Searching for QCD–Instantons at HERA

A. Ringwalda and F. Schremppa

aDESY, Notkestr. 85, D-22603 Hamburg, Germany

We review the present status of our ongoing systematic study of the discovery potential of QCD-instanton induced events in deep-inelastic scattering at HERA.

1. INTRODUCTION

Instantons \cite{1}, fluctuations of non-abelian gauge fields representing topology changing tunneling transitions in Yang-Mills gauge theories, induce hard processes which are absent in conventional perturbation theory \cite{2}: In accord with the ABJ-anomaly, they violate certain fermionic quantum numbers, notably, chirality (Q_5) in (massless) QCD and baryon plus lepton number ($B+L$) in electro-weak interactions.

While implications of QCD-instantons, notably for long-distance phenomena, have been intensively studied for a long time, mainly in the context of the phenomenological instanton liquid model \cite{3} and of lattice simulations \cite{4}, the direct experimental verification of their existence is lacking up to now. Clearly, an experimental discovery of such a novel, non-perturbative manifestation of non-abelian gauge theories would be of basic significance.

The deep-inelastic regime is distinguished by the fact that here hard QCD-instanton induced processes may both be calculated \cite{5–7} within instanton-perturbation theory and possibly detected experimentally \cite{8–11}.

In this paper, we review the present status of our ongoing systematic study \cite{6–11} of the discovery potential of QCD-instanton induced events in deep-inelastic scattering (DIS) at HERA.

2. CROSS-SECTION ESTIMATES

The leading instanton (I)-induced process in the DIS regime of $e^\pm P$ scattering is displayed in Fig. 1. The dashed box emphasizes the so-called instanton-subprocess with its own Bjorken vari-

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{The leading instanton-induced process in the DIS regime of $e^\pm P$ scattering, violating chirality by $\Delta Q_5 = 2n_f$.}
\end{figure}

\[
Q^2 = -q'^2 \geq 0; \quad x' = \frac{Q'^2}{2p \cdot q'} \leq 1. \tag{1}
\]

The inclusive I-induced cross-section in unpolarized deep-inelastic $e^\pm P$ scattering can be expressed (in the Bjorken limit) as \cite{7}

\[
\frac{d\sigma^{(I)}_{eP}}{dx' dQ'^2} \sim \sum_{p',\bar{p}'} \frac{dL^{(I)}_{p'\bar{p}'}}{dx' dQ'^2} \sigma^{(I)}_{p'\bar{p}'}(x', Q'^2), \tag{2}
\]

where $p' = q', \bar{q}'$ denotes the virtual quarks entering the I-subprocess, with corresponding total cross-section $\sigma^{(I)}_{p'\bar{p}'}$ from the photon side and $p = q, \bar{q}, g$ denotes the target partons. The differential luminosity $dL^{(I)}_{p'\bar{p}'}$, accounting for the number of $p'\bar{p}'$ collisions per eP collision, has a convolution-like structure \cite{8}, involving integrations over the target-parton density, f_p, the γ^*-flux, P_{γ^*}, and the known \cite{10} flux $P^{(1)}_{p'}$ of the parton p' in the I-background.
In Eq. (2), the I-subprocess total cross-section $\sigma^{(I)}_{p'p}$ contains the essential instanton dynamics. We have evaluated the latter [7] by means of the optical theorem and the so-called $I(T)$-valley approximation [12] for the relevant $qg \rightarrow q'g$ forward elastic scattering amplitude in the $I(T)$ background. This method resums the exponentiating final state gluons in form of the known background. This method resums the exponential cut-off \[6\] forward elastic scattering amplitude in the $I(T)$ background.

Corresponding to the symmetries of the theory, the instanton calculus introduces at the classical level certain (undetermined) “collective coordinates” like the $I(T)$-size parameters $\rho(\vec{p})$ and the $I(T)$ distance $\sqrt{R^2/\rho}$ (in units of the size). Observables like $\sigma^{(I)}_{p'p}$ must be independent thereof and thus involve integrations over all collective coordinates. Hence, we have generically,

$$\sigma^{(I)}_{p'p} = \int_0^\infty d\rho D(\rho) \int_0^\infty d\vec{p} D(\vec{p}) \int d^4R \ldots \tag{3}$$

$$\times e^{-(\rho+\vec{p})Q'} e^{(p+p')} R e^{-\frac{\alpha_s}{\pi} S^{(I(T)}(\xi)}.$$

