Nonspectator Effects and B Meson Lifetimes from a Field-theoretic Calculation

Hai-Yang Cheng * and Kwei-Chou Yang †

Institute of Physics, Academia Sinica, Taipei, Taiwan 115, R.O.C.

Abstract

The B meson lifetime ratios are calculated to the order of $1/m_b^3$ in the heavy quark expansion. The predictions of these ratios are dependent on four unknown hadronic parameters B_1, B_2, ε_1 and ε_2, where B_1 and B_2 parametrize the matrix elements of color singlet-singlet four-quark operators and ε_1 and ε_2 the matrix elements of color octet-octet operators. We derive the renormalization-group improved QCD sum rules for these parameters within the framework of heavy quark effective theory. The results are $B_1(m_b) = 0.94 \pm 0.02$, $B_2(m_b) = 0.94 \pm 0.02$, $\varepsilon_1(m_b) = -0.098 \pm 0.008$, and $\varepsilon_2(m_b) = -0.089 \pm 0.007$ to zeroth order in $1/m_b$. The resultant B meson lifetime ratios are $\tau(B^-)/\tau(B_d) = 1.09 \pm 0.03$ and $\tau(B_s)/\tau(B_d) - 1 = -1 \times 10^{-5}$.

PACS numbers: 13.25.Hw, 12.38.Lg, 11.55.Hx, 12.39.Hg

Typeset using REVTEX

*Email address: PHCHENG@ccvax.sinica.edu.tw

†Email address: kcyang@phys.sinica.edu.tw
I. INTRODUCTION

A QCD-based formulation for treatment of inclusive heavy hadron decays has been developed in past years [1–3]. According to the optical theorem, the inclusive decay rates are related to the imaginary part of certain forward scattering amplitudes along the physical cut. Since the cut is dominated by physical intermediate hadron states like resonances which are nonperturbative in nature, a priori the operator product expansion (OPE) or heavy quark expansion cannot be carried out on the physical cut. Nevertheless, for inclusive semileptonic decays, OPE can be employed for some smeared or averaged physical quantities. For example, by integrating out the neutrino energy, one can apply the OPE to the double differential cross section \(d^2\Gamma/(dq^2dE_\ell) \) by deforming the contour of integration into the unphysical region far away from the physical cut [4]. Therefore, global quark-hadron duality, namely the matching between the hadronic and OPE-based expressions for decay widths and smeared spectra in semileptonic \(B \) or bottom baryon decays, follows from the OPE and is justified except for a small portion of the contour near the physical cut which is of order \(\Lambda_{\text{QCD}}/m_Q \). Unfortunately, there is no analogous variable to be integrated out in inclusive nonleptonic decays, allowing an analytic continuation into the complex plane. As a result, one has to invoke the assumption of local quark-hadron duality in order to apply the OPE in the physical region [5]. It is obvious that local duality is theoretically less firm and secure than global duality. In order to test the validity of local quark-hadron duality, it is thus very important to have a reliable estimate of the heavy hadron lifetimes within the OPE framework and compare them with experiment.

In the heavy quark limit, all bottom hadrons have the same lifetimes, a well-known result in the parton picture. With the advent of heavy quark effective theory and the OPE approach for the analysis of inclusive weak decays, it is realized that the first nonperturbative correction to bottom hadron lifetimes starts at order \(1/m_b^2 \) and it is model independent (for a review, see [6]). However, the \(1/m_b^2 \) corrections are small and essentially canceled out in the lifetime ratios. The nonspectator effects such as \(W \)-exchange and Pauli interference due to four-quark interactions are of order \(1/m_b^3 \), but their contributions can be potentially significant due to a phase-space enhancement by a factor of \(16\pi^2 \). As a result, the lifetime differences of heavy hadrons come mainly from the above-mentioned nonspectator effects.

The world average values for the lifetime ratios of bottom hadrons are [7]:

\[
\begin{align*}
\frac{\tau(B^-)}{\tau(B^0_d)} &= 1.07 \pm 0.04, \\
\frac{\tau(B^0_s)}{\tau(B^0_d)} &= 0.95 \pm 0.05, \\
\frac{\tau(\Lambda_b)}{\tau(B^0_d)} &= 0.78 \pm 0.06.
\end{align*}
\] (1.1)

Since the model-independent prediction of \(\tau(\Lambda_b)/\tau(B_d) \) to order \(1/m_b^2 \) is very close to unity [see Eq. (2.12) below], the conflict between theory and experiment for this lifetime ratio
is quite striking and has received a lot of attention [8–15]. One possible reason for the discrepancy is that local quark-hadron duality may not work in the study of nonleptonic inclusive decay widths. Another possibility is that some hadronic matrix elements of four-quark operators are probably larger than what naively expected so that the nonspectator effects of order $16\pi^2/m_b^2$ may be large enough to explain the observed lifetime difference between the Λ_b and B_d. Therefore, as stressed by Neubert and Sachrajda [11], one cannot conclude that local duality truly fails before a reliable field-theoretical calculation of the four-quark matrix elements is obtained. Contrary to the $1/m_b^2$ corrections, the estimate of the nonspectator effects is, unfortunately, quite model dependent.

Conventionally, the hadronic matrix elements of four-quark operators are evaluated using the factorization approximation for mesons and the quark model for baryons. However, as we shall see, nonfactorizable effects absent in the factorization hypothesis can affect the B meson lifetime ratios significantly. In order to have a reliable estimate of the hadronic parameters B_1, B_2, ε_1 and ε_2 in the meson sector, to be introduced below, we will apply the QCD sum rule to calculate these unknown parameters. After a brief review on the status of the OPE approach for the B hadron lifetime ratios in Sec. II, we proceed to derive in Sec. III the renormalization-group improved QCD sum rules for the parameters B_i and ε_i and present a detailed analysis. Sec. IV gives discussions and conclusions.

II. A BRIEF OVERVIEW

Within the heavy quark expansion framework, we will focus in this paper on the study of the four-quark matrix elements of the B meson to understand the problem with B meson lifetime ratios. Before proceeding, let us briefly review the content of the theory. Applying the optical theorem, the inclusive decay width of the bottom hadron H_b containing a b quark can be expressed in the form

$$\Gamma(H_b \to X) = \frac{1}{m_{H_b}} \Im i \int d^4x \langle H_b | T \{ L_{\text{eff}}(x), L_{\text{eff}}(0) \} | H_b \rangle,$$

(2.1)

where L_{eff} is the relevant effective weak Lagrangian that contributes to the particular final state X. When the energy release in a b quark decay is sufficiently large, it is possible to express the nonlocal operator product in Eq. (2.1) as a series of local operators in powers of $1/m_b$ by using the OPE technique. In the OPE series, the only locally gauge invariant operator with dimension four, $\bar{b}iD\bar{b}$, can be reduced to $m_b\bar{b}b$ by using the equation of motion. Therefore, the first nonperturbative correction to the inclusive B hadron decay width starts at order $1/m_b^2$.\footnote{It is emphasized in [16] that the cancellation of the $1/m_Q$ corrections to the inclusive decay width occurs when it is expressed in terms of the running short-distance quark mass, e.g. the $\overline{\text{MS}}$ mass, rather than the pole quark mass.} As a result, the inclusive decay width of a hadron H_b can be expressed
as \[1,2\]

\[
\Gamma(H_b \to X) = \frac{G_F^2 m_b^5 |V_{CKM}|^2}{192 \pi^3} \frac{1}{2m_{H_b}} \left\{ c^X_3 \langle H_b \mid \bar{b}b \mid H_b \rangle + c^X_5 \langle H_b \mid \bar{b} \frac{1}{2} g_s \sigma_{\mu \nu} G^{\mu \nu} b \mid H_b \rangle \
ight\}
+ \sum_n c^{X(n)}_6 \langle H_b \mid O^{(n)}_6 \mid H_b \rangle + O(1/m_b^4)
\]

where \(V_{CKM}\) denotes some combination of the Cabibbo-Kobayashi-Maskawa parameters and \(c^X_i\) reflect short-distance dynamics and phase-space corrections. The matrix elements in Eq. (2.2) can be systematically expanded in powers of \(1/m_b\) in heavy quark effective theory (HQET) \([17]\), in which the \(b\)-quark field is represented by a four-velocity-dependent field denoted by \(h^{(b)}_v(x)\). To first order in \(1/m_b\), the \(b\)-quark field \(b(x)\) in QCD and the HQET-field \(h^{(b)}_v(x)\) are related via

\[
b(x) = e^{-im_{b}x} \left[1 + i \frac{D}{2m_b} \right] h^{(b)}_v(x).
\]

