\beta); \quad Z(\beta) = \sum_j g_j e^{-\beta \epsilon_j} \cong \int_c \rho(z) e^{-\beta z} dz$$

(1)

where $Z(\beta)$ is the partition function and $\rho(z)$ is the density of states of the system. The second equality for $Z(\beta)$ assumes the validity of continuum description but keeps the contour of integration C in complex plane unspecified; this is convenient since I have to deal with density of states which are unbounded along the real axis. Given the form of $E(\beta)$ one can determine $Z(\beta)$ and, by inverting the relation between Z and ρ, obtain $\rho(z)$. If the quantum state describes a semiclassical blackhole, then we must have $M = E(\beta) = (E_P^2 \beta / 8 \pi$; this gives $Z(\beta) = \exp(-\beta^2 E_P^2 / 16 \pi)$. Choosing the contour of integration C along the imaginary axis, we get $\rho(\beta/E_P) = \exp[-4 \pi (\beta/E_P)^2]$. This corresponds to the density of states for real energies given by $\rho(\beta) = \exp[4 \pi (\beta/E_P)^2]$ for $\beta \gg E_P$. The corresponding entropy is $S(\beta) = \ln \rho(\beta) = 4 \pi (\beta/E_P)^2 = A/4 L_P^2$ where A is the area of the event horizon. Given a system with this form of density of states and a mechanism to populate the excited states as required in the statistical description, one can reproduce the standard thermodynamics of blackholes. Hence any description of quantum microstructure which, in addition, even t and \mathbf{x} have to arise in terms of the microscopic variables in some, as yet unknown, fashion.) I take the Lagrangian describing the effective field $\phi(t, \mathbf{x})$ to be

$$L = \frac{1}{2} \int d^D \mathbf{x} \dot{\phi}^2 - \frac{1}{2} \int d^D \mathbf{x} d^D y \phi(\mathbf{x}) F(\mathbf{x} - \mathbf{y}) \phi(\mathbf{y}) = \int \frac{d^D k}{(2\pi)^D} \frac{1}{2} \left[|\dot{Q}_k|^2 - \omega_k^2 |Q_k|^2 \right]$$

(3)

The Lagrangian is non local in the space coordinates \mathbf{x} which is taken to be D-dimensional; the corresponding Fourier space coordinates are labelled by \mathbf{k}. The quadratic non locality allows us to describe the system in terms of free harmonic oscillators with a dispersion relation $\omega(\mathbf{k})$ related to $F(\mathbf{r})$ by

$$\omega^2(\mathbf{k}) = \int d^D r F(\mathbf{r}) e^{i \mathbf{k} \cdot \mathbf{r}}$$

(4)

The energy levels of the system are built out of elementary excitations with energy $\hbar \omega(\mathbf{k})$ and the partition function is given by

$$Z(\beta) \cong \int \frac{d^D k}{(2\pi)^D} \exp[-\beta \omega(\mathbf{k})] = \int dE \rho(E) e^{-\beta E}$$

(5)

where $\rho(E)$ is the Jacobian $\rho(E) = |d^D k / dE|$. It is straightforward to see that if the dispersion relation $\omega(\mathbf{k})$ has the asymptotic form

$$\omega^2(k) \rightarrow \frac{E_P^2 D}{8\pi} \ln k^2 \quad \text{(for } k^2 \gg E_P^2)$$

(6)
then the density of states has the asymptotic form as given in (2). Thus a wide class of toy effective field theories of very simple nature can reproduce the blackhole thermodynamics. The only nontrivial ingredient, compared to conventional field theories, is the non locality in the x–space.

I will now illustrate the above phenomena using the simplest possible choice, corresponding to $D = 1$ and a dispersion relation

$$\omega^2(k) = \frac{E_P^2}{8\pi} \ln \left(1 + \frac{8\pi k^2}{E_P^2}\right)$$

(7)

The form of $\omega(k)$ for $k \ll E_P$ is somewhat arbitrary. I have chosen it so as to reduce the model to a local, massless, free field theory (with $\omega^2 = k^2$) in this limit. Since quantum gravitational effects should be negligible for $E_P \to \infty$, this appears reasonable. (In addition to simplicity, this form can be motivated by other considerations [4].) The density of states corresponding to this dispersion relation is given by

$$\rho(\tilde{E}) \equiv \exp \left[4\pi \frac{\tilde{E}^2}{E_P^2} + O \left(\ln \frac{\tilde{E}}{E_P}\right)\right] = \exp S(\tilde{E})$$

(8)

The corresponding blackhole temperature is

$$T(\tilde{E}) = \left(\frac{\partial S}{\partial E}\right)^{-1} = \frac{E_P^2}{8\pi \tilde{E}} \left[1 + O \left(\frac{E_P^2}{\tilde{E}^2}\right)\right] \approx \frac{E_P^2}{8\pi M}$$