The first important quantity of interest, entering Eq. (3), is the I-density, $D(\rho)$ (tunnelling amplitude). It has been worked out a long time ago [2,13] in the framework of $I(T)$-perturbation theory: (renormalization scale μ_r)

$$D(\rho) = d \left(\frac{2\pi}{\alpha_s(\mu_r)} \right)^6 \exp\left(-\frac{2\pi}{\alpha_s(\mu_r)}(\rho \mu_r)^b\right). \tag{4}$$

$$b = \beta_0 + \frac{\alpha_s(\mu_r)}{4\pi}(\beta_1 - 12\beta_0), \tag{5}$$

in terms of the QCD β-function coefficients, $\beta_0 = 11 - 2n_f, \beta_1 = 102 - \frac{36n_f}{4}$. In this form it satisfies renormalization-group invariance at the two-loop level [13]. Note that the large, positive power b of ρ in the $I(T)$ density (4) would make the integrations over the $I(T)$-sizes in Eq. (3) infrared divergent without the crucial exponential cut-off [6] $e^{-(\rho+\vec{p})Q'}$ arising from the virtual quark entering the I-subprocess from the photon side.

The second important quantity of interest, entering Eq. (3), is the $I(T)$-interaction, $S^{(I(T)} - 1$. In the valley approximation, the $I(T)$-valley action, $S^{(I(T)} = \frac{\alpha_s}{\pi} S[A^{(I(T)}]$ is restricted by conformal invariance to depend only on the “conformal separation”, $\xi = R^2/\rho |p|^2 + |\vec{p}|^2/\rho$, and its functional form is explicitly known [12]. It is important to note that, for all separations ξ, the interaction between I and T is attractive; in particular, the $I(T)$-valley action monotonically decreases from 1 at infinite conformal separation to 0 at $\xi = 2$, corresponding to $R^2 = 0, \rho = \vec{p}$.

The collective coordinate integration in the cross-section (3) can be performed via saddle-point techniques. One finds $R^2 = (\rho^* \sqrt{\xi^* - 2} = 0, \rho^* \equiv \vec{p}^*$, where the saddle-point solutions ρ^* and ξ^* behave qualitatively as

$$\rho^* \sim \frac{4\pi}{\alpha_s Q^*}; \quad \sqrt{\xi^* - 2} = \frac{R^2}{\rho^*} \sim 2 \sqrt{\frac{x'}{1 - x'}}. \tag{6}$$

Thus, the virtuality Q' controls the effective $I(T)$-size: as one might have expected intuitively, highly virtual quarks probe only small instantons. The Bjorken-variable x', on the other hand, controls the conformal separation between I and T: for decreasing x', the conformal separation decreases.

Our quantitative results [7] on the dominating cross-section for a target gluon, $\sigma^{(I)}_{qg}$, are shown in detail in Fig. 2, both as functions of Q'^2 (top) and of x' (bottom). The residual dependence on the renormalization scale turns out [7] to be strongly reduced by using the two-loop renormalization-group invariant form of the I-density $D(\rho)$ from Eqs. (4) and (5). Intuitively one may expect [6,5] $\mu_r \sim 1/\rho \sim Q'/\beta_0 = \mathcal{O}(0.1)Q'$. Indeed, this guess turns out to match quite well our actual choice of the “best” scale, $\mu_r = 0.15 Q'$, determined by $\partial\sigma^{(I)}_{qg}/\partial\mu_r \approx 0$. The dotted curves in Fig. 2, indicating lines of constant ρ^* (top) and of constant R^*/ρ^* (bottom), nicely illustrate the qualitative relations (6) and their consequences: the Q' dependence essentially maps the I-density, whereas the x' dependence mainly maps the $I(T)$-interaction.