Applying this relation, one can replace \(b\) by the effective field \(h^{(b)}_v\) in Eq. (2.2) to obtain

\[
\frac{\langle H_b \mid \bar{b}b \mid H_b \rangle}{2m_{H_b}} = 1 - \frac{K_{H_b}}{2m_b^2} + \frac{G_{H_b}}{2m_b^2} + O(1/m_b^3),
\]

\[
\frac{\langle H_b \mid \frac{1}{2} g_s \sigma_{\mu \nu} G^{\mu \nu} b \mid H_b \rangle}{2m_{H_b}} = G_{H_b} + O(1/m_b),
\]

where

\[
K_{H_b} \equiv - \frac{\langle H_b \mid \bar{h}^{(b)}_v (iD_\perp)^2 h^{(b)}_v \mid H_b \rangle}{2m_{H_b}},
\]

\[
G_{H_b} \equiv \frac{\langle H_b \mid \bar{h}^{(b)}_v (1/2) g_s \sigma_{\mu \nu} G^{\mu \nu} h^{(b)}_v \mid H_b \rangle}{2m_{H_b}}.
\]

Note that in this paper we adopt the convention \(D^\alpha = \partial^\alpha - ig_s A^\alpha\). The inclusive nonleptonic and semileptonic decay rates of a bottom hadron to order \(1/m_b^2\) are given by \([1,2]\]

\[
\Gamma_{NL}(H_b) = \frac{G_F^2 m_b^5}{192 \pi^3} |V_{cb}|^2 \frac{1}{2m_{H_b}} \left\{ \left(c_1^2 + c_2^2 + \frac{2c_1c_2}{N_c} \right) \times \right.
\]

\[
\left[(\alpha I_0(x, 0, 0) + \beta I_0(x, x, 0)) \langle H_b \mid \bar{b}b \mid H_b \rangle
- \frac{1}{m_b^2} \left(I_1(x, 0, 0) + I_1(x, x, 0) \right) \langle H_b \mid g_s \sigma \cdot Gb \mid H_b \rangle
- \frac{4}{m_b^2} \frac{2c_1c_2}{N_c} \left(I_2(x, 0, 0) + I_2(x, x, 0) \right) \langle H_b \mid g_s \sigma \cdot Gb \mid H_b \rangle \right\},
\]

where \(\sigma \cdot G = \sigma_{\mu \nu} G^{\mu \nu}\), \(x = (m_c/m_b)^2\), \(N_c\) is the number of colors, the parameters \(\alpha\) and \(\beta\) denote QCD radiative corrections to the processes \(b \to c\bar{u}d\) and \(b \to c\bar{e}s\), respectively \([18]\), and
\[\Gamma_{\text{SL}}(H_b) = \frac{G_F^2 m_b^5}{192 \pi^3} |V_{cb}|^2 \frac{\eta(x, x\ell, 0)}{2m_{H_b}} \times \left[I_0(x, 0, 0) \langle H_b|\bar{b}b|H_b \rangle - \frac{1}{m_b^2} I_1(x, 0, 0) \langle H_b|\bar{b}g_\sigma \cdot Gb|H_b \rangle \right], \tag{2.7} \]

where \(\eta(x, x\ell, 0) \) with \(x\ell = (m_\ell/m_Q)^2 \) is the QCD radiative correction to the semileptonic decay rate and its general analytic expression is given in [19]. In Eqs. (2.6) and (2.7), \(I_{0,1,2} \) are phase-space factors (see e.g. [12] for their explicit expressions): \(I_1(x, 0, 0) \) for \(b \to c\bar{d}d \) transition and \(I_1(x, x, 0) \) for \(b \to c\bar{c}s \) transition. Note that the CKM parameter \(V_{ud} \) does not occur in \(\Gamma_{\text{NL}}(H_b) \) and \(\Gamma_{\text{SL}}(H_b) \) when summing over the Cabibbo-allowed and Cabibbo-suppressed contributions.

In Eq. (2.6) \(c_1 \) and \(c_2 \) are the Wilson coefficients in the effective Hamiltonian

\[\mathcal{H}_{\text{eff}}^{A=1} = \frac{G_F}{\sqrt{2}} \left[V_{cb} V_{cq}^*(c_1(\mu) O_1^a(\mu) + c_2(\mu) O_2^a(\mu)) \right. \]

\[\left. + V_{cb} V_{cq}^*(c_1(\mu) O_1^b(\mu) + c_2(\mu) O_2^b(\mu)) + \cdots \right] + \text{h.c.}, \tag{2.8} \]

where \(q = d, s \), and

\[O_1^a = \bar{c} \gamma_\mu(1 - \gamma_5)b \bar{q} \gamma^\mu(1 - \gamma_5)u, \quad \text{and} \quad O_2^a = \bar{q} \gamma_\mu(1 - \gamma_5)b \bar{c} \gamma^\mu(1 - \gamma_5)u. \tag{2.9} \]

The scale and scheme dependence of the Wilson coefficients \(c_{1,2}(\mu) \) are canceled out by the corresponding dependence in the matrix element of the four-quark operators \(O_{1,2} \). That is, the four-quark operators in the effective theory have to be renormalized at the same scale \(\mu \) and evaluated using the same renormalization scheme as that for the Wilson coefficients. Schematically, we can write \(\langle \mathcal{H}_{\text{eff}} \rangle = c(\mu) \langle O(\mu) \rangle = c(\mu) g(\mu) \langle O \rangle_{\text{tree}} = c^{\text{eff}}(\mu) \langle O \rangle_{\text{tree}} \), where the effective Wilson coefficients \(c^{\text{eff}} \) are renormalization scale and scheme independent. Then the factorization approximation or the quark model is applied to evaluate the hadronic matrix elements of the operator \(O \) at tree level. The explicit expression for \(g(\mu) \), the perturbative corrections to the four-quark operators renormalized at the scale \(\mu \), has been calculated in the literature [20,21]. To the next-to-leading order (NLO) precision, we have [22]

\[c_1^{\text{eff}} = 1.149, \quad c_2^{\text{eff}} = -0.325. \tag{2.10} \]

\(^2\)The effective Wilson coefficients given in (2.10) are derived from \(c_i(\mu) \) at \(\mu = m_b \) to the NLO [12]. Nevertheless, it is not difficult to explicitly check the scale and scheme independence of \(c_i^{\text{eff}} \). For example, the authors of [21] obtain \(c_1^{\text{eff}} = 1.160 \) and \(c_2^{\text{eff}} = -0.334 \) at \(\mu = 2.5 \text{ GeV} \). Therefore, \(c_i^{\text{eff}} \) are very insensitive to the chosen \(\mu \) scale, as it should be. It is known that the Wilson coefficient \(c_2 \) at the NLO: \(c_2 = -0.185 \) in the naive dimension regularization scheme and \(c_2 = -0.228 \) in the 't Hooft-Veltman scheme [20], deviates substantially from the leading-order value \(c_2 = -0.308 \) at \(\mu = m_b(m_b) \). However, the resultant \(c_2^{\text{eff}} \) is scheme independent and its value is close to the leading-order one.
Replacing c_i in Eq. (2.6) by c_i^{eff} and using $m_b = 4.85$ GeV, $m_c = 1.45$ GeV, $|V_{cb}| = 0.039$, $G_B = 0.36$ GeV2, $G_{\Lambda_b} = 0$, $K_B \approx K_{\Lambda_b} \approx 0.4$ GeV2 together with $\alpha = 1.063$ and $\beta = 1.32$ to the next-to-leading order \[18\], we find numerically

\[
\begin{align*}
\Gamma_{\text{SL}}(B \to e\bar{\nu}X) &= 4.18 \times 10^{-14}\text{ GeV}, \\
\Gamma_{\text{SL}}(\Lambda_b \to e\bar{\nu}X) &= 4.32 \times 10^{-14}\text{ GeV}, \\
\Gamma(B) &= \Gamma_{\text{NL}}(B) + 2.24 \Gamma_{\text{SL}}(B \to e\bar{\nu}X) = 3.61 \times 10^{-13}\text{ GeV}, \\
\Gamma(\Lambda_b) &= \Gamma_{\text{NL}}(\Lambda_b) + 2.24 \Gamma_{\text{SL}}(\Lambda_b \to e\bar{\nu}X) = 3.65 \times 10^{-13}\text{ GeV}.
\end{align*}
\]

It follows that the lifetime ratios of the H_b hadrons are

\[
\begin{align*}
\frac{\tau(B^-)}{\tau(B_d)} &= 1 + O(1/m_b^3), \\
\frac{\tau(B_s)}{\tau(B_d)} &= 1 + O(1/m_b^3), \\
\frac{\tau(\Lambda_b)}{\tau(B_d)} &= 0.99 + O(1/m_b^3).
\end{align*}
\]

