Tests experimentaux de certaines hypothèses de symétrie relatives aux interactions fortes

B. d'Espagnet, A. Martin et J. Prentki
CERN Genève

ABSTRACT

Various tests for the global symmetry and for the Salam-Polkinghorne assumption are proposed. In the high energy reactions considered, such as antibaryon production, it is expected that the global symmetry might be more apparent than in reactions involving K mesons at low energies. While the tests for the universality of the pion-hyperon coupling are described by equalities, those which apply to a comparison between the pion-hyperon and pion-nucleon couplings are expressed in terms of inequalities between cross-sections for different processes. This is a consequence of indiscernibility and of the presence of the target nucleon in the initial state. These inequalities might, however, prove to give rather simple tests as they hold independently of the number of emitted pions. The tests for the Salam-Polkinghorne assumption are chosen so as to give a lower limit on the number of Ξ's appearing in a reaction, while the previously proposed tests gave an upper limit. Finally phase space effects are briefly discussed.
I. Introduction

Dans un travail précédent 1) deux d'entre nous ont indiqué quelques
tests expérimentaux de l'hypothèse de la "symétrie restreinte" dans les inter-
actions fortes mésons-baryons (hypothèse $g_2=g_3$ dans l'expression (2)
ci-dessous, $m^0_\Lambda=m^0_\Sigma$). Nous avons fait remarquer que la possibilité d'observer
des créations de paires d'hypérons dans les collisions $\pi-p$, $p-p$, et aussi
$p-\bar{p}$ fournit un bon moyen de vérification de cette hypothèse qui conduit à des
relations simples entre les nombres de paires produites, à savoir :

$$
\begin{align*}
\sigma \left(\Xi^- \Xi^0 \right) & \approx \sigma \left(\Xi^- \Lambda \right) \approx \sigma \left(\Xi^0 \Xi^+ \right) \approx \sigma \left(\Lambda \Xi^+ \right) \\
\sigma \left(\Xi^+ \Xi^- \right) & \approx \sigma \left(\Xi^+ \Lambda \right) \approx \sigma \left(\Xi^0 \Xi^- \right) \approx \sigma \left(\Lambda \Xi^- \right) \\
\sigma \left(\Xi^0 \Xi^+ \right) + \sigma \left(\Xi^- \Xi^+ \right) & \approx 2 \left[\sigma \left(\Xi^- \Lambda \right) + \sigma \left(\Lambda \Xi^+ \right) \right] \\
\sigma \left(\Xi^0 \Xi^- \right) & \approx \sigma \left(\Lambda \Xi^- \right) \\
\sigma \left(\Lambda \Xi^+ \right) & \approx \sigma \left(\Xi^0 \Lambda \right)
\end{align*}
$$

(1)

Ici nous voulons appliquer des considérations analogues au problème
de la "symétrie globale" 2) des interactions méson π - baryon et également
indiquer quelques tests du schéma de Salam et Polkinghorne 3). On peut
evidemment se demander pourquoi chercher encore des tests de la symétrie
globale puisque celle-ci paraît en désaccord avec les données expérimentales
sur l'absorption et la diffusion des \overline{K} par des nucléons à faible énergie 4).
La réponse à cette question est qu'il est fort possible que la symétrie
globale existe et soit simplement masquée par les interactions K - nucléon -
hypéron. Dans cette hypothèse il n'est nullement exclu qu'un souvenir plus
précis de la symétrie globale se manifeste dans les processus qui peuvent
avoir lieu sans aucune intervention directe des interactions K.

8999
Afin de préciser les idées nous écrivons l'hamiltonien des interactions fortes sous la forme *):

\[g_i \bar{N} \gamma \cdot N \pi + g_i^* \bar{N} \gamma \cdot N \pi + g_i \bar{N} \gamma \cdot N \pi + g_i^* \bar{N} \gamma \cdot N \pi \]

\(+ g_f \bar{N} \gamma \cdot N \pi + g_f^* \bar{N} \gamma \cdot N \pi + g_f \bar{N} \gamma \cdot N \pi + g_f^* \bar{N} \gamma \cdot N \pi + h.c.\)

(2)

- la symétrie restreinte correspond à

\[\varepsilon_2 = \varepsilon_5, \quad \varepsilon_6 \ll \varepsilon_7, \quad M_\pi \sim M_\Lambda \]

(3)

- la symétrie globale correspond à

\[\varepsilon_1 = \varepsilon_2 = \varepsilon_3 = \varepsilon_4, \quad \varepsilon_6 \ll \varepsilon, \quad N_\pi \sim M_\pi \sim M_\Lambda \sim M_\Sigma \]

(4)

- le schéma de Salam et Polkinghorne se caractérise par

\[\varepsilon_1 = \varepsilon_4, \quad \varepsilon_5 \ll \varepsilon_7, \quad \varepsilon_6 \sim \varepsilon_8, \quad M_\pi \ll M_\Sigma \]

(5)

II. Tests de \(\varepsilon_2 = \varepsilon_3 = \varepsilon_4, \quad \varepsilon_6 \ll \varepsilon_7 \).

Il y a une très grande différence entre la vérification expérimentale de \(\varepsilon_1 = \varepsilon_8 \) (i.e., \(\varepsilon_1 = \varepsilon_4 \)) et celle de \(\varepsilon_1 = \varepsilon_8 \) parce que les cibles utilisées sont nécessairement constituées de nucléons. Le cas \(\varepsilon_2 = \varepsilon_3 = \varepsilon_4 \) se révèle particulièrement simple. Dans cette hypothèse l'hamiltonien d'interaction \(\pi N \) s'écrit

\[g_i \bar{N} \gamma \cdot N \pi + g_f \left(\bar{\Upsilon} \gamma \cdot \Upsilon + \bar{Z} \gamma \cdot Z + \bar{\Xi} \gamma \cdot \Xi \right) M_\pi \]

