ABSTRACT

Assuming the canonical commutation relations between bare and dressed massive vector gauge fields, sum rules are derived and their relevance to elementary particle symmetry schemes is discussed.

*) National Science Foundation Postdoctoral Fellow.
constant gauge transformations and consequently the current \(\mathcal{J}_\mu \) remains conserved. The field equation for \(\mathcal{G}_\nu \) is
\[
\mathcal{C}_\mu \mathcal{G}_{\mu \nu} - m_0^2 \mathcal{G}_\nu - \mathcal{J}_\nu = 0
\]
(3)
from which we obtain the field \(\mathcal{G}_\nu \), which is an explicit function of the independent fields
\[
\mathcal{G}_\nu = \mathcal{C}_\mu \mathcal{G}_{\mu \nu} - \mathcal{J}_\nu \frac{m_0^2}{m_0^2}
\]
and the current \(\mathcal{J}_\nu \) is found to be:
\[
\mathcal{J}_\nu = -i q_0 \chi_\nu \xi \mathcal{G}_\nu + 2 q_0 \mathcal{G}_\nu \left(\mathcal{C}_\mu \mathcal{G}_\mu + 2 q_0 \mathcal{G}_\nu \times \mathcal{G}_\nu \right)
\]
+ 2 q_0 \mathcal{G}_\nu \times \mathcal{G}_\mu \nu
(4)
The momenta conjugate to \(\mathcal{G}_\nu \), \(\mathcal{F}_i \), where superscripts denote isotopic spin indices, are
\[
\Pi_{\mu i} = \mathcal{G}_{\mu i} \quad \Pi_{\sigma i} = 0 \quad \rho_i = \mathcal{C}_\sigma \mathcal{F}_i + 2 q_0 \left(\mathcal{G}_{\sigma i} \times \mathcal{G}_i \right)
\]
(5)
and consequently
\[
\mathcal{J}_\nu = -i q_0 \chi_\nu \xi \mathcal{G}_\nu + 2 q_0 \mathcal{G}_\nu \times \mathcal{F}_\nu
\]
+ 2 q_0 \mathcal{G}_\nu \times \Pi_{\mu i}
(6)
which, as stated before, is the density of the generator of a rotation in isospin space. One can then construct the Hamiltonian density \(:H(x) : \) and obtain
\[
\mathcal{G}_\nu = \left[\begin{array}{c} \mathcal{G}_\nu \\ :H: \end{array} \right] = \left[\begin{array}{c} \mathcal{G}_\nu \\ :H: \end{array} \right]
\]
\[
\mathcal{G}_\nu = \mathcal{G}_\sigma \mathcal{G}_\nu - 2 q_0 \mathcal{G}_\sigma \times \mathcal{G}_\nu \]
8213
We wish to consider a spinor field Ψ of isotopic spin $\frac{1}{2}$ coupled to a pseudoscalar field ϕ_0 of isotopic spin 1. A theory, invariant under gauge transformations which are functions of both space and time can be constructed by introducing a massless vector field $\vec{\Phi}_\mu$ with isotopic spin one 1. Under gauge transformations, the field $\vec{\Phi}_\mu$ undergoes a rotation as well as a translation.

\[
\begin{align*}
\vec{\Phi}_\mu (x) & \rightarrow \vec{\Phi}_\mu (x) - \partial_\mu \vec{\Lambda} (x) + 2 q_0 \vec{\Lambda} (x) \times \vec{\Phi}_\mu (x) \\
N (x) & \rightarrow N (x) - i q_0 \vec{\tau} \cdot \vec{\Lambda} (x) N (x) \\
\vec{\phi} (x) & \rightarrow \vec{\phi} (x) + 2 q_0 \vec{\Lambda} (x) \times \vec{\phi} (x)
\end{align*}
\]

Introducing then

\[
\vec{G}_{\mu \nu} \equiv \partial_\mu \vec{\Phi}_\nu - \partial_\nu \vec{\Phi}_\mu + 2 q_0 \vec{\Phi}_\mu \times \vec{\Phi}_\nu
\]

we can construct a fully invariant Lagrangian \mathcal{L} see Appendix 7

\[
\mathcal{L} = - \frac{i}{4} G_{\mu \nu} \cdot G_{\mu \nu} - \bar{N} \left(\gamma^\mu \partial_\mu + m_0 - i q_0 \gamma_5 \vec{\tau} \cdot \vec{\Phi}_\mu \right) N
- \frac{i}{2} \left(\partial_\mu \vec{\phi} + 2 q_0 \vec{\Phi}_\mu \times \vec{\phi} \right) \cdot \left(\partial_\mu \vec{\phi} + 2 q_0 \vec{\Phi}_\mu \times \vec{\phi} \right)
- m_0^2 \phi \cdot \vec{\phi}
\]

From this Lagrangian one obtains a current to which $\vec{\Phi}_\mu$ is coupled, \vec{J}_μ, whose fourth component, integrated over volume, is proportional to the total isotopic spin of the system. If we now introduce a common mass term for the vector mesons

\[
- \frac{m_0^2}{2} \vec{\Phi}_\mu \cdot \vec{\Phi}_\mu
\]

the theory becomes unrenormalizable 2 and is no longer invariant under general space-time dependent gauge transformations. It is still invariant, however, under
The sum rules for the pseudoscalar mesons

\[\delta_{i,j} = \int \omega_{i,j}(m^2) \, d m^2 \quad \delta_{i,j} \mu_{c}^{2} = \int \omega_{i,j}(m^2) \, m^2 \, d m^2 \]

(11)

can also be obtained easily, \(\omega_{ij} \) being defined by

\[\langle 0 | \phi_{i}(x) \phi_{j}(y) | 0 \rangle = \int \omega_{i,j}(m^2) \, \Delta_{i,j}(x-y, m^2) \, d m^2 \]

(12)

We have derived these sum rules for the Yang-Mills field, but they are also valid for suitable generalizations \(^4\) of this field, such as the case of an octet of vector mesons coupled to an octet of pseudoscalar mesons and an octet of baryons, where \(F \) spin now plays the role of \(I \) spin \(^5\).