Note that $\tau(B_s)$ here refers to the average lifetime of the two CP eigenstates of the B_s meson. It is evident that the $1/m_b^3$ corrections are too small to explain the shorter lifetime of the Λ_b relative to that of the B_d. To the order of $1/m_b^3$, the nonspectator effects due to Pauli interference and W-exchange parametrized in terms of the hadronic parameters \[11\]: $B_1, B_2, \varepsilon_1, \varepsilon_2, \bar{B}$, and r (see below), may contribute significantly to lifetime ratios due to a phase-space enhancement by a factor of $16\pi^2$. The four-quark operators relevant to inclusive nonleptonic B decays are

\[
\begin{align*}
O_{V-A}^0 &\equiv \bar{b}_L \gamma_\mu q_L \bar{q}_L \gamma^\mu b_L, \\
O_{S-P}^0 &\equiv \bar{b}_R q_L \bar{q}_L b_R, \\
T_{V-A}^0 &\equiv \bar{b}_L \gamma_\mu t^a q_L \bar{q}_L \gamma^\mu t^a b_L, \\
T_{S-P}^0 &\equiv \bar{b}_R t^a q_L \bar{q}_L t^a b_R,
\end{align*}
\]

where $q_{R,L} = \frac{1 \pm \gamma_5}{2} q$ and $t^a = \lambda^a/2$ with λ^a being the Gell-Mann matrices. For the matrix elements of these four-quark operators between B hadron states, we follow \[11\] to adopt the following definitions:

\[
\begin{align*}
\frac{1}{2m_{B_s}} \langle \bar{B}_q | O_{V-A}^0 | \bar{B}_{q'} \rangle &= \frac{f_{\bar{b}_q}^2 m_{B_s}}{8} B_1, \\
\frac{1}{2m_{B_s}} \langle \bar{B}_q | O_{S-P}^0 | \bar{B}_{q'} \rangle &= \frac{f_{\bar{b}_q}^2 m_{B_s}}{8} B_2, \\
\frac{1}{2m_{B_s}} \langle \bar{B}_q | T_{V-A}^0 | \bar{B}_{q'} \rangle &= \frac{f_{\bar{b}_q}^2 m_{B_s}}{8} \varepsilon_1, \\
\frac{1}{2m_{B_s}} \langle \bar{B}_q | T_{S-P}^0 | \bar{B}_{q'} \rangle &= \frac{f_{\bar{b}_q}^2 m_{B_s}}{8} \varepsilon_2,
\end{align*}
\]

6
\[
\frac{1}{2m_{\Lambda_b}} \langle \Lambda_b | O_{\gamma - A}^q | \Lambda_b \rangle \equiv -\frac{f_{B_q} m_{B_q}}{48} r,
\]
\[
\frac{1}{2m_{\Lambda_b}} \langle \Lambda_b | T_{\gamma - A}^q | \Lambda_b \rangle \equiv -\frac{1}{2} \bar{B} + \frac{1}{3} \frac{1}{2m_{\Lambda_b}} \langle \Lambda_b | O_{\gamma^* - A}^q | \Lambda_b \rangle.
\] (2.14)

Under the factorization approximation, \(B_i = 1 \) and \(\varepsilon_i = 0 \), and under the valence quark approximation \(\bar{B} = 1 \) [11].

The destructive Pauli interference in inclusive nonleptonic \(B^- \) decay and the \(W \)-exchange contributions to \(B_d^0 \) and \(B_s^0 \) are [11] 3

\[
\Gamma_{\text{ann}}(B_d^0) = -\Gamma_0 |V_{ud}|^2 \eta_{\text{haspec}} (1 - x)^2 \left\{ (1 + \frac{1}{2} x) \left[\left(\frac{1}{N_c} c_1^2 + 2 c_1 c_2 + N_c c_2^2 \right) B_1 + 2 c_1^2 \varepsilon_1 \right] - (1 + 2 x) \left[\left(\frac{1}{N_c} c_1^2 + 2 c_1 c_2 + N_c c_2^2 \right) B_2 + 2 c_1^2 \varepsilon_2 \right] \right\} - \Gamma_0 |V_{cd}|^2 \eta_{\text{haspec}} \sqrt{1 - 4 x} \left\{ (1 + \frac{1}{2} x) \left[\left(\frac{1}{N_c} c_1^2 + 2 c_1 c_2 + N_c c_2^2 \right) B_1 + 2 c_1^2 \varepsilon_1 \right] - (1 + 2 x) \left[\left(\frac{1}{N_c} c_1^2 + 2 c_1 c_2 + N_c c_2^2 \right) B_2 + 2 c_1^2 \varepsilon_2 \right] \right\},
\]

\[
\Gamma_{\text{int}}(B^-) = \Gamma_0 \eta_{\text{haspec}} (1 - x) \left\{ (c_1^2 + c_2^2) (B_1 + 6 \varepsilon_1) + 6 c_1 c_2 B_1 \right\},
\]

\[
\Gamma_{\text{ann}}(B_s^0) = -\Gamma_0 |V_{cs}|^2 \eta_{\text{haspec}} \sqrt{1 - 4 x} \left\{ (1 + \frac{1}{2} x) \left[\left(\frac{1}{N_c} c_1^2 + 2 c_1 c_2 + N_c c_2^2 \right) B_1 + 2 c_1^2 \varepsilon_1 \right] - (1 + 2 x) \left[\left(\frac{1}{N_c} c_1^2 + 2 c_1 c_2 + N_c c_2^2 \right) B_2 + 2 c_1^2 \varepsilon_2 \right] \right\} - \Gamma_0 |V_{us}|^2 \eta_{\text{haspec}} (1 - x) \left\{ (1 + \frac{1}{2} x) \left[\left(\frac{1}{N_c} c_1^2 + 2 c_1 c_2 + N_c c_2^2 \right) B_1 + 2 c_1^2 \varepsilon_1 \right] - (1 + 2 x) \left[\left(\frac{1}{N_c} c_1^2 + 2 c_1 c_2 + N_c c_2^2 \right) B_2 + 2 c_1^2 \varepsilon_2 \right] \right\},
\] (2.15)

with

\[
\Gamma_0 = \frac{G_F^2 m_b^5}{192 \pi^3} |V_{cb}|^2, \quad \eta_{\text{haspec}} = 16 \pi^2 \frac{f_{B_q} m_{B_q}}{m_b^3},
\] (2.16)

where \(f_{B_q} \) is the \(B_q \) meson decay constant defined by

\[
\langle 0 | \bar{q} \gamma_\mu \gamma_5 b | B_q(p) \rangle = i f_{B_q} p_\mu.
\] (2.17)

Likewise, the nonspectator effects in inclusive nonleptonic decays of the \(\Lambda_b \) baryon are given by [11]

3The penguin-like nonspectator contributions to \(B_s \) are considered in [23], but they are negligible compared to that from the current-current operators \(O_1 \) and \(O_2 \) introduced in Eq. (2.9).
\[\Gamma_{\text{ann}}(A_b) = \frac{1}{2} \Gamma_0 \eta_{\text{aspec}} r (1 - x)^2 \left(\tilde{B} (c_1^2 + c_2^2) - 2c_1c_2 \right), \quad (2.18) \]
\[\Gamma_{\text{int}}(A_b) = -\frac{1}{4} \Gamma_0 \eta_{\text{aspec}} r \left[|V_{ud}|^2 (1 - x)^2 (1 + x) + |V_{cd}|^2 \sqrt{1 - 4x} \right] \left(\tilde{B} c_1^2 - 2c_1c_2 - Nc_2^2 \right). \]

As before, with the Wilson coefficients \(c_i(\mu) \) in Eqs. (2.15) and (2.18) replaced by \(c_i^{\text{eff}} \), we obtain
\[\Gamma_{\text{ann}}(B_d) = \Gamma_0 \eta_{\text{aspec}} (-0.0087B_1 + 0.0098B_2 - 2.28\varepsilon_1 + 2.58\varepsilon_2), \]
\[\Gamma_{\text{int}}(B^-) = \Gamma_0 \eta_{\text{aspec}} (-0.68B_1 + 7.10\varepsilon_1), \]
\[\Gamma_{\text{ann}}(B_s) = \Gamma_0 \eta_{\text{aspec}} (-0.0085B_1 + 0.0096B_2 - 2.22\varepsilon_1 + 2.50\varepsilon_2), \]
\[\Gamma_{\text{ann}}(A_b) = \Gamma_0 \eta_{\text{aspec}} r (0.59\tilde{B} + 0.31), \]
\[\Gamma_{\text{int}}(A_b) = \Gamma_0 \eta_{\text{aspec}} r (-0.30\tilde{B} - 0.097). \quad (2.19) \]