(6)

avec

\[\Upsilon = \left(\begin{array}{c} \Sigma^+ \\ \gamma^+ \end{array} \right), \quad \bar{\Upsilon} = \left(\begin{array}{c} \Sigma^- \\ \gamma^- \end{array} \right), \quad \Upsilon^0 = \frac{\Upsilon - \bar{\Upsilon}}{\sqrt{2}}, \quad \bar{\Upsilon}^0 = \frac{\bar{\Upsilon} - \Upsilon}{\sqrt{2}} \]

(7)

*) La structure spatiale de l'interaction a été omise. On emploie la notation

\[\hat{K} = \mathbf{i} r_2 K^* \]
L'hamiltonien d'interaction (6) est invariant dans les substitutions

\[Z \leftrightarrow \Xi ; \quad N \leftrightarrow \Lambda ; \quad \bar{\eta} \leftrightarrow \bar{\eta} ; \quad \gamma \leftrightarrow \gamma \] (8)

\[\gamma \leftrightarrow \Xi ; \quad N \leftrightarrow \Lambda ; \quad \bar{\eta} \leftrightarrow \bar{\eta} ; \quad Z \leftrightarrow \Xi \] (8')

L'hamiltonien libre est également invariant si les différences de masses entre le \(\Xi \) le \(\Lambda \) et le \(\Xi \) sont négligées.

On peut tirer de là les égalités suivantes valables pour des collisions \(\pi N, \eta N \) ou \(\eta N \):

\begin{align*}
\text{nombre de } \Xi^- & \text{ créés } \approx \text{ nombre de } \Xi^- \quad (9) \\
\text{nombre de } \bar{\Xi}^- & \text{ créés } \approx \text{ nombre de } \bar{\Xi}^- \quad (*) \quad (10)
\end{align*}

Ces relations sont valables quel que soit le nombre de mésons créés dans la collision, pourvu que des mésons \(K \) n'apparaissent pas. En combinant (9) et (10) avec les relations (1) on obtient un ensemble complet de tests de \(g_2 = g_3 = g_4 \).

III. Tests de \(g_1 = g_2 = g_3, \ et g_K \ll g_2 \).

La difficulté rencontrée ici vient, nous l'avons dit, du fait que quelle que soit la reaction considérée l'état initial contient des nucléons. Il n'est donc pas possible de démontrer des égalités entre sections efficaces par des substitutions analogues à celles faites dans la section II, car alors on modifierait non seulement l'état final mais aussi l'état initial de la réaction considérée. Ainsi il est impossible de prévoir une relation entre

*) Ceci, bien entendu si l'on néglige la différence entre les masses des \(\Xi \) et des \(\Xi \) et la différence entre les volumes disponibles dans l'espace de phase qui en découlent. Ceci sera discuté brièvement dans la section VI. Cette remarque s'applique également aux sections III, IV et V.
les réactions *): p+p → p+p et p+p → \(\Sigma^- + \Sigma^- \); ceci est d'ailleurs bien évident dans un calcul de perturbations : des deux graphiques (a) et (b) (Fig. 1) pour la diffusion nucléon-antinucléon, seul (b) a un analogue dans la production de paires de \(\Sigma^- \) à partir d'un système nucléon-antinucléon.

Certaines prédictions sont cependant possibles pour d'autres réactions, mais on ne peut les obtenir qu'en mettant clairement en évidence la structure mathématique résultant des symétries \(g_1 = g_2 = g_3 \). L'hamiltonien (2) peut alors s'écrire (les interactions \(K \) sont négligées) :

\[
g_{\Sigma} \sqrt{1 \over \Lambda} \left[\sum_{k} \Gamma_{k} \rho \Lambda_{k} + \sum_{m} \gamma_{m} \rho \Lambda_{m} + \sum_{k} \Gamma_{k} \sum_{m} \gamma_{m} \right] + \sum_{k} \sqrt{1 \over \Lambda} \gamma_{k} \rho \Lambda_{k} \equiv \rho \Lambda_{\Sigma} \equiv \rho \Lambda
\]

(11)

avec \(\Sigma_{k} = \Sigma_{k}^{+} \) et \(\gamma_{m} = \gamma_{m}^{+} \). Donc, \((\rho \Lambda) \equiv \left(\begin{array}{c} \rho \Lambda^{-} \\rho \Lambda^{+} \end{array} \right) \)

Le haut degré de symétrie de cet hamiltonien entraîne des propriétés d'invariance dans un grand nombre d'espaces de spin "isotopique". Par exemple, écrivant (11) sous la forme

\[
g_{\Sigma} \sqrt{1 \over \Lambda} \rho \Lambda_{k} \rho \Lambda_{m} + \sum_{k} \sqrt{1 \over \Lambda} \gamma_{k} \rho \Lambda_{k} + \sum_{m} \gamma_{m} \rho \Lambda_{m} + \sum_{k} \sqrt{1 \over \Lambda} \gamma_{k} \rho \Lambda_{k} \equiv \rho \Lambda_{\Sigma} \equiv \rho \Lambda
\]

