To be published in Journal of Syncrotron Radiation.


Single-pass BPM system of the Photon Factory Storage Ring.

A January 1998

KEK Preprint 97-245
Inernet: http://www.kek.jp
E-mail: library@kekax.kek.jp
Cable: KEK OHO
Fax: 0298-64-4604
Phone: 0298-64-5137

JAPAN
Ibaraki-ken. 305-0801
1-1 Oho, Tsukuba-shi
High Energy Accelerator Research Organization (KEK)
Information Resources Division

KEK Reports are available from:
High Energy Accelerator Research Organization (KEK), 1998
Single-pass BPM system of the Photon Factory storage ring

T. Honda, M. Katoh, T. Mitsuhashi, A. Ueda, M. Tadano and Y. Kobayashi
Photon Factory, KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305, Japan
Email: hondat@mail.kek.jp

Abstract
At the 2.5 GeV ring of the Photon Factory, a single-pass BPM system is being prepared for the storage ring and the beam transfer (BT) line. In the storage ring, the injected beam position during the first several turns can be measured with a single injection pulse. The BPM system has an adequate performance useful for the commissioning of the new low-emittance lattice. Several stripe line BPMs are being installed in the beam transfer line. The continuous monitoring of the orbit in the BT line will be useful for the stabilization of the injection energy as well as the injection beam orbit.

Keywords: single-pass BPM; injection beam orbit; KEK PF ring; beam transfer line; injection bump.

1. Introduction
The Photon Factory (PF) ring is a 2.5 GeV electron storage ring dedicated to the synchrotron radiation source. The synchrotron radiation has been supplied to research experiments for about 15 years since 1982. A large upgrade of the PF ring to low emittance lattice is now in progress with a scheduled shutdown of 10 months (Katoh & Hori, 1996). The beam emittance will be reduced by a factor of five, or much brilliant synchrotron radiation will be provided to users. As part of the upgrade program, the beam position monitors and the orbit feedback system are updated completely. The electronics for the closed-orbit-distortion (COD) measurement is designed to achieve high data acquisition rate in order to realize a fast beam position feedback up to 50 Hz (Nakamura et. al., 1995). Furthermore the single-pass beam position monitor (BPM) system is also prepared to investigate the injected beam position. The measurement of injection orbit will be indispensable at the commissioning stage of the new lattice. In this paper, we will describe the method and the performance of this single-pass BPM system.

2. Signal Processing
The single-pass BPM system of the PF ring is constructed using a high-speed waveform analyzer compatible with the VXI bus. The signal of injected beam extracted through the button or the stripline electrode forms a bipolar shape of a few nanosecond duration. The beam signal can be recorded in real time by the waveform analyzer which has a maximum sampling rate of 5 GS/s and an analog bandwidth of 1 GHz. The four button (or stripline) signals of one BPM are simultaneously accumulated in the four channels of the analyzer. The intensity of each button signal is determined as a peak-to-peak amplitude of the bipolar signal, and the beam position is calculated from the peak-height ratios (Honda & Katoh, 1996). As shown in figure 1, we use a set of 8-channel RF power combiners in the way of signal transmission in order to measure signals from 8 BPMs with a single waveform analyzer. If an interval of two adjacent BPMs is 10 m or more, the signals from the two BPMs is well separated on the temporal axis and can be measured without any interference. The record length of the analyzer is 15 k words for each channel. On the other hand the revolution period of the PF ring is 625 ms. When the signal is measured at the maximum sample rate, about 3 μs or 4 turns of injection orbit can be detected with a single injection beam.

The digitizers of the waveform analyzer has an 8-bit resolution. This value corresponds to about 0.5 % as the resolution for the amplitude measurement. The beam position is calculated as a product of the amplitude ratio and the conversion coefficient, the latter of which is a function of the geometrical arrangement of BPM electrodes and the vacuum duct. If the coefficient has a value of 20 mm, that is a typical value for the button BPM, the relative resolution for the beam position can be estimated to be about 0.1 mm.