Therefore, to the order of \(1/m_b^3 \), the \(B \)-hadron lifetime ratios are given by
\[\frac{\tau(B^-)}{\tau(B_d^0)} = 1 + \left(\frac{f_B}{185 \text{ MeV}} \right)^2 (0.043B_1 + 0.0006B_2 - 0.61\varepsilon_1 + 0.17\varepsilon_2), \]
\[\frac{\tau(B_s^0)}{\tau(B_d^0)} = 1 + \left(\frac{f_B}{185 \text{ MeV}} \right)^2 (-1.7 \times 10^{-5}B_1 + 1.9 \times 10^{-5}B_2 - 0.0044\varepsilon_1 + 0.0050\varepsilon_2), \]
\[\frac{\tau(A_b)}{\tau(B_d^0)} = 0.99 + \left(\frac{f_B}{185 \text{ MeV}} \right)^2 [-0.0006B_1 + 0.0006B_2 \]
\[-0.15\varepsilon_1 + 0.17\varepsilon_2 - (0.014 + 0.019\tilde{B})r]. \quad (2.20) \]

We see that the coefficients of the color singlet–singlet operators are one to two orders of magnitude smaller than those of the color octet–octet operators. This implies that even a small deviation from the factorization approximation \(\varepsilon_i = 0 \) can have a sizable impact on the lifetime ratios. It was argued in [11] that the unknown nonfactorizable contributions render it impossible to make reliable estimates on the magnitude of the lifetime ratios and even the sign of corrections. That is, the theoretical prediction for \(\tau(B^-)/\tau(B_d) \) is not necessarily larger than unity. In the next section we will apply the QCD sum rule method to estimate the aforementioned hadronic parameters, especially \(\varepsilon_i \).

III. THE QCD SUM RULE CALCULATION

In this section we will employ the method of QCD sum rules within the framework of HQET. Since the \(b \) quark is treated as a static quark with an infinite quark mass in HQET and since HQET is a low-energy effective theory, it is natural to regard the matrix elements of (2.14) as defined at the scale \(m_b \) and to evaluate the corresponding hadronic matrix elements in HQET at a scale \(\mu \ll m_b \). Indeed, it has been argued that the estimate of hadronic matrix elements of four-quark operators using the factorization hypothesis for mesons and the quark model for baryons becomes more reliable if the operators are renormalized at a
typical hadronic scale \[24\]. In the sum rule approach, the correlation function (or the so-called Green function), within the QCD framework, can be expanded as a series of operators \(O_n(\mu)\) multiplied by the Wilson coefficients \(C_n(-2\omega/\mu, g_s)/\omega^n\), where \(\omega\) is an external momentum flowing in (or out) the correlation function and \(\mu\) is the factorization scale that separates the long-distance part \(O_n\) from the short-distance one \(C_n\). The quality of the convergence of the OPE series is controlled by the value of the external momentum \(\omega\). The factorization scale \(\mu\) cannot be chosen too small, otherwise the strong coupling constant \(\alpha_s\) would be so large that Wilson coefficients cannot be perturbatively calculated. Four-quark operators are sometimes renormalized at a typical scale \(\mu_h \approx 0.67\) GeV, corresponding to the coupling constant \(\alpha_s^{\overline{MS}}(\mu_h) \sim \mathcal{O}(1)\). However, such a scale is not quite suitable for the sum rule calculation. Instead we choose \(\mu = 1\) GeV as the lowest possible factorization scale in the ensuing study. After summing over the logarithmic dependence \(\alpha_m^{\overline{MS}}(-2\omega/\mu)\) by the renormalization-group method, one obtains the nonperturbative quantity \(X(\mu)\) which can be extracted from the correlation function in the following form

\[
X(\mu) \sim \sum_n C_n(1, g_s(-2\omega)) \left(\frac{\alpha_s(\mu)}{\alpha_s(-2\omega)} \right)^{\gamma_n} - \sum_j \gamma_j O_n(\mu),
\]

where \(\gamma_n\) are the anomalous dimensions of \(O_n\) and \(\gamma_j\) the anomalous dimensions of the currents appearing in the correlation function. As noted above, the four-quark operators in Eq. (2.14) are defined at the scale \(\mu = m_b\). In HQET where the \(b\) quark is treated as a static quark, we can use the renormalization group equation to express them in terms of the operators renormalized at a scale \(\Lambda_{QCD} \ll \mu \ll m_b\). These operators have the hybrid anomalous dimensions [25–27] and their renormalization-group evolution is determined by the anomalous dimensions in HQET. The operators \(O^q_{V-A}\) and \(T^q_{V-A}\), and similarly \(O^q_{S-P}\) and \(T^q_{S-P}\), mix under renormalization. In the leading logarithmic approximation, the renormalization-group equation of the operator pair \((O, T)\) governed by the hybrid anomalous dimension matrix reads \(^4\)

\[
\frac{d}{dt} \begin{pmatrix} O \\ T \end{pmatrix} = \begin{pmatrix} \frac{3\alpha_s}{2\pi} & \frac{-1}{\frac{1}{2N_c}} \\ \frac{C_F}{2N_c} & \frac{1}{\frac{1}{2N_c}} \end{pmatrix} \begin{pmatrix} O \\ T \end{pmatrix},
\]

where \(t = \frac{1}{2} \ln(Q^2/\mu^2)\), \(C_F = (N_c^2 - 1)/2N_c\), and effects of penguin operators induced from evolution have been neglected.

The solution to the evolution equation Eq. (3.2) has the form

\[
\begin{pmatrix} O \\ T \end{pmatrix}_Q = \begin{pmatrix} \frac{8}{3} & 2/3 \\ -\frac{4}{27} & \frac{8}{9} \end{pmatrix} \begin{pmatrix} L_Q^{\beta_b(2\beta_b)} & 0 \\ 0 & 1 \end{pmatrix} \mathbf{D}_\mu,
\]

\(^4\)One of the off-diagonal anomalous dimension matrix elements in Eq. (3.2) has a sign opposite to that obtained in [11].
where

\[
\mathbf{D}_\mu = \begin{pmatrix} D_1 \\ D_2 \end{pmatrix}_\mu = \begin{pmatrix} O - \frac{3}{4}T \\ \frac{1}{6}O + T \end{pmatrix}_\mu, \tag{3.4}
\]

\[
L_Q = \frac{\alpha_s(\mu)}{\alpha_s(Q)}, \tag{3.5}
\]

and \(\beta_0 = \frac{11}{3} N_c - \frac{2}{3} n_f \) is the leading-order expression of the \(\beta \)-function with \(n_f \) being the number of light quark flavors. The subscript \(\mu \) in Eq. (3.4) and in what follows denotes the renormalization point of the operators. Given the evolution equation (3.3) for the four-quark operators, we see that the hadronic parameters \(B_i \) and \(\varepsilon_i \) normalized at the scale \(m_b \) are related to that at \(\mu = 1 \text{ GeV} \) by

\[
\begin{pmatrix} B_i \\ \varepsilon_i \end{pmatrix}_m = \begin{pmatrix} \frac{8}{9} & \frac{2}{3} \\ -\frac{4}{27} & \frac{8}{9} \end{pmatrix} \begin{pmatrix} L^9_{m_b} \mu \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} B_i - \frac{3}{4} \varepsilon_i \\ \frac{1}{6} B_i + \varepsilon_i \end{pmatrix}_\mu = 1 \text{ GeV}, \tag{3.6}
\]

and hence

\[
B_i(m_b) \simeq 1.54 B_i(\mu) - 0.41 \varepsilon_i(\mu),
\]

\[
\varepsilon_i(m_b) \simeq -0.090 B_i(\mu) + 1.07 \varepsilon_i(\mu), \tag{3.7}
\]

with \(\mu = 1 \text{ GeV} \), where uses have been made of \(\alpha_s(m_Z) = 0.118, \Lambda^{(4)}_{\text{MS}} = 333 \text{ MeV}, m_b = 4.85 \text{ GeV}, m_c = 1.45 \text{ GeV} \) and

\[
\alpha_s(Q) = \frac{4\pi}{\beta_0 \ln \frac{Q^2}{\Lambda^2}} \left(1 - \frac{2\beta_1}{\beta_0^2} \frac{\ln \ln \frac{Q^2}{\Lambda^2}}{\ln \frac{Q^2}{\Lambda^2}} \right)
\]

to the next-to-leading order with \(\beta_1 = 51 - \frac{19}{3} n_f \). The above results (3.7) indicate that renormalization effects are quite significant.