(12)

nous pouvons introduire deux spins isotopiques \(I_{a} \) et \(I_{b} \) correspondant aux indices pointés et . pointés, \(N \) et \(\Xi \) appartenant à la représentation \(O(\frac{1}{2}, 0) \) (c'est-à-dire, \(I_{a} = \frac{1}{2}, I_{b} = 0 \)), \(\Sigma_{k} \) à la représentation \(O(\frac{1}{2}, \frac{1}{2}) \) et \(\rho \Lambda \) à la représentation \(O(1, 0) \). Cet espace est précisément l'espace de la symétrie restreinte et la conservation de \(I_{a} \) et de \(I_{b} \) conduit aux relations (1) obtenues dans la référence 1); pour cela il suffit d'exploiter le fait que dans \(I_{b} \left(\Sigma^{±} \Xi^{0} \right) \) et \(\left(\Xi^{0} \Sigma^{-} \right) \) sont des spineurs alors que les autres particules sont des scalaires.

*) Bien entendu si des hypothèses plus précises sont faites sur la forme du potentiel \(NN \) on peut néanmoins faire des prédictions 5).
Par un groupement différent des termes du hamiltonien (11) on peut mettre en évidence d'autres propriétés d'invariance. Ainsi (11) peut s'écrire

\[g_1 \sqrt{2} C_1 \pi_\mu \pi_\nu - C_\mu \pi_\nu + g_2 \sqrt{2} Z_\mu \pi_\nu - Z_\nu + g_3 \sqrt{2} \Xi_\mu \pi_\nu - \Xi_\nu \]

ou

\[g_4 \sqrt{2} D_\mu \pi_\nu \pi_\rho + g_5 \sqrt{2} \gamma_\mu \pi_\nu \gamma_\nu + g_6 \sqrt{2} \Xi_\mu \pi_\nu \Xi_\nu \]

avec

\[C_1 = N_1 ; \quad C_2 = Y_k ; \quad D_1 = N_1 ; \quad D_2 = Z_k. \]

Le mode d'écriture (13) montre que \(N \) et \(Y \) sont, dans un certain espace \(I_b^n \), les composantes \(c^1 \), \(c^2 \) d'un spinor, c'est-à-dire que, de façon plus précise, (13) est invariant dans toutes les rotations d'un espace à trois dimensions \(I_b^n \) dans lequel \((p, \mathbf{z})\) et \((n, \mathbf{z})\) se transforment chacun comme des spinors, les autres particules étant des scalaires. Le mode d'écriture (14) met en évidence une propriété toute similaire relative aux spinors \((p, \mathbf{z})\), \((n, \mathbf{z})\) dans un espace \(I_b^n \). Nous allons maintenant exploiter ces propriétés et en tirer des tests de \(\gamma_1 = \gamma_2 = \gamma_3 \).

a) Production de paires \(\bar{\mathbf{n}} + \mathbf{n} \) dans les collisions \(\pi^- + p \).

Il s'agit de comparer les réactions

\[\pi^- + p \rightarrow \mathbf{n} + \mathbf{n} + \bar{\mathbf{n}} + n \pi^- \]

\[\pi^- + p \rightarrow \mathbf{m} + \mathbf{m} + \bar{\mathbf{m}} + m \pi^- \]

On utilisera la conservation de \(I_b^n \) ou de \(I_b^n \) selon les états de charge des particules finales. L'état initial \(p \pi^- \) est caractérisé par

\[I_b^n = \bar{I}_b + 1 \quad I_b^{n+} = I_b^{-} = +\frac{1}{2} \]
les trois baryons présents dans l'état final sont des composantes de spinors tandis que les mésons π sont des scalaires, aussi bien dans I'b que dans I''b. Nous allons donc traiter d'abord le problème suivant :

D'abord un état \(\frac{1}{2} \frac{1}{2} \rangle \) on aboutit à un système de trois particules spinorielles,

\[
A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} \quad B = \begin{pmatrix} B_1 \\ B_2 \end{pmatrix} \quad C = \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} \quad .
\]

la conservation de \(I_{b3} \) (nous supprimons les signes ' et '') permet les réactions :

\[
\frac{1}{2} \frac{1}{2} \rangle \rightarrow \begin{aligned}
A_2 &+ B_2 &+ C_1 \\
A_2 &+ B_1 &+ C_2 \\
A_1 &+ B_2 &+ C_2
\end{aligned} \quad (15)
\]

les éléments de matrice pour les réactions (a), (b) et (c) sont respectivement

\[
T_a = \sqrt{\frac{1}{3}} T_{1,3/2} \pm \sqrt{\frac{1}{6}} T_{1,1/2} \pm \sqrt{\frac{1}{2}} T_{0,1/2} \\
T_b = \sqrt{\frac{1}{3}} T_{1,3/2} \pm \sqrt{\frac{1}{6}} T_{1,1/2} \pm \sqrt{\frac{1}{2}} T_{0,1/2} \\
T_c = \sqrt{\frac{1}{3}} T_{1,3/2} \pm \sqrt{\frac{1}{3}} T_{1,1/2}
\]

où \(T_{i\frac{1}{2}} \) est défini comme l'élément de matrice de transition de l'état \(\frac{1}{2} \frac{1}{2} \rangle \) vers un état final obtenu en combinant les particules B C en un état de spin isotopique i, cet état étant combiné lui-même avec la particule A pour donner un spin isotopique total i. Comme \(I_b = \frac{1}{2} \) dans l'état initial,

\[
T_{i\frac{3}{2}} = 0
\]