Fortunately, important information about the range of validity of $I(T)$-perturbation for the I-density and the $I(T)$-interaction, in terms of the instanton collective coordinates ($\rho \leq \rho_{max}, R/\rho \geq (R/\rho)_{min}$), can be obtained from recent (non-
perturbative) lattice simulations of QCD and translated via the saddle-point relations (6) into a “fiducial” kinematical region ($Q' \geq Q'_{\text{min}}, x' \geq x'_{\text{min}}$). In fact, from a comparison of the perturbative expression of the I-density (4) with recent lattice “data” [14] one infers [7] semi-classical I-perturbation theory to be valid for $\rho < \rho_{\text{max}} \approx 0.3$ fm. Similarly, it is found [7] that the attractive, semi-classical valley result for the II-interaction applies down to a minimum conformal separation $\xi_{\text{min}} \approx 3$, corresponding to $(R^*/\rho)_{\text{min}} \approx 1$. The corresponding “fiducial” kinematical region for our cross-section predictions in DIS is then obtained as

$$\rho^* \lesssim 0.3 \text{ fm};$$
$$R^*/\rho \gtrsim 1 \Rightarrow \begin{cases} Q' \geq Q'_{\text{min}} \approx 8 \text{ GeV}; \\ x' \geq x'_{\text{min}} \approx 0.35. \end{cases}$$

Fig. 3 displays the finalized I-induced cross-section at HERA, as function of the cuts x'_{min} and Q'_{min}, as obtained with the new release “QCDINS 1.6.0” [11] of our I-event generator. For the following “standard cuts”,

$$C_{\text{std}} = x' \geq 0.35, Q' \geq 8 \text{ GeV}, x_BJ \geq 10^{-3}, 0.1 \leq y_BJ \leq 0.9,$$

involving the minimal cuts (7) extracted from lattice simulations, we specifically obtain

$$\sigma_{\text{HERA}}(C_{\text{std}}) = \mathcal{O}(100) \text{ pb}.$$ \hfill (9)

The main inherent uncertainties are discussed in Ref. [7]. With the total luminosity accumulated by experiments at HERA, $L = \mathcal{O}(80) \text{ pb}^{-1}$, there should be already $\mathcal{O}(10^4)$ I-induced events from the kinematical region (8) on tape. Note also that the cross-section quoted in Eq. (9) corresponds to a fraction of I-induced to normal DIS events of $f^{(I)}(C_{\text{std}}) = \mathcal{O}(1) \%$.

3. SEARCHES AT HERA

Thus, it seems to be a question of signature rather than a question of rate to discover I-induced scattering processes at HERA. Hence, we turn now to the final states of I-induced events in DIS.

In Fig. 4 we display the lego plot of a typical I-induced event at HERA, as generated by our Monte-Carlo generator QCDINS [9–11]. Its characteristics can be easily understood on the basis of the underlying I-subprocess:

The current quark in Fig. 1 gives rise, after hadronization, to a current-quark jet. The partons from the I-subprocess, on the other hand, are emitted spherically symmetric in the p'/p c.m.
system. The gluon multiplicities are generated according to a Poisson distribution with mean multiplicity \(\langle n_g \rangle^{(I)} \sim \frac{1}{\alpha_s} \sim 3 \). The total mean parton multiplicity is large, of the order of ten. After hadronization we therefore expect from the \(I \)-subprocess a final state structure reminiscent of a decaying fireball: Production of the order of 20 hadrons, always containing strange mesons, concentrated in a “band” at fixed pseudorapidity \(\eta \) in the \((\eta, \text{azimuth angle } \phi) \)-plane. Due to the boost from the \(p'p \) c.m. system to the HERA-lab system, the center of the band is shifted in \(\eta \) away from zero, and its width is of order \(\Delta \eta \simeq 1.8 \), as typical for a spherically symmetric event. The total invariant mass of the \(I \)-system, \(\sqrt{s'} = Q' \sqrt{1/x'} - 1 \), is expected to be in the 10 GeV range, for \(x' \simeq 0.35 \), \(Q' \simeq 8 \text{ GeV} \). All these expectations are clearly reproduced by our Monte-Carlo simulation.

These features have been exploited by experimentalists at HERA to place first upper limits on the fraction of \(I \)-induced events to normal DIS (nDIS) events, in a similar kinematical region as our standard cuts (8): From the search of a \(K^0 \) excess in the “band” region the H1 Collaboration could establish a limit of \(f_{\text{lim}}^{(I)} = 6 \% \), while the search of an excess in charged multiplicity yields \(f_{\text{lim}}^{(I)} = 2.7 \% \) [15]. The limit from the charged multiplicity distribution has been further improved in Ref. [16] to about 1 %. Thus, despite of the high rate of \(I \)-induced events at HERA, no single observable is known (yet) with sufficient nDIS rejection. A dedicated multi-observable analysis is required. However, it seems that a decisive search for \(I \)-induced events at HERA is feasible.

REFERENCES