It is easily seen from Eqs. (3.3) and (3.4) that the normalized operator \(D_1 \) (or \(D_2 \)) is simply multiplied by \(L^9_{m_b} \mu \) (or 1) when it evolves from a renormalization point \(\mu \) to another point \(Q \). In what follows, we will apply this property to derive the renormalization-group improved QCD sum rules for \(D_j \) at the typical scale \(\mu = 1 \text{ GeV} \). We define the new four-quark matrix elements as follows

\[
\frac{1}{2 m_{B_q}} \langle \bar{B}_q | D_j^{(i)}(\mu) | \bar{B}_q \rangle \equiv \frac{f_{B_q}^2 m_{B_q}}{8} d_j^{(i)}(\mu), \tag{3.8}
\]

where the superscript \((i) \) denotes \((V - A) \) four-quark operators for \(i = 1 \) and \((S - P) \) operators for \(i = 2 \), and \(d_j^{(i)} \) satisfy

\[
\begin{pmatrix} d_1^{(i)} \\ d_2^{(i)} \end{pmatrix}_\mu = \begin{pmatrix} B_i - \frac{3}{4} \varepsilon_i \\ \frac{1}{6} B_i + \varepsilon_i \end{pmatrix}_\mu. \tag{3.9}
\]

10
Since the terms linear in four-quark matrix elements are already of order $1/m_b^2$, we only need the relation between the full QCD field $b(x)$ and the HQET field $h_v^{(b)}(x)$ to the zeroth order in $1/m_b$: $b(x) = e^{-im_b x} \{ h_v^{(b)}(x) + \mathcal{O}(1/m_b) \}$. Therefore, in analogue to Eq. (2.13), we define the relevant four-quark operators in HQET as

$$
\begin{align*}
O_{V-A}^v &= \bar{h}_{vL}^b \gamma_\mu q_L \bar{q}_L \gamma^\mu h_{vL}^b, \\
O_{S-P}^v &= \bar{h}_{vR}^b q_L \bar{q}_L h_{vR}^b, \\
T_{V-A}^v &= \bar{h}_{vL}^b \gamma_\mu t^a q_L \bar{q}_L \gamma^\mu t^a h_{vL}^b, \\
T_{S-P}^v &= \bar{h}_{vR}^b t^a q_L \bar{q}_L t^a h_{vR}^b.
\end{align*}
$$

(3.10)

The corresponding hadronic matrix elements of these four-quark operators are parametrized by

$$
\begin{align*}
\frac{1}{2} \langle \bar{B}(v) | O_{V-A}^v | \bar{B}(v) \rangle &= \frac{F^2(m_b)}{8} B_1^v(\mu), \\
\frac{1}{2} \langle \bar{B}(v) | O_{S-P}^v | \bar{B}(v) \rangle &= \frac{F^2(m_b)}{8} B_2^v(\mu), \\
\frac{1}{2} \langle \bar{B}(v) | T_{V-A}^v | \bar{B}(v) \rangle &= \frac{F^2(m_b)}{8} c_1^v(\mu), \\
\frac{1}{2} \langle \bar{B}(v) | T_{S-P}^v | \bar{B}(v) \rangle &= \frac{F^2(m_b)}{8} c_2^v(\mu),
\end{align*}
$$

(3.11)

where the heavy-flavor-independent decay constant F defined in the heavy quark limit is given by

$$
\langle 0 | \bar{q} \gamma^\mu \gamma_5 h^{(b)}_v | \bar{B}(v) \rangle = i F(\mu) v^\mu.
$$

(3.12)

The decay constant $F(\mu)$ depends on the scale μ at which the effective current operator is renormalized and it is related to the scale-independent decay constant f_B of the B meson by

$$
F(m_b) = f_B \sqrt{m_B}.
$$

(3.13)

Notice that F in Eq. (3.11) is chosen to be normalized at the scale m_b.

To complete the aim of obtaining the matrix elements of four-quark operators, we apply the method of QCD sum rules [28]. We consider the following three-point correlation function

$$
\Pi_{\alpha\beta}^{D_j^{(i)}}(\omega, \omega') = i^2 \int dx dy e^{i\omega x - i\omega' y} \langle 0 | T \{ [\bar{q}(x) \Gamma_\alpha h_v^{(b)}(x)] D_j^{(i)}(0) [\bar{q}(y) \Gamma_\beta h_v^{(b)}(y)] \} | 0 \rangle,
$$

(3.14)

of the operator $D_j^{(i)}$ defined in Eq. (3.4), where $\Gamma_\alpha = \gamma_\alpha \gamma_5$. However, this current interpolates not only the heavy mesons with quantum number $J^P = 0^-$ but also that with quantum number $J^P = 1^+$. Therefore, we need to decompose Γ_α into $\Gamma_\alpha = \Gamma_\alpha^{AV} - v_\alpha \Gamma^{PS}$, with $\Gamma_\alpha^{AV} = (\gamma + v_\alpha) \gamma_5$ for $J^P = 1^+$ and $\Gamma^{PS} = \gamma_5$ for $J^P = 0^-$. As a consequence, $\Pi_{\alpha\beta}^{D_j^{(i)}}$ is recast to
\[\Pi^{D^{\psi(i)}}_{\alpha\beta} = (-g_{\alpha\beta} + v_{\alpha}v_{\beta})\Pi^{AV}_{D^{\psi(i)}} + v_{\alpha}v_{\beta}\Pi^{PS}_{D^{\psi(i)}}, \]
(3.15)

where

\[(-g_{\alpha\beta} + v_{\alpha}v_{\beta})\Pi^{AV}_{D^{\psi(i)}} = i^2 \int dx dy e^{i\omega v x - i\omega' v y} \times \langle 0| T\{[\bar{q}(x)\Gamma^{AV}_\alpha h_\psi^{(b)}(x)] D^{\psi(i)}_{\psi}(0) [\bar{q}(y)\Gamma^{AV}_\beta h_\psi^{(b)}(y)]\} |0\rangle, \]

\[\Pi^{PS}_{D^{\psi(i)}} = i^2 \int dx dy e^{i\omega v x - i\omega' v y} \times \langle 0| T\{[\bar{q}(x)\Gamma^{PS} h_\psi^{(b)}(x)] D^{\psi(i)}_{\psi}(0) [\bar{q}(y)\Gamma^{PS} h_\psi^{(b)}(y)]\} |0\rangle. \]
(3.16)

In deriving Eq. (3.15) we have applied the relations

\[i^2 \int dx dy e^{i\omega v x - i\omega' v y} \langle 0| T\{[\bar{q}(x)\Gamma^{AV}_\alpha h_\psi^{(b)}(x)] D^{\psi(i)}_{\psi}(0) [\bar{q}(y)\Gamma^{PS} h_\psi^{(b)}(y)]\} |0\rangle = 0 \]
(3.17)

and

\[i^2 \int dx dy e^{i\omega v x - i\omega' v y} \langle 0| T\{[\bar{q}(x)\Gamma^{PS} h_\psi^{(b)}(x)] D^{\psi(i)}_{\psi}(0) [\bar{q}(y)\Gamma^{AV}_\beta h_\psi^{(b)}(y)]\} |0\rangle = 0. \]
(3.18)

Note that only the correlation function \(\Pi^{PS} \) is relevant to our purpose. It can be written in the double dispersion relation form

\[\Pi^{PS}_{D^{\psi(i)}}(\omega, \omega') = \int \int \frac{ds}{s - \omega} \frac{ds'}{s' - \omega'} \rho^{D^{\psi(i)}}. \]
(3.19)

The results of the QCD sum rules can be obtained in the following way. On the phenomenological side, which is the sum of the relevant hadron states, this correlation function can be written as

\[\Pi^{PS}_{D^{\psi(i)}}(\omega, \omega') = \frac{F^2(m_h)F^2(\mu)d^{\psi(i)}}{16(\bar{\Lambda} - \omega)(\bar{\Lambda} - \omega')} + \cdots, \]
(3.20)

where \(\bar{\Lambda} \) is the binding energy of the heavy meson in the heavy quark limit and ellipses denote resonance contributions. On the theoretical side, the correlation function \(\Pi^{PS} \) can be alternatively calculated in terms of quarks and gluons using the standard OPE technique. Then we equate the results on the phenomenological side with that on the theoretical side. However, since we are only interested in the properties of the ground state at hand, e.g., the \(B \) meson, we shall assume that contributions from excited states (on the phenomenological side) are approximated by the spectral density on the theoretical side of the sum rule, which starts from some thresholds (say, \(\omega_{i,j} \) in this study). To further improve the final result under consideration, we apply the Borel transform to both external variables \(\omega \) and \(\omega' \). After the Borel transform [28],