8999
Combinant (17) et (18) on trouve finalement

\[T_a + T_b + T_c = 0 \]

(19)

Ceci conduit à des relations triangulaires entre sections efficaces, du type

\[\left(\sigma_a \right)^{\frac{1}{2}} - \left(\sigma_b \right)^{\frac{1}{2}} \leq \left(\sigma_c \right)^{\frac{1}{2}} \leq \left(\sigma_a \right)^{\frac{1}{2}} + \left(\sigma_b \right)^{\frac{1}{2}} \]

(20)

Comme les \(\pi \) sont des scalaires dans \(I_b \), les relations (19) et (20) sont valables lorsque \(n \) mésons \(\pi \) sont présents dans l'état final de chacune des trois réactions. Malheureusement, la vérification des inégalités (20) exige des mesures de sections efficaces pour \(n \) fixé, ce qui n'est pas toujours facile.

On peut cependant noter que de (20) découle l'inégalité moins restrictive :

\[\frac{1}{2} \sigma_c \leq \sigma_a + \sigma_b \]

(21)

On peut alors ajouter membre à membre les inégalités correspondant à l'émission d'un nombre donné de mésons \(\pi \) et obtenir une inégalité valable pour les sections efficaces de création des états (a), (b) et (c) indépendamment du nombre des \(\pi \) émis, notées par \(\Sigma_a, \Sigma_b, \Sigma_c \) :

\[\frac{1}{2} \Sigma_c \leq \Sigma_a + \Sigma_b \]

(22)

Dans le passage de (20 à (22) on perd de l'information mais l'analyse expérimentale peut s'en trouver grandement facilitée. Par ailleurs, cette relation est vraie aussi bien pour les sections efficaces totales que pour les sections efficaces différentielles.

Appliquons maintenant ces considérations à la production des anti-\(\Xi^+ \). D'après (13) c'est l'invariance dans \(I_b \) qui doit être utilisée et, par suite de l'association (\(\Xi^+ p \)) c'est avec la production d'antiprotons qu'on devra faire la comparaison. Deux cas sont à distinguer :
1) Dans la réaction de production des antiprotons les deux nucléons présents dans l'état final sont différents. On doit alors associer les réactions.

\[
\begin{align*}
\bar{\eta} + p & \rightarrow \begin{cases}
p + \Sigma^+ + Y + n & \text{(a)} \\
\bar{\Sigma}^+ + \bar{\bar{\eta}} + n + \bar{n} & \text{(b)} \\
p + \bar{\bar{p}} + n + n & \text{(c)}
\end{cases}
\end{align*}
\]

ici

\[
A = \begin{pmatrix} p \\ \Sigma^+ \end{pmatrix}, \quad B = \begin{pmatrix} \bar{\Sigma}^+ \\ \bar{p} \end{pmatrix}, \quad C = \begin{pmatrix} n \\ Y \end{pmatrix}
\]

En comparant (22) et (23) on obtient immédiatement :

\[
\text{nombre de } \Sigma^+ \gtrsim \frac{1}{2} \text{ nombre de } \bar{p}
\]

Cette relation est valable aussi bien pour des antiparticules de quantité de mouvement donnée que pour l'ensemble des antiparticules produites.

2) Les deux nucléons présents dans l'état final de la réaction de production des antiprotons sont identiques. S'il s'agit de deux protons on devra faire l'association suivante :

\[
\bar{\eta} + p \rightarrow \begin{cases}
p + \Sigma^+ + \bar{\Sigma}^+ + n \bar{n} & \text{(a)} \\
\bar{\Sigma}^+ + \Sigma^+ + p + n \bar{n} & \text{(b)} \\
p + \bar{\bar{p}} + p + n \bar{n} & \text{(c)}
\end{cases}
\]

Les produits finals sont du type \(A + B + A\) où \(A\) et \(B\) sont définis par (24). A partir de (17) et (18) on obtient aisément

\[
\left| T_a(k_{\Sigma^+}, k_{\bar{\Sigma}^+}, k_n) \right|^2 + \left| T_b(k_{\Sigma^+}, k_{\bar{\Sigma}^+}, k_p) \right|^2 \gg \frac{1}{2} \left| T_c(k_{\bar{\Sigma}^+}, k_{\bar{\bar{p}}}, k_n) \right|^2
\]

*) Si \(\frac{p}{\Sigma^+}\) se transforme comme un spineur \((-\Sigma^+\bar{p})\) se transforme comme un spineur de même espèce.
où k_1, k_2, k_3 désignent les moments des particules apparaissant dans les réactions (25). (a) et (b) représentent des états finals identiques aux quantités de mouvement prêts :

$$\left| T_a(k_1, k_2, k_3) \right|^2 = \left| T_b(k_3, k_2, k_1) \right|^2$$

En sommant (26) sur toutes les valeurs possibles de k_1 et k_3, à k_2 fixé, on obtient, à gauche, deux fois le nombre de \sum^+ de moment k_2 et, à droite, une fois le nombre de \bar{p} de moment k_2, compte tenu de l'indiscernabilité des 2 protons présents *) . On obtient finalement, par conséquent, la même relation que dans le cas 1), à savoir

$$\text{nombre de } \sum^+ \geq \frac{1}{2} \text{ nombre de } \bar{p} \quad (27)$$

Cette relation est valable, aux corrections d'espace de phase près, quel que soit l'état de charge des particules finales. Elle est vraie pour un nombre donné de mésons Λ émis et aussi indépendamment des mésons Σ^- émis. On peut soit s'intéresser au nombre total d'antiparticules produites, soit fixer leur quantité de mouvement; par contre notre raisonnement exige que l'on somme sur les quantités de mouvement des deux autres baryons présents.