(9)

for $\tilde{E} = M \gg E_P$. The function $F(r)$ corresponding to the $\omega^2(k)$ in equation (7) is

$$F(x) = \frac{E_P^2}{8\pi} \int_{-\infty}^{\infty} \frac{dk}{2\pi} e^{-ikx} \ln \left(1 + \frac{8\pi k^2}{E_P^2}\right) = -\frac{E_P^2}{8\pi} \left(\frac{L_P}{|x|}\right) \exp \left(-\frac{|x|}{\sqrt{8\pi L_P}}\right)$$

(10)

for finite, nonzero, x. [The logarithmic singularity in the k integration can be handled by standard regularisation techniques; e.g. by using the integral representation of the \ln function.] When $L_P \to 0$, the function $F(x)$ is proportional to the second derivative of Dirac delta function as can be seen from the fact that, as $L_P \to 0, \omega^2(k) \to k^2$. In this limit, we recover the standard local field theory.

The functional form of $F(x)$ clearly illustrates the smearing of the fields over a region with correlation length $\sqrt{8\pi L_P}$. It can be shown, with more tedious algebra, that this is a generic feature of the dispersion relation (7) in any dimension D. The asymptotic structure in (6) governs the short distance behaviour of $F(x)$ and in D–dimension $F(x) \propto (|x|/L_P)^{-D}$ as $|x| \to 0$. In fact, this is the only feature of $F(x)$ which is needed to reproduce the density of states leading to the correct theory of blackhole thermodynamics.

The physical content of the above analysis can be viewed as follows. I start with certain loosely defined dynamical variables q_A describing the quantum microstructure of the spacetime. The dynamical theory describing q_A's must lead, in suitable limit, to a continuum spacetime with quantum states having mean energies much larger than E_P. Among them are the classical spacetimes with compact, infinite redshift surfaces like that of a blackhole forming out of a stellar collapse. I describe these blackhole spacetimes in terms of an intermediate effective field theory in $(D + 1)$ dimension. The existence of an infinite redshift surface allows the elementary excitations of this field with arbitrarily high energies to occur in such spacetimes. (In the absence of infinite redshift surface, one cannot populate high energy states of the toy field so as to obtain a thermodynamic description.) Such a theory is nonlocal in space and is based on smearing of fields over a correlation length of the order of L_P.

In fact, any field theory described by the Lagrangian of the form in (3) can be expressed in terms of a free field ψ such that ϕ is obtained by smearing ψ using a window function W; in Fourier space, $\psi_k = \phi_k W_k$ with $|W_k|^2 = k^2 F_k^{-1}$. The short distance behaviour of such a correlation function is universal and is of the form $(|x|/L_P)^{-D}$ in D–dimension. The blackhole spacetimes are interpreted as highly excited states of such a toy field theory which itself is built out of more fundamental, and as yet unknown, variables q_I. The semiclassical, thermodynamic behaviour of blackholes can come from such an effective field theory.

The above analysis shows that there is nothing mysterious in completely different microscopic models (like those based on strings or Ashtekar variables) leading to similar results regarding blackhole entropy [6]. Any theory which has the correct density of states can do this; in fact, the models I have described are only a very specific subset of several such field theories which can be constructed. The situation is reminiscent of one’s attempt to understand the quantum nature of light from blackbody radiation. The spectral form of blackbody radiation can be derived from the assumption that $E = h\omega$ and is quite independent of the details of quantum dynamics of the electromagnetic
field. Similarly, the blackhole thermodynamics can be explained if one treats spacetimes with event horizons as highly excited states of a nonlocal field theory whose elementary excitations obey a dispersion relation with the asymptotic form given by (6). Within the spirit of the current analysis, one need not even identify the \((D + 1)\) dimensional space as a superset of conventional spacetime. The \(x\) and \(t\) could represent variables in some abstract space and the spacetime structure could emerge in a more complicated manner in terms of the fields themselves. Because of this reason, I have not bothered about the Lorentz invariance or other internal symmetries of the toy model.

While it may not be possible to obtain a unique quantum description of spacetime from our knowledge of semi-classical blackhole physics, it does give three clear pointers. First is the indirect, but essential, role played by the infinite redshift surface: It is the existence of such a surface which distinguishes the \textit{star} of mass \(M\) from a \textit{blackhole} of mass \(M\). A stellar spacetime will not be able to populate high energy states of the toy field as required by the statistical description; in a blackhole spacetime, virtual modes of arbitrarily high energies near the event horizon will allow this to occur. (It may be possible to model such a process by studying the interaction of this toy field with a more conventional field near the event horizon.) Second one is the asymptotic form of the dispersion relation for the elementary excitations which leads to the correct density of states. The third is the fact that such a dispersion relation almost invariably leads to smearing of local fields over regions of the order of Planck length.

I thank Apoorva Patel and Sayan Kar for several stimulating discussions.