3. Single-pass BPM of the storage ring
There were 45 button-type BPMs installed in the previous PF ring as shown in figure 2. The number of BPMs is increased to 65 at the low-emittance lattice. The signals of 16 BPMs can be switched to the single-pass processing system, that is equipped with two waveform analyzers and 8 sets of the signal combiners. When the bunch signal is amplified by 20 dB and 1-GHz
bandwidth, bipolar waveform of about 50 mV in amplitude is detected for the typical electron injection beam of 0.2 nC and 2 ns duration. The resolution estimated from the distribution of the measured positions was to be 0.13 mm and 0.39 mm for the horizontal and vertical direction, respectively. The conversion coefficients were found to be 22 mm and 65 mm for the horizontal and vertical, respectively. So it was found that the 8 bit-resolution of the waveform analyzer is supposed to limit the resolution of the single-pass BPM.

Figure 3 shows a sample of the measured beam positions during the first four turns following the injection. The measurement was performed without the RF acceleration and the values averaged for 20 injection pulses are plotted. The origin of the horizontal axis corresponds to the injection point. The horizontal (X) and the vertical (Y) beam positions are shown as solid circles in the topmost and in the middle graphs, respectively. The summation of the four button signals of each BPM is shown in the bottom graph as a measure of beam loss, although small fluctuation due to the different sensitivity of each BPM was not compensated. There are 16 data points plotted in each turn. The solid line in the topmost graph is the injection orbit calculated based on the design parameters of the ring, not including the injection bump. At the normal operation condition, the measured points were well on the calculated line and no beam loss was observed during the first several turns. (Honda et. al., 1997) In the present measurement, the horizontal orbit oscillate with a large amplitude compared to the solid line because of one of the horizontal steering magnets was abnormally excited. Most of the charges disappeared suddenly in the halfway of the second turn. The beam loss point could be fixed between the 9th and 10th BPMs, where the horizontal aperture took a local minimum near the super-conducting vertical wiggler. The orbit correction based on the single-pass measurement was possible using the best corrector method, for example. (Honda et. al., 1997)

Figure 4 shows the measurement of the injection kicker bump using a stored beam of about 0.1 mA. The duration of the injection bump was about 5 µs at the previous PF ring, though a faster kicker system that has a pulse length of 350 ns is being installed for the high brilliance project. The first and the last BPM of each turn were placed on the kicker bump. The pulse bump was observed to continue during several turns. No large orbit distortion was detected outside of the kicker bump, or the injection bump was well closed. When the timing or the amplitude balance of the four kickers were wrong, large COD occurred outside of the bump. It was possible to adjust exactly the kicker operation using the stored beam monitoring like this.

4. BPM system of the beam transfer line

In the beam transfer line, five stripline BPMs are being installed, and the BPM system will work after the commissioning of the low-emittance lattice. The BPM is constructed of 4 stripline electrodes which have a characteristic impedance of 50 Ohm. The signal processing scheme is same as that of the storage ring, but no amplification in the way of the transmission is necessary because the stripline signals are an order of magnitude larger than the button signals. The conversion coefficient for the stripline BPM is estimated about 17 mm both in the horizontal and vertical directions. The resolution of the beam position is expected to be about 0.1 mm. Two of the above BPMs are installed near the entrance of the BT line at an interval of about 4 m, and two others just before the septum magnets also at an interval of 4 m. Using the two set of BPMs, the angle of injection beam orbit will be detected with a resolution better than 50 µrad. The last BPM is installed at the place where the energy dispersion function takes a maximum value. At the BPM, variation of the horizontal beam position is induced by the energy fluctuation of the injection beam. The absolute value of the energy dispersion function is about 5 m, so the resolution for the beam energy is expected to be 0.02 %. By monitoring the horizontal position continuously, an energy feedback will be possible for the slow energy fluctuation of the LINAC injector.

5. Summary

A single-pass BPM system are prepared for the PF storage ring and the BT line. The performance of the BPM of the storage ring was confirmed to be practically useful for the adjustment of injection parameters at the commissioning stage of the low-emittance lattice. Using the same signal processing scheme, the injection beam in the BT line will be continuously monitored after the commissioning.

References


Figure Captions

Figure 1. Signal processing scheme for the single-pass BPM system.

Figure 2. Arrangement of the BPMs in the PF ring. 16 BPMs, which are indicated by the circled numbers, can be switched to the single-pass processing.

Figure 3. Example of the injection orbit measurement.

Figure 4. Observation of the injection bump when stored beam was kicked by the kicker magnets.
Fig. 1

Fig. 2