De la même façon les propriétés d'invariance dans T_b conduisent à l'inégalité

$$\text{nombre de } \sum^- \text{ produits } \geq \frac{1}{2} \text{ nombre de } \bar{n} \quad (28)$$

valable dans les mêmes conditions. Par combinaison de (27) et (28) avec les relations (11) on obtient des relations entre les nombres de Λ et Σ^0 créés et les nombres de \bar{n} et \bar{p} créés.

*) En sommant sur toutes les directions des deux protons émis dans la réaction (c) la section efficace différentielle on obtient deux fois la section efficace totale. Un cas analogue a été traité en détail par E. Fermi dans les cours d'été de Varenna 6).
b) production de paires $\bar{N} N$ et $\bar{\Sigma} \Sigma$ dans les collisions $p-p$

Ici les états finals sont du type $N N \bar{\Sigma} \Sigma$ et $N N \bar{N} N$. Les différences essentielles avec le cas précédent sont que l'état initial est du type $I'_b = I''_b = I'_c = I''_c = 1$ et que trois particules identiques peuvent être présentes dans l'état final. Cependant la même méthode est applicable : on doit construire un vecteur à partir de quatre spinesurs du type (24) et tenir compte des effets d'indiscernabilité. On obtient ainsi (voir l'appendice) :

\[
\begin{align*}
\text{nombre de } \bar{\Sigma}^+ & \geq \frac{1}{3} \text{ nombre de } \bar{p} \\
\text{nombre de } \bar{\Sigma}^- & \geq \frac{1}{3} \text{ nombre de } \bar{n}
\end{align*}
\] (29)

ceci quel que soit le nombre de mésons π émis et sans tenir compte des effets d'espace de phase.

c) comparaison des collisions $p p$ et $\Sigma^+ p$

On peut traiter ce problème en utilisant la technique introduite dans a). Néanmoins, si l'on s'intéresse seulement aux sections efficaces totales on peut arriver au résultat plus rapidement :

- la section efficace pp est proportionnelle à

\[< pp | \Sigma^+ | pp > \]

- la section efficace $\Sigma^+ p$ est proportionnelle à

\[< \Sigma^+ p | \Sigma^+ | \Sigma^+ p > \]

Dans l'espace I'_b l'état $| pp > = | V_i >$ est la composante $+1$ d'un vecteur, alors que l'état $| \Sigma^+ p >$ est la superposition d'un vecteur et d'un scalaire :

\[| \Sigma^+ p > = \frac{1}{\sqrt{2}} | V_o + S > \]
Par suite :
\[\sigma^{pp} \cup \left\{ V \right\} T T^b \mid V \rangle = \nu \]
\[\sigma^{\Sigma^+ p} \cup \left\{ \frac{1}{2} \left\langle V+S \mid T T^+ \right\rangle \mid V; S \rangle = \frac{1}{2} \nu + \frac{1}{2} \alpha \right\} , \]
car la conservation de \(\Gamma_0 \) entraîne
\[\left\langle V \mid T T^+ \mid S \right\rangle = \left\langle S \mid T T^+ \mid V \right\rangle = 0 \]
Par conséquent
\[\sigma^{\Sigma^+ p} \supset \frac{1}{2} \sigma^{\Sigma^+ p} \] (30)
Cette relation est peut-être l'un des meilleurs tests de la symétrie globale. Pour remplacer l'inégalité (30) par des égalités il faudrait faire une analyse en déphasages de la diffusion \(\Sigma^+ p \) ce qui semble impossible dans un avenir proche.

IV. Tests de \(\xi_4 = \xi_4 \quad \xi_5 < \xi_5 \)

Lorsque \(\xi_4 = \xi_4 \), les interactions \(N^- \pi^- \) et \(\pi^- \pi^- \) peuvent s'écrire sous la forme \(\mathcal{N}_\lambda \left(\pi^- \pi^- \right) \), avec
\[\left(\mathcal{N}_\lambda \right)^{\xi_4} = \left(\begin{array}{c} \xi_4 \\ \xi_4 \\ \xi_4 \end{array} \right) \] (31)
Dans un espace \(\mathcal{I}^- \), \(\left(\eta_{\pi^+} \right) \) et \(\left(\eta_{\pi^-} \right) \) forment donc des spineurs. Par des considérations analogues à celles de la section III, nous pouvons comparer la production des paires \(\Xi^- \Xi^- \) à la production de paires \(\Xi^- \Xi^- \).
- Dans les collisions πN

nombre de $\bar{\pi}$ $\geq \frac{1}{2}$ nombre de \bar{p}

nombre de $\bar{\pi}^-$ $\geq \frac{1}{2}$ nombre de \bar{n}

(32)

- Dans les collisions $p-p$

nombre de $\bar{\pi}^0$ $\geq \frac{1}{3}$ nombre de \bar{p}

nombre de $\bar{\pi}^-$ $\geq \frac{1}{2}$ nombre de \bar{n}

(33)

Bien entendu nous faisons les réserves habituelles en raison de l'effet de l'espace de phase.

