Molecular Gas in 3C 293: The First Detection of CO Emission and Absorption in an FR II Radio Galaxy

A. S. Evans
Division of Physics, Math, & Astronomy
MS 105-24, California Institute of Technology,
Pasadena, CA 91125; ase@astro.caltech.edu

D. B. Sanders & J. A. Surace
Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822;
sanders@ifa.hawaii.edu; jason@ipac.caltech.edu

J. M. Mazzarella
IPAC, MS 100-22, California Institute of Technology, Jet Propulsion Laboratory,
Pasadena, CA 91125; mazz@ipac.caltech.edu

1Present Address: IPAC, MS 100-22, California Institute of Technology, Jet Propulsion Laboratory,
Pasadena, CA 91125

abstract

The first detection of CO emission in a Fanaroff-Riley Class II (i.e., edge-brightened radio morphology) radio galaxy is presented. Multiwavelength (0.36-2.17 µm) imaging of 3C 293 shows it to be a disk galaxy with an optical jet or tidal tail extending towards what appears to be a companion galaxy 28 kpc away via a low surface brightness envelope. The molecular gas appears to be distributed in an asymmetric disk rotating around an unresolved continuum source, which is presumably emission from the AGN. A narrow (∆v_{abs} ~ 60 km s^{-1}) absorption feature is also observed in the CO spectrum and is coincident with the continuum source. Using the standard CO conversion factor, the molecular gas (H$_2$) mass is calculated to be 1.5×10^{10} M$_\odot$, several times the molecular gas mass of the Milky Way. The high concentration of molecular gas within the central 3 kpc of 3C 293, combined with the multiwavelength morphological peculiarities, support the idea that the radio activity has been triggered by a gas-rich galaxy-galaxy interaction or merger event.