\[\mathbf{B}[\Pi^{PS}_{D^{\psi(i)}}(\omega, \omega')] = \lim_{\omega' \to \infty} \lim_{\omega \to \infty} \frac{1}{n!m!}(-\omega')^{m+1}[\frac{d}{d\omega'}]^m(-\omega)^{n+1}[\frac{d}{d\omega}]^n\Pi^{PS}_{D^{\psi(i)}}(\omega, \omega'), \]
(3.21)
the sum rule gives
\[
\frac{F^2(m_b) F^2(\mu)}{16} e^{-\delta/2\Lambda/\mu} e^{-\Delta/\mu} \rho_{QCD},
\]
where \(\omega_{ji}\) is the threshold of the excited states and \(\rho_{QCD}\) is the spectral density on the theoretical side of the sum rule. Because the Borel windows are symmetric in variables \(t_1\) and \(t_2\), it is natural to choose \(t_1 = t_2\). However, unlike the case of the normalization of the Isgur-Wise function at zero recoil, where the Borel mass is approximately twice as large as that in the corresponding two-point sum rule [29], in the present case of the three-point sum rule at hand, we find that the working Borel windows, which have a plateau behavior, are almost the same as that in the two-point sum rule. Therefore, we choose \(t_1 = t_2 = t\). By the renormalization group technique, the logarithmic dependence \(\alpha_s(\mu)/(\alpha_s(2t))\) can be summed over to produce a factor like \([\alpha_s(\mu)/\alpha_s(2t)]^\gamma\). After some manipulation we obtain the sum rule results:

\[
\frac{F^2(m_b) F^2(\mu)}{16} e^{-\delta/2\Lambda/\mu} \left(\frac{d_i^{(i)}}{d_i^{(i)}}\right)_\mu,
\]

where

\[
\text{OPE}_{B_{i,j}} \simeq \frac{1}{4} (\text{OPE})_{2pt;i,j},
\]

\[
\text{OPE}_{\epsilon_{1,j}} \simeq -\frac{1}{16} \left(-\frac{\langle \bar{q}g_s \sigma \cdot Gq \rangle}{8\pi^2} t(1 - e^{-\omega_{1,j}/t}) + \frac{\langle \alpha_s G^2 \rangle}{16\pi^2} t^2 (1 - e^{-\omega_{1,j}/t})^2 \right),
\]

\[
\text{OPE}_{\epsilon_{2,j}} \simeq 0,
\]

with

\[
(\text{OPE})_{2pt;i,j} = \frac{1}{2} \left(\int \omega_{ji} ds s^2 e^{-s/t} / \pi^2 \left[1 + \frac{\alpha_s}{\pi} \left(\frac{17}{3} + \frac{4\pi^2}{9} - 2 \ln \frac{s}{t}\right)\right] - \left(1 + \frac{2\alpha_s}{\pi}\right) \langle \bar{q}q \rangle + \frac{\langle \bar{q}g_s \sigma \cdot Gq \rangle}{16t^2} \right).
\]

The parameter \(\delta\) in (3.23) is some combination of the \(\beta\) functions and anomalous dimensions (see Eq. (4.2) of [30]) and is numerically equal to \(-0.23\). The relevant parameters normalized at the scale \(t\) are related to those at \(\mu\) by [31, 29, 33]

\[
F(2t) = F(\mu) \left(\frac{\alpha_s(2t)}{\alpha_s(\mu)}\right)^{-2/\beta_0},
\]

\[
\langle \bar{q}q \rangle_{2t} = \langle \bar{q}q \rangle_{\mu} \left(\frac{\alpha_s(2t)}{\alpha_s(\mu)}\right)^{-4/\beta_0},
\]

\[
\langle g_s \bar{q} \sigma \cdot Gq \rangle_{2t} = \langle g_s \bar{q} \sigma \cdot Gq \rangle_{\mu} \left(\frac{\alpha_s(2t)}{\alpha_s(\mu)}\right)^{2/(3\beta_0)},
\]

\[
\langle \alpha_s G^2 \rangle_{2t} = \langle \alpha_s G^2 \rangle_{\mu},
\]

(3.26)
where \(\langle \cdots \rangle \) stands for \(\langle 0|\cdots|0 \rangle \). In the calculation of the correlation function, we have also used the fixed-point gauge (the Fock-Schwinger gauge) \(x^\mu A_\mu(x) = 0 \) with \(A_\mu \) being an external gluon field. Under this gauge, the generalized quark propagator in the external gluon field reads

\[
S_{q(i)}^{ab}(0, x) = \int \frac{d^4 p}{(2\pi)^4} e^{ipx} \left[i\delta^{ab} \frac{i}{\not{p} - m_q} + \frac{i \lambda^m_{ab} g_s G_{\mu\nu}^m(0)}{2} \frac{\sigma^{\mu\nu}(\not{p} + m_q) + (\not{p} + m_q)\sigma^{\mu\nu}}{(p^2 - m_q^2)^2} \right. \\
- \frac{iG_{\mu\nu}^m(0)\lambda^m_{ab} g_s x_{\nu} \left(\frac{1}{\not{p} - m_q} \gamma^\mu \right) x_{\mu}}{4}]_{ij} \\
+ : q_0^a(0)q_0^b(0) : + x_{\mu} : q_0^a(0)(D_\mu q_0^b(0)) : + \frac{x_{\mu}x_{\nu}}{2!} : q_0^a(0)(D_\mu D_\nu q_0^b(0)) : + \ldots, \tag{3.27}
\]

where \(a \) and \(b \) are the color indices, \(i \) and \(j \) the Lorentz indices.

Let us explain the results obtained in Eqs. (3.23) and (3.24). OPE\(_{B_i}\) is obtained by substituting \(D_j^{\nu(i)} \) by \(O^\nu \) in \(\Pi_{D_j^{\nu(i)}} \) [cf. Eq. (3.16)] and it can be approximately factorized as the product of \(\text{(OPE)}_{2pt,i,j} \) with itself, which is the same as the theoretical part in the two-point \(F(\mu) \) sum rule [29–31]. In the series of \(\text{(OPE)}_{2pt,i,j} \), we have neglected the contribution proportional to \(\langle \bar{q}q \rangle^2 \). (More precisely, it is equal to \(\alpha_s \langle \bar{q}q \rangle^2 \pi/324 \); see Ref. [29].) Nevertheless, the result of \(\text{(OPE)}_{B_i} \) in Eq. (3.24) is reliable up to dimension six, as the contributions from the \(\langle \bar{q}q \rangle^2 \) terms in \(\text{(OPE)}_{2pt,i,j} \) are much smaller than the term \((1 + \alpha_s/\pi)^2 \langle \bar{q}q \rangle^2/16 \) that we have kept [see Eq. (3.25)]. Note that in \(\text{(OPE)}_{B_i} \), the contribution involving the gluon condensate is proportional to the light quark mass and hence can be neglected. Likewise, \(\text{OPE}_{\epsilon_i} \) is the theoretical side of the sum rule, and it is obtained by substituting \(D_j^{\nu(i)} \) by \(T^\nu \) in Eq. (3.16). To the order of dimension-five, the main contributions to \(\text{OPE}_{\epsilon_i} \) are depicted in Fig. 1. Here we have neglected the dimension-6 four-quark condensate of the type \(\langle \bar{q} \Gamma \lambda^a q \bar{q} \Gamma \lambda^b q \rangle \). It’s contribution is much less than that from dimension-five or dimension-four condensates and hence unimportant (see [32] for similar discussions). It should be emphasized that nonfactorizable contributions to the parameters \(B_i \) arise mainly from the \(O^\nu - T^\nu \) operator mixing.

At this point, it is useful to compare our analysis with the similar QCD sum rule studies in [32] and [15]. First, the author of Ref. [32] has ignored the dimension-5 contribution arising from the quark-gluon mixed condensate. On the contrary, we find that, as in the conventional sum rule calculation, this contribution is larger than that from the dimension-4 gluon condensate. Second, our results for \(\text{OPE}_{\epsilon_i} \) are very different from that obtained by Baek \textit{et al} [15]. The reason is that they calculated the full \(\Pi^{\epsilon_i,\alpha}_{\alpha} \) (obtained by replacing \(D_j^{\nu(i)} \) by \(T^\nu \) in Eq. (3.14)) rather than the pseudoscalar part of \(\Pi^{\epsilon_i,\alpha}_{\alpha} \). Therefore, their results are mixed with the \(1^+ \) to \(1^+ \) transitions. Also a subtraction of the contribution from excited states is not carried out in [15] for the three-point correlation function, though it is justified to do so for two-point correlation functions. Indeed, in the following analysis, one will find that after subtracting the contribution from excited states, the contributions of \(\text{OPE}_{\epsilon_i} \) are largely suppressed. Furthermore, as in the study of the \(B \) meson decay constant [29], we find that
the renormalization-group effects are very important in the sum rule analysis. Consequently, there is no much difference between the resulting values of \(\varepsilon_1 \) and \(\varepsilon_2 \). Moreover, \(\varepsilon_i \) at \(\mu = m_b \) are largely enhanced by renormalization-group effects.