V. Tests de l'hypothèse de Salam et Polkinghorne

Il semble approprié de faire ici un bref rappel de ce que nous appelions l'hypothèse de Salam et Polkinghorne 4). Considérons l'hamiltonien d'interaction des N et des Ξ avec les mésons Ξ :

\[
\frac{1}{2} (g_1 + g_4) \left[\hat{N} \cdot \hat{\Xi} \cdot \hat{N} \cdot \hat{\Xi} + \bar{\Xi} \cdot \Xi \equiv \Xi \right] + \frac{1}{2} (g_1 \cdot g_4) \left[\hat{N} \cdot \hat{\Xi} \cdot \hat{N} \cdot \hat{\Xi} - \Xi \right]
\]

Dans l'hypothèse de Salam et Polkinghorne $|g_1 + g_4| \gg |g_1 - g_4|$, c'est à dire que $g_1 \approx g_4$ (cas précédemment traité sous la condition $g_1 \ll g_\pi$). Ici les interactions K ne sont plus négligées mais soumises à une condition similaire :

$g_5 \approx g_7$; $g_6 \approx g_8$;

($g_5 \ldots g_8$ peuvent être de l'ordre de g_1 et g_4).
Les masses du Ξ et du nucléon sont supposées égales en l'absence des interactions en $\varepsilon_1 - \varepsilon_4$, $\varepsilon_5 - \varepsilon_7$, $\varepsilon_6 - \varepsilon_8$. L'hamiltonien d'interaction se décompose en deux parties : $H_{\text{TF}}^\varepsilon$ hamliltonien des interactions très fortes et H_{TF} hamiltonien des interactions moyennement fortes responsables de la différence de masse $M_{\Xi} - M_N$. $H_{\text{TF}}^\varepsilon$ est invariant dans les rotations d'un espace isotopique à quatre dimensions qui est le produit direct de deux espaces à trois dimensions, i^+, espace du spin isotopique ordinaire, et i^-, espace de l'étrangeté. Les particules appartiennent aux représentations irréductibles dans cet espace, $\mathcal{O}(i^+, i^-)$; les attributions sont les suivantes : (N, Ξ) et (K, \bar{K}) appartiennent à $\mathcal{O}(\frac{3}{2}, \frac{1}{2})$; //, Ξ^-, et Ξ^+ à $\mathcal{O}(0,0)$, $\mathcal{O}(1,0)$, $\mathcal{O}(1,0)$ respectivement. Dans i^- / Ξ^-, Ξ^+ et Ξ^- sont des scalaires tandis qu'à partir de n, Ξ et K, \bar{K} on construit les spineurs suivants :

$$\begin{pmatrix}
\begin{pmatrix} p \\ \Xi^+ \end{pmatrix} \\
\begin{pmatrix} n \\ \Xi^- \end{pmatrix} \\
\begin{pmatrix} K^+ \\ -\bar{K}^0 \end{pmatrix} \\
\begin{pmatrix} K^0 \\ K^- \end{pmatrix}
\end{pmatrix}
$$

(34)

On peut alors appliquer des méthodes analogues à celles employées dans les sections III et IV pour faire certaines prédictions.

Evidemment les relations (32) et (33) fournissent un test de $\varepsilon_1 = \varepsilon_4$ valable non seulement pour $\varepsilon_4 < \varepsilon_7$ mais aussi pour $\varepsilon_5 = \varepsilon_7$, $\varepsilon_6 = \varepsilon_8$, de l'ordre de ε_1, mais ce test n'est pas spécifique de l'hypothèse de Salam et Polkinghorne. Il est donc nécessaire d'envisager par ailleurs des réactions dans lesquelles interviennent des mésons K.

Une série de tests de ce genre a été proposée par Goldman 7) ; on trouve par exemple pour les réactions

$$\begin{align*}
\Xi N & \rightarrow \Xi N \quad (a) \\
K N & \rightarrow K \Xi \quad (b) \\
K N & \rightarrow K \bar{N} \quad (c)
\end{align*}
$$

(35)

des inégalités triangulaires entre les racines des sections efficaces.
Il faut cependant remarquer que dans les tests envisagés par Feldman on n'obtient pas de limite inférieure du nombre de \(\Xi \) produits en fonction des sections efficaces des autres réactions. Ainsi, dans l'exemple (33) on peut fort bien avoir \(\sigma_a = \sigma_c \), \(\sigma_b = 0 \). Il serait donc intéressant de donner quelques tests tels que si dans deux réactions comparées apparaissent des \(\Xi \) et des nucléons on ait une condition du type :

\[
\text{nombre de } \Xi > \alpha \times \text{nombre des nucléons},
\]

où \(\alpha \) est un coefficient de l'ordre de l'unité. Les expériences que nous proposons sont certainement très difficiles mais il y a quelque espoir qu'elles puissent être un jour effectuées.