Up till now we have been discussing bare fields; for renormalized fields the mass sum rules are

\[\mathcal{Z}^{-1} = \int \rho_{R} \left(m^2 \right) \, d m^2 \quad \mathcal{Z}_{\mu}^{-1} = \int \frac{\rho_{R} \left(m^2 \right)}{M_{0}^{2}} \, d m^2 \]

(13)

where \(\rho \) is a diagonal matrix with positive definite elements, \(\rho_{R} = \rho \mathcal{Z}^{-1} \), and \(\mathcal{Z}^{-1} = Z^{-1} \mathcal{Z}^{-1}_{\mu} \), \(Z \) being the renormalization constant. Because of (13), having the bare mass \(m_{0}^{2} \to \infty \) is only consistent with \(Z \to 0 \), as was shown by Gell-Mann and Zachariasen \(^6\), for the \(\rho \) and the \(\omega \) mesons by examining form factors to lowest order in \(e \).

If an additional interaction which preserves (7) and (8), and consequently also the sum rules, is introduced, a new spectral function \(\rho_{R}(m^2) \) is obtained, related to \(\rho_{R}(m^2) \) by
We will now derive our sum rules for the vector mesons, following closely K. Johnson's derivation of the analogous rules for a neutral vector meson field coupled to a current with which it commutes. Using the commutation relations we find

$$\langle 0 | \left[\Phi_\mu^i(x), \Phi_\nu^j(y) \right] | 0 \rangle = \frac{i \delta_{ij}}{\mathcal{M}_0^2} \delta(x^2 - y^2)$$

$$\langle 0 | \left[\Phi_\mu^i(x), \Phi_\nu^j(y) \right] | 0 \rangle = \frac{i \delta_{ij}}{\mathcal{M}_0^2} \left(\delta(x^2 - y^2) - \frac{\partial \delta(x^2 - y^2)}{\partial x^2} \right)$$

$$\langle 0 | \left[\Phi_\mu^i(x), \Phi_\nu^j(y) \right] | 0 \rangle = \frac{i \delta_{ij}}{\mathcal{M}_0^2} \left(\delta(x^2 - y^2) - \frac{\partial \delta(x^2 - y^2)}{\partial x^2} \right)$$

Equation (7)

$$\langle 0 | \left[\Phi_\mu^i(x), \Phi_\nu^j(y) \right] | 0 \rangle = \frac{i \delta_{ij}}{\mathcal{M}_0^2} \left(\delta(x^2 - y^2) - \frac{\partial \delta(x^2 - y^2)}{\partial x^2} \right)$$

Equation (8)

As

$$\langle 0 | \left[\Phi_\mu^i, \Phi_\nu^j \right] | 0 \rangle = \delta(x^2 - y^2)$$

$$\langle 0 | : \Phi_\mu^i \times \Phi_\nu^j : | 0 \rangle = 0$$

On invariance grounds, taking into account the transversality of the vector meson field, we may write

$$i \langle 0 | \left[\Phi_\mu^i(x), \Phi_\nu^j(y) \right] | 0 \rangle = \left(\partial^2 \delta_{\mu \nu} - \partial_{\mu} \partial_{\nu} \right) \int \frac{\rho_{ij}(m^2) \Delta(x^2 - y^2) \mathcal{M}^2}{m^2} \, dm^2$$

Equation (9)

As $\mathcal{O}_0 A(x) = -\delta(x^2)$ for $x = 0$, by using Eqs. (7), (8) and (9), we immediately obtain the sum rules

$$\delta_{ij} = \int \rho_{ij}(m^2) \, dm^2$$

$$\frac{\delta_{ij}}{\mathcal{M}_0^2} = \int \frac{\rho_{ij}(m^2) \, dm^2}{\mathcal{M}_0^2}$$

Equation (10)
\[
\int \mathcal{D}_R(\Lambda \xi^t) = \frac{Z'}{Z} \int \mathcal{D}_R(\Lambda \xi^t) \\
\int \mu_R(\Lambda \xi^t) = \frac{Z'}{Z} \int \mu_R(\Lambda \xi^t)
\]

To lowest order in the additional interaction, \(Z/Z' = 1\), and then (14) becomes
the relations which are at the basis of the so-called "vector mixing approximation". 7)

I wish to thank Dr. Bruno Zumino for illuminating discussions and
Dr. Léon Van Hove and the Theoretical Study Division of CERN for the hospitality
offered me.
APPENDIX

The purpose of the two points in the Lagrangian is to give a well-defined meaning to the vacuum expectation values of the field operators and the field equations. For, e.g., a scalar field:

\[
: \phi : = \phi - \langle \phi | \phi \rangle \\
: \phi^2 : = \phi^2 - \langle \phi^2 | \rangle - 2 : \phi : \langle \phi | \phi \rangle
\]

the vacuum expectation value of \(: \phi^n : \) equals zero as does the equal time commutator of \(\Pi \), the momentum conjugate to \(\phi \), with \(: \phi^n : \) for \(n > 1 \). Operations, such as variation with respect to a field, are understood to be performed inside the two points

\[
\frac{\delta}{\delta \phi} : \phi^n : = : \frac{\delta}{\delta \phi} \phi^n :
\]
REFERENCES

7) S. Coleman and H. Schnitzer (to be published).