The value of \(F \) in Eq. (3.23) can be substituted by

\[
F^2(\mu) e^{-\Lambda/t} = \left[\frac{\alpha_s(2t)}{\alpha_s(\mu)} \right]^{\frac{1}{2}} \left[\frac{1 - 2\delta \alpha_s(2t)}{1 - 2\delta \alpha_s(\mu)} \right] \int_0^{\infty} ds \ e^{-s/t} \left[\frac{3}{\pi^2} \left(1 + \frac{\alpha_s(2t)}{\pi} \left(\frac{17}{3} + \frac{4\pi^2}{9} - 2 \ln \frac{s}{t} \right) \right) \right. \\
\left. - \left(1 + \frac{2\alpha_s(2t)}{\pi} \right) (\bar{q}q)_{2i} + \frac{(\bar{q}g_s \sigma \cdot Gq)_{2i}}{16t^2} \right] ,
\]

which can be obtained from the two-point sum rule approach [30,31,29]. For the numerical analysis, we use the following values of parameters [33,34]

\[
\langle \bar{q}q \rangle_{\mu=1 \ GeV} = -(240 \ MeV)^3 , \\
\langle \alpha_s G^2 \rangle_{\mu=1 \ GeV} = 0.0377 \ GeV^4 , \\
\langle \bar{q}g_s \sigma \cdot Gq \rangle_{\mu=1 \ GeV} = (0.8 \ GeV^2) \times \langle \bar{q}q \rangle_{\mu=1 \ GeV} ,
\]

as input. Since in our convention \(D_\mu = \partial_\mu - ig_\mu A_\mu \), we have \(\langle g_\mu \bar{q}q \cdot Gq \rangle = m_0^2 \langle \bar{q}q \rangle \). Next, in order to determine the thresholds \(\omega_{ij} \), we employ the \(B \) meson decay constant \(f_B = (185 \pm 25 \pm 17) \) MeV obtained from a recent lattice-QCD calculation [35] and the relation [36]

\[
f_B = \frac{F(m_b)}{\sqrt{m_B}} \left(1 - \frac{2\alpha_s(m_b)}{3\pi} \right) \left(1 - \frac{0.8 \sim 1.1 \ GeV}{m_b} \right) ,
\]

that takes into account QCD and \(1/m_b \) corrections. Using the relation between \(F(m_b) \) and \(F(\mu) \) given by Eq. (3.26) and \(m_b = (4.85 \pm 0.25) \) GeV, we obtain

\[
F(\mu = 1 \ GeV) \cong (0.34 \sim 0.52) \ GeV^{3/2}.
\]

Since the \(\bar{\Lambda} \) parameter in Eq. (3.28) can be replaced by the \(\bar{\Lambda} \) sum rule obtained by applying the differential operator \(t^2 \partial \ln / \partial t \) to both sides of Eq. (3.28), the \(F(\mu) \) sum rule can be rewritten as

\[
F^2(\mu) = (\text{right hand side of Eq. (3.28)}) \times \exp[t \left(\frac{\partial}{\partial t} \ln (\text{right hand side of Eq. (3.28)}) \right)] ,
\]

which is \(\bar{\Lambda} \)-free. Then using the result (31) as input, the threshold \(\omega_0 \) in the \(F(\mu) \) sum rule, Eq. (3.32), is determined. The result for \(\omega_0 \) is \(1.05 - 1.40 \) GeV. A larger \(F(\mu = 1 \ GeV) \) corresponds to a larger \(\omega_0 \). The working Borel window lies in the region \(0.6 \) GeV \(< t < 1 \) GeV, which turns out to be a reasonable choice [31]. Substituting the value of \(\omega_0 \) back into the \(\bar{\Lambda} \) sum rule, we obtain \(\bar{\Lambda} = 0.23 - 0.48 \) GeV in the Borel window \(0.6 \) GeV \(< t < 1 \) GeV. This result is consistent with the choice \(m_b = (4.85 \pm 0.25) \) GeV, recalling that in the heavy quark limit, \(\bar{\Lambda} = m_B - m_b \). Since quark-hadron duality is the basic assumption in the QCD sum rule approach, we expect that the same result of \(\bar{\Lambda} \) also can be obtained using the \(\bar{\Lambda} \) sum rules derived from Eq. (3.23) (see [37,33] for a further discussion). Therefore, we
can apply the differential operator \(t^2 \partial \ln / \partial t \) to both sides of Eq. (3.23), the \(d_{j}^{(i)} \) sum rule, to obtain new \(\Lambda \) sum rules. The requirement of producing a reasonable value for \(\Lambda \), say 0.23 – 0.48 GeV, provides severe constraints on the choices of \(\omega_{i,j} \). With a careful study, we find that the best choice in our analysis is

\[
\omega_{i,1} = -0.02 \text{ GeV} + \omega_0, \quad \omega_{1,2} = -0.24 \text{ GeV} + \omega_0, \quad \omega_{2,2} = -0.22 \text{ GeV} + \omega_0. \quad (3.33)
\]

Applying the above relations with \(\omega_0 = (1.05 \sim 1.40) \text{ GeV} \) and substituting \(F(\mu) \) in Eq. (3.23) by (3.28), we study numerically the \(d_{j}^{(i)} \) sum rules. In Fig. 2, we plot \(B_{i}^{\nu} \) and \(\varepsilon_{i}^{\nu} \) as a function \(t \), where \(B_{i}^{\nu} = 8d_{i}^{(i)}/9 + 2d_{2}^{(i)}/3 \), and \(\varepsilon_{i}^{\nu} = -4d_{i}^{(i)}/27 + 8d_{2}^{(i)}/9 \). The dashed and solid curves stand for \(B_{i}^{\nu} \) and \(\varepsilon_{i}^{\nu} \), respectively, where we have used \(\omega_0 = 1.2 \text{ GeV} \) (the corresponding decay constant is \(f_B = 175 \sim 195 \text{ MeV} \) or \(F(\mu) = 0.422 \pm 0.005 \text{ GeV}^{3/2} \)). The final results for the hadronic parameters \(B_i \) and \(\varepsilon_i \) are (see Fig. 2) \(^5\)

\[
B_{1}^{\nu}(\mu = 1 \text{ GeV}) = 0.60 \pm 0.01, \quad B_{2}^{\nu}(\mu = 1 \text{ GeV}) = 0.61 \pm 0.01, \\
\varepsilon_{1}^{\nu}(\mu = 1 \text{ GeV}) = -0.041 \pm 0.007, \quad \varepsilon_{2}^{\nu}(\mu = 1 \text{ GeV}) = -0.032 \pm 0.006. \quad (3.34)
\]

The numerical errors come mainly from the uncertainty of \(\omega_0 = 1.05 \sim 1.40 \text{ GeV} \). Substituting the above results into Eq. (3.7) yields

\[
B_{1}(m_b) = 0.94 \pm 0.02 + O(1/m_b), \quad B_{2}(m_b) = 0.94 \pm 0.02 + O(1/m_b), \\
\varepsilon_{1}(m_b) = -0.098 \pm 0.008 + O(1/m_b), \quad \varepsilon_{2}(m_b) = -0.089 \pm 0.007 + O(1/m_b). \quad (3.35)
\]

It follows from Eq. (2.20) that

\[
\frac{\tau(B^-)}{\tau(B_d)} = 1.09 \pm 0.03, \\
\frac{\tau(B_s)}{\tau(B_d)} - 1 = -1 \times 10^{-5}, \\
\frac{\tau(\Lambda_b)}{\tau(B_d)} = 0.99 - \left(\frac{f_B}{185 \text{ MeV}} \right)^2 (0.014 + 0.020 \tilde{B}) r, \quad (3.36)
\]

to the order of \(1/m_b^3 \). We see that the prediction for \(\tau(B^-)/\tau(B_d) \) is in agreement with the current world average: \(\tau(B^-)/\tau(B_d) = 1.07 \pm 0.04 \quad [7] \), whereas the heavy-quark-expansion-based result for \(\tau(B_s)/\tau(B_d) \) deviates somewhat from the central value of the world average \(^6\): \(0.95 \pm 0.05 \). Thus it is urgent to carry out more precise measurements of the \(B_s \) lifetime.

\(^5\)For comparison, the sum rule results obtained in [15] and [32] are \(\varepsilon_{1}^{\text{BLLS}}(\mu) = -0.041 \pm 0.022, \quad \varepsilon_{2}^{\text{BLLS}}(\mu) = 0.061 \pm 0.035 \quad [15] \) and \(\varepsilon_{1}^{\text{BLLS}}(\mu) \approx -0.15, \quad \varepsilon_{2}^{\text{BLLS}}(\mu) \approx 0 \quad [32], \) respectively, with \(\mu \) being a typical hadronic scale \(\sim 0.70 \text{ GeV} \). Note that the definition of \(B_i(\mu) \) and \(\varepsilon_i(\mu) \) in [15,32] is different from ours by a factor of \(F^2(m_b)/F^2(\mu) \), that is, \(\varepsilon_{i}^{\text{BLLS,C}}(\mu) = \varepsilon_i(\mu) \times F^2(m_b)/F^2(\mu) \).