Si le nombre de \(\Xi \) produits par les grandes machines est appreciable, on peut tenter le test suivant :

\[
\begin{align*}
\Xi^- + p & \rightarrow \Sigma^- (\text{ou } \Lambda^-) + K + N + n\pi \quad \text{(a)} \\
\Xi^- + p & \rightarrow \Sigma^- (\text{ou } \Lambda^-) + K + \Xi + n\pi \quad \text{(b)} \\
n + p & \rightarrow \Sigma^- (\text{ou } \Lambda^-) + K + N + n\pi \quad \text{(c)}
\end{align*}
\]

Utilisant les méthodes de la section III et tenant compte du caractère spinorial des quantités (34) dans \(\Xi^- \) nous obtenons, en précisant convenablement les états de charge des particules finales, des inégalités triangulaires entre les racines des sections efficaces pour (a), (b) et (c); de là on passe à des inégalités entre sections efficaces indépendantes du nombre de mésons \(\Xi^- \) émis et de la charge des particules finales :

\[
\sigma\left(\Xi^- + p \rightarrow \begin{cases} \Sigma^- (\Lambda^-) + K + \Xi \\ \Sigma^- (\Lambda^-) + \Xi + \Lambda^- \end{cases} \right) > \frac{1}{4} \sigma\left(n + p \rightarrow \Sigma^- (\Lambda^-) + K + N \right)
\]

On peut aussi examiner des réactions du type

\[
\Sigma^- + N \rightarrow \begin{cases} N + N + K + n\pi \\ N + \Xi + K + n\pi \end{cases}
\]
Nous sommes en présence de réactions du type (16) déjà traité dans la section III, où A, B et C sont choisis parmi les spineurs (34). Les deux cas (particules toutes différentes dans chacun des trois états finals ou deux particules identiques dans l'un des états finals) conduisent, nous l'avons vu, au même résultat qui devient, ici :

\[\Sigma_a + \Sigma_b \geq \frac{1}{2} \Sigma_c \]

(39)

que l'on peut exprimer par

\[\text{nombre de } \Xi \geq \frac{1}{2} \text{ nombre de } \bar{K} \]

(39')

ou encore par d'autres relations équivalentes.

Enfin, indiquons un dernier test concernant la production d'antihypérons accompagnés de mérons K. Si il s'avérait que l'hypothèse fondamentale de la symétrie globale, \(\varepsilon_{\Xi} \gg \varepsilon_{\bar{K}} \), est fausse, c'est-à-dire que le nombre de paires \(\sum \sum \) produites n'est pas notablement plus grand que le nombre de paires du type \(\sum \Lambda \) accompagnées d'un méron K il serait intéressant de considérer les réactions

\[\Xi + K + \Lambda + n \bar{\sigma} \]

(a)

\[\pi + p \rightarrow \Xi + K + \Lambda + n \bar{\sigma} \]

(b)

(40)

\[\Xi + \Lambda + \bar{K} + \Lambda + n \bar{\sigma} \]

(c)
Il n'y a pas de différence formelle entre ces cas et le cas précédemment traité (38) car le \(\pi \) et le \(Z \) étant des scalaires dans \(I^- \) peuvent passer de l'état initial à l'état final et inversement sans que le raisonnement soit modifié. On obtient donc encore (39) : \(\Sigma_a + \Sigma_b \geq \frac{1}{2} \Sigma_c \); en particulier

\[
\text{nombre de } \Xi \geq \frac{1}{2} \text{nombre de } \bar{K}.
\]

(39')

VI. Corrections dues à la variation des densités d'états finales par suite des différences de masses entre baryons.

Dans toutes les prédictions faites ci-dessus les différences de masses entre baryons sont négligées. Nous sommes bien obligés de supposer que l'effet de ces différences de masses sur les éléments de matrice des diverses réactions envisagées est petit, mais la variation du volume disponible dans l'espace de phase d'une réaction à l'autre est trop grande pour être négligée. C'est certainement dans les réactions de production de paires de baryons considérées dans les sections II, III et IV que cet effet sera le plus important. Nous ne voulons pas donner ici une étude complète des effets d'espace de phase mais seulement montrer leur importance par quelques exemples.

Pour la production de paires de baryons dans les collisions nucléon-nucléon, la densité d'états finales intégrée a déjà été calculée par Hagedorn 8) pour une énergie de 25 GeV dans le système du laboratoire. Nous nous contentons de donner les résultats dans le Tableau 1.

<table>
<thead>
<tr>
<th>Rapports des densités</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{N}/\Sigma)</td>
<td>1,5</td>
<td>2</td>
<td>3</td>
<td>4,3</td>
<td>6,5</td>
<td>9,5</td>
</tr>
<tr>
<td>(\bar{N}/\Xi)</td>
<td>2,3</td>
<td>3,9</td>
<td>7,2</td>
<td>17</td>
<td>28</td>
<td>112</td>
</tr>
</tbody>
</table>

TABLEAU 1

\(n \) désigne le nombre de mésons \(\pi \) émis
On note que les rapports des densités d'états finals dépendent très fortement du nombre de mesons \(\pi \) émis. Ceci est désagréable car on est alors placé devant une alternative : ou bien renoncer à employer les inégalités que nous avons données indépendamment du nombre de mesons \(\pi \) émis et séparer les événements correspondant à des nombres \(n \) de \(\pi \) fixes, en revenant, lorsqu'on le peut, aux inégalités triangulaires de départ, ou bien se faire une idée du nombre \(n \) au dessus duquel la section efficace devient négligeable et appliquer la correction d'espace de phase correspondant au cas le plus défavorable.

Illustrons cette dernière possibilité par un exemple : si la production de quatre mesons \(\pi \) est appreciable, l'inégalité (27) devra être remplacée par

\[
\text{nomb\`e de } \Xi^+ \geq \frac{1}{20} \text{nomb\`e de } \Xi^- ;
\]

l'inégalité devient donc beaucoup moins restrictive, donc moins intéressante.

Nous n'avons pas jugé utile de faire une étude aussi complète dans le cas de la production de paires de baryons dans les collisions \(\pi-p \) (on pourra le faire lorsque le besoin s'en fera sentir). Dans le cas simple où il n'y a aucun meson \(\pi \) dans l'état final nous obtenons

\[
\text{densité } \Xi/\text{densité } \Xi^- = \begin{cases}
1,2 & \text{pour } E_{lab} = 25 \text{ BeV} \\
1,3 & \text{pour } E_{lab} = 18 \text{ BeV}
\end{cases}
\]

\[
\text{densité } \Xi/\text{densité } \Xi^- = \begin{cases}
1,4 & \text{pour } E_{lab} = 25 \text{ BeV} \\
1,6 & \text{pour } E_{lab} = 18 \text{ BeV}
\end{cases}
\]

Par comparaison avec la première colonne du Tableau 1, nous voyons que pour des mesons \(\pi^- \) et des nucléons de même énergie, le rapport des densités d'états finals est plus favorable pour les mesons \(\pi^- \), ce qu'on devrait d'ailleurs attendre. Les mesons \(\pi^- \) de haute énergie semblent donc plus commodes, même si leur intensité est plus faible que celle des protons, car de telles expériences ne semblent possibles qu'à l'aide de chambres à bulles.
La comparaison de sections efficaces de diffusion, par exemple, pp et \(\Sigma p \) n'est pas affectée comme les réactions de production de paires par les effets d'espace de phase et semblent donc, à ce point de vue, devoir donner des résultats beaucoup plus nets.

VII. Remerciements

Nous tenons à remercier le professeur V. Glaser pour une discussion fructueuse et simplificatrice, le Dr. R. Hagedorn pour nous avoir communiqué ses résultats détaillés, et H. W. Klein pour des calculs numériques.
APPENDICE

Production de paires $\bar{\Sigma} \bar{\Sigma}$ et $\bar{\Lambda} \bar{\Lambda}$ dans les collisions $p-p$.

Considérons la réaction

$$ p+p \rightarrow \bar{n} + n + p + p $$ (a)

on lui associera

$$ \bar{\Sigma} + \bar{\Sigma} + p + p $$ (b)

$$ p+p \rightarrow \bar{\Sigma} + n + Z^0 + p $$ (c)

$$ \bar{\Sigma} + n + p + Z^0 $$ (d)

ces trois réactions sont du type

$$ \begin{pmatrix} 1 & 1 \end{pmatrix} \rightarrow A + B + C + C $$

où

$$ A = \begin{pmatrix} \bar{\Sigma} \\ \bar{n} \end{pmatrix} \quad B = \begin{pmatrix} n \\ \Sigma^- \end{pmatrix} \quad C = \begin{pmatrix} p \\ Z \end{pmatrix} $$

Les amplitudes de transition pour ces quatre réactions sont des combinaisons linéaires d'amplitudes

$$ T_i'_{i_1}T_{i_2} $$

où i_1 est le spin "isotopique" des deux premières particules (0 ou 1) et i_2 le spin "isotopique" des deux dernières (0 ou 1). i_1 et i_2 sont combinés pour donner un spin "isotopique" resultant $i = 1$; par suite
\[T_{00} = 0 \]
\[T_a = -\frac{1}{\sqrt{2}} T_{01} - \frac{1}{\sqrt{2}} T_{11} \]
\[T_b = -\frac{1}{\sqrt{2}} T_{01} + \frac{1}{\sqrt{2}} T_{11} \]
\[T_c = \frac{1}{\sqrt{2}} T_{10} - \frac{1}{\sqrt{2}} T_{11} \]
\[T_d = -\frac{1}{\sqrt{2}} T_{10} - \frac{1}{\sqrt{2}} T_{11} \]

d'où l'on tire
\[T_a - T_b - T_c - T_d = 0 \]

relation analogue à la relation (19), d'où
\[|T_a| \leq |T_b| + |T_c| + |T_d| \]

utilisant l'identité
\[3(x^2 + y^2 + z^2) \equiv (x+y+z)^2 + (x-y)^2 + (y-z)^2 + (x-z)^2 \]
on obtient
\[\frac{1}{2} |T_a|^2 \leq |T_b|^2 + |T_c|^2 + |T_d|^2 \]

les réactions (c) et (d) sont identiques à l'échange des quantités de mouvement près; les réactions (a) et (b) contiennent chacune dans leur état final deux particules identiques. Laissant fixe la quantité de mouvement des antiparticules et sommant sur les autres quantités de mouvement nous obtenons donc (voir réf. 6')

nombre de \(\bar{n} \) \(\leq \frac{1}{2} \) nombre de \(\Sigma^- \)

La démonstration complète exigerait que l'on considère les autres états de charge finals possibles, par exemple \(\bar{n} + p + p + p \) et les états associés, mais il n'y a pas de difficulté de principe nouvelle.
REFERENCES

2) E. Wigner, Proc.Nat.Acad.Sci. 39, 449 (1952);
 M. Gell-Mann, Phys.Rev. 106, 1296 (1957);
 J. Schwinger, Proceedings of the Seventh Annual Conference on High
 Energy Physics, Rochester conference (1957).

4) A. Salam, Conférence de Kiev (juillet 1959).

8) R. Hagedorn, communication privée.