\(^6\)For example, the neutral \(B \) meson lifetimes are measured at CDF to be [38]: \(\tau(B_d) = 1.58 \pm 0.09 \pm 0.02 \text{ ps} \) and \(\tau(B_s) = 1.34^{+0.23}_{-0.19} \pm 0.05 \text{ ps} \).
Using the existing sum rule estimate for the parameter r \[10\] together with $\tilde B = 1$ gives $\tau(\Lambda_b)/\tau(B_d) \geq 0.98$. Therefore, the $1/m_b^3$ nonspectator corrections are not responsible for the observed lifetime difference between the Λ_b and B_d.

IV. DISCUSSIONS AND CONCLUSIONS

The prediction of B meson lifetime ratios depends on the nonspectator effects of order $16\pi^2/m_b^3$ in the heavy quark expansion. These effects can be parametrized in terms of the hadronic parameters B_1, B_2, ε_1 and ε_2, where B_1 and B_2 characterize the matrix elements of color singlet-singlet four-quark operators and ε_1 and ε_2 the matrix elements of color octet-octet operators. In the present QCD sum rule study, after subtracting the contributions from excited states approximated by the spectral density on the theoretical side of the sum rule starting from certain thresholds, we find that contributions to the matrix elements of octet-octet operators due to the quark-gluon condensate and gluon condensate are strongly suppressed. It is easily seen from our numerical results that there is no much difference between the values of ε_1^v and ε_2^v, whereas it is important to sum over the large logarithmic dependence $\alpha_s\ln^m(2t/\mu)$ to account for the parameters ε_1 and ε_2 at the scale m_b.

As emphasized in [12], one should not be contented with the agreement between theory and experiment for the lifetime ratio $\tau(B^-)/\tau(B_d)$. In order to test the OPE approach for inclusive nonleptonic decay, it is even more important to calculate the absolute decay widths of the B mesons and compare them with the data. From (2.11), (2.19) and (3.35) we obtain

$$
\Gamma_{\text{tot}}(B_d) = 3.61 \times 10^{-13} \text{GeV},
\Gamma_{\text{tot}}(B^-) = 3.30 \times 10^{-13} \text{GeV},
$$

noting that the next-to-leading QCD radiative correction to the inclusive decay width has been included. It is evident that the theoretical predictions are too small by about 15% to account for the central values of the observed total decay rates [7]: $\Gamma(B_d) = (4.192^{+0.170}_{-0.104}) \times 10^{-13}$ GeV and $\Gamma(B^-) = (3.941^{+0.097}_{-0.092}) \times 10^{-13}$ GeV. The problem with the absolute decay width $\Gamma(B)$ is intimately related to the B meson semileptonic branching ratio \mathcal{B}_{SL}. The prediction is $\mathcal{B}_{\text{SL}} \equiv \Gamma_{\text{SL}}(B \to e\bar{\nu}X)/\Gamma(B_d) = 11.6\%$, while experimentally $\mathcal{B}_{\text{SL}} = (10.23 \pm 0.39)\%$ [39]. We consider two of the possibilities that have been advocated in the past to resolve the discrepancy between theory and experiment for $\Gamma(B)$ or \mathcal{B}_{SL}. (i) Choose a low renormalization scale, say $\mu = m_b/2$, to lower \mathcal{B}_{SL} and enhance $\Gamma(B)$ [11]. However, as noted in passing, in order to ensure the renormalization scale and scheme independence of the physical amplitude, one has to take into account the renormalization effect to the four-quark operators in the effective theory, characterized by the parameter $g(\mu)$. This amounts to considering the effective Wilson coefficient $c^{\text{eff}} = c(\mu)g(\mu)$ and evaluating the hadronic matrix elements at tree level. We found before that the effective Wilson coefficients are indeed very insensitive to the chosen scale μ, as it should be [see the discussion in the footnote around Eq. (2.10)].

Therefore, we conclude that the predictions $\mathcal{B}_{\text{SL}} = 11.6\%$ and
(4.1) are essentially scale independent. (ii) The energy release in the decay \(b \to c \bar{c}s \) is so small that either the pertinent expansion parameter in the heavy quark expansion is \(1/(m_b - 2m_c) \) rather than \(1/m_b \), or local quark-hadron duality fails in the channel \(b \to c \bar{c}s \).

Unlike the semileptonic decays, the heavy quark expansion in inclusive nonleptonic decay is a priori not justified due to the absence of an analytic continuation into the complex plane and hence local duality has to be invoked in order to apply the OPE directly in the physical region. If the shorter lifetime of the \(\Lambda_b \) relative to that of the \(B_d \) meson is confirmed in the future and/or if the lifetime ratio \(\tau(B_s)/\tau(B_d) \) is observed to be less than unity, then it is very likely that local quark-hadron duality is violated in nonleptonic decays. It should be stressed that local duality is exact in the heavy quark limit, but its systematic \(1/m_Q \) expansion is still lacking.

Empirically, it has been suggested in [9] that the presence of linear \(1/m_Q \) correction, described by the ansatz that the \(b \) quark mass \(m_b \) is replaced by the decaying bottom hadron mass \(m_{Hb} \) in the \(m_5^b \) factor in front of all nonleptonic widths, will account for the observed lifetime difference between the \(\Lambda_b \) and \(B_d \). To be specific, the ansatz \(\Gamma_{NL} \to \Gamma_{NL}(m_{Hb}/m_b)^5 \) will lead to the results [12]:

\[
\frac{\tau(\Lambda_b)}{\tau(B_d)} = 0.76, \quad \frac{\tau(B_s)}{\tau(B_d)} = 0.94. \tag{4.2}
\]

This simple prescription not only solves the lifetime ratio problem but also provides the correct absolute decay widths for the \(\Lambda_b \) and the \(B \) mesons. The predicted lifetime hierarchy

\[
\tau(\Lambda_b) > \tau(\Xi^+_b) > \tau(\Xi^0_b) > \tau(\Omega_b) \tag{4.3}
\]

for bottom baryons is in sharp contrast to the OPE-based lifetime pattern [12]:

\[
\tau(\Omega_b) \simeq \tau(\Xi^-_b) > \tau(\Lambda_b) \simeq \tau(\Xi^0_b). \tag{4.4}
\]

Of course, whether this empirical ansatz truly works or whether it can be justified in a more fundamental way (see, for example, [40]) remains to be investigated. Nevertheless, it is worth emphasizing that, although a linear \(1/m_Q \) correction to the inclusive nonleptonic decay rate is possible [41,42], the violation of local quark-hadron duality does not necessarily imply the presence of \(1/m_Q \) terms in inclusive widths and hence the aforementioned ansatz.

To conclude, we have derived in heavy quark effective theory the renormalization-group improved sum rules for the hadronic parameters \(B_1 \), \(B_2 \), \(\varepsilon_1 \), and \(\varepsilon_2 \) appearing in the matrix element of four-quark operators. The results are \(B_1(m_b) = 0.94 \pm 0.02 \), \(B_2(m_b) = 0.94 \pm 0.02 \), \(\varepsilon_1(m_b) = -0.098 \pm 0.008 \) and \(\varepsilon_2(m_b) = -0.089 \pm 0.007 \) to the zeroth order in \(1/m_b \). The resultant \(B \)-meson lifetime ratios are \(\tau(B^-)/\tau(B_d) = 1.09 \pm 0.03 \) and \(\tau(B_s)/\tau(B_d) - 1 = -1 \times 10^{-5} \).

ACKNOWLEDGMENTS

This work was supported in part by the National Science Council of R.O.C. under Grant No. NSC87-2112-M-001-048.
REFERENCES

FIG. 1. The main diagrams contributing to OPE$_i$, [cf. Eq. (3.24)]: (a) the contribution from the gluon condensate, and (b) the contribution from the quark-gluon mixed condensate. The double lines denote heavy quarks in HQET.
FIG. 2. $B_1^v(\mu)$ and $\varepsilon_1^v(\mu)$ as a function t, where $B_1^v = 8d_1^{(i)}/9 + 2d_2^{(i)}/3$, and $\varepsilon_1^v = -4d_1^{(i)}/27 + 8d_2^{(i)}/9$. The dashed and solid curves stand for B_1^v and ε_1^v, respectively. Here we have used $\omega_0 = 1.2$ GeV and Eq. (3.33).