Chaos may make black holes bright

Janna Levin
Astronomy Centre, University of Sussex
Brighton BN1 9QJ
and
Center for Particle Astrophysics, UC Berkeley
Berkeley, CA 94720-7304

Black holes cannot be seen directly since they absorb light and emit none, the very quality which earned them their name. We suggest that black holes may be seen indirectly through a chaotic defocusing of light. A black hole can capture light from a luminous companion in chaotic orbits before scattering the light in random directions. To a distant observer, the black hole would appear to light up. If the companion were a bright radio pulsar, this estimate suggests the black hole echo could be detectible.
Black holes evade direct detection precisely because they are black. The existence of black holes hidden behind accretion disks or in the centers of galaxies have been inferred from astrophysical observations. Despite these indirect observations, we cannot know for certain that the compact objects lurking there are in fact Einstein’s black holes. Any detection which can see in very near to the event horizon would provide more incriminating evidence for their existence. In this Letter we describe how chaotic scattering of light in an inner regime around the event horizon could effectively render the black hole bright. If perturbed, a stochastic region develops around the last unstable photon orbit. The disturbance could be an orbiting companion or the emission of gravitational waves or any asymmetry in the evolution. The black hole can then trap incident photons in the stochastic region for some time before throwing off half and absorbing the other half, effectively shrouding it in light. We estimate the cross-section for this gravitational defocusing generically and then illustrate with an extremal binary black hole spacetime.

Around an isolated black hole of mass M and charge Q, light follows the simple orbits

$$\left(\frac{dR}{d\phi} \right)^2 = \frac{R_1^4}{b^2} - R^2 \left(1 - \frac{2M}{R} + \frac{Q^2}{R^2} \right).$$

(1.1)

The motion of massless particles depends only on the impact parameter $b = L/E$ and not on the energy E and the angular momentum L separately. Given the mass and charge of the black hole, there is a critical value of the impact parameter, b_c, at which light gets trapped in a perfectly circular, unstable orbit. For smaller impact parameters, light will fall into the black hole while for larger impact parameters, light escapes. Just above b_c, the light can come close to the circular orbit executing one or more full rotations before being cast off. Only black holes are compact enough to bend light by more than π. The phenomenon of back scattering by a full π is known as the glory [1] and was thought to be the weakest way to observe black holes.

In the stochastic region around a black hole pair, the last unstable orbit becomes the site for chaotic scattering. The lone periodic orbit is replaced by a glut of periodic orbits. These proliferating orbits are packed so densely into phase space that they form a fractal set. Fractals are a way of maximizing the area while maintaining a bounded volume. Light scatters chaotically as it skips from one periodic orbit to another. The cross-section for catching light in multiple windings around the hole is then amplified. As well, the black hole hangs on to the light for longer and reemits the light more evenly. A bright light directed onto the black hole, say from a pulsar companion, could illuminate the black hole for a time before the light decayed away and the star fell dark again.

The defocusing cross-section can be approximated generally in terms of the topological features of the chaotic fractal set. The importance of the general approach is that the scattering cross-section for any candidate system can be estimated in this manner. We assume isotropy which will in fact be broken by an actual perturber. The perturbation is largest at the point of closest approach and is presumably larger in the orbital plane. This whole system is also moving relative to the observer. For the purposes of estimating the magnitude of defocusing, it is reasonable to assume isotropy. In fact, isotropy could be approached for complex orbital motions since light may no longer be confined to a plane. The cross-section σ is roughly the geometric area of the annulus

$$\sigma = 2\pi b_c \Delta b$$

(1.2)

as shown in fig. 1. As light is shot at the black hole with impact parameter near b_c, it will travel on nearly periodic orbits for a time before diverging from these unstable worldlines. The cross-sectional thickness Δb is thus given by the number of periodic orbits times the thickness around each orbit in phase space ϵ. With $N(n)$ the number of fixed points lying on periodic orbits which execute n windings around the black hole, σ can be written as a sum over all winding numbers,

$$\sigma = 2\pi b_c \sum_{n=1}^{\infty} N(n) \epsilon(n).$$

(1.3)

The number of fixed points is given by the topological entropy

$$S = \lim_{n \to \infty} \frac{1}{n} N(n)$$

(1.4)

so that $N(n) \sim e^{S n}$ in the limit of long orbits. Perturbatively, the deviation is $\delta \sigma/\sigma \sim \lambda$ with λ the Lyapunov exponent, a measure of the instability of the orbit. The width in phase space is then $\epsilon(n) \sim b e^{-\lambda n}$. The instability can vary from orbit to orbit. As an approximation we take λ to be the average over all the fixed points. Although the Lyapunov exponent is a notoriously coordinate dependent quantity, in this context we are measuring the instability in units of windings around the black hole and the winding number does not vary from observer to observer. Under the assumption of ergodicity, half of

FIG. 1. A black hole with a bright companion captures light around $R = 3M$ for a few windings before the light scatters off.
the photons fall into the black hole and half are cast off, so we divide the cross-section in half to find
\[\sigma = \pi b_c^2 \sum_{n=1}^{\infty} (\exp(S - \lambda))^n. \] (1.5)

Performing the sum gives
\[\sigma = \pi b_c^2 \frac{e^{(S-\lambda)}}{1 - e^{(S-\lambda)}}. \] (1.6)

We can recast \(\sigma \) in terms of the fractal properties of the set of periodic orbits. The fractal dimension is defined as
\[D = \lim_{\epsilon \to 0} \frac{\ln N(\epsilon)}{\ln(1/\epsilon)}, \] (1.7)

where \(N(\epsilon) \) is the number of boxes of size \(\epsilon \) needed to cover the set. We can relate \(D \) to the entropy by noting that \(\epsilon \propto e^{-\lambda n} \) for orbits of length \(n \), from which it follows that
\[D = \lim_{n \to \infty} \frac{\ln N(\epsilon)}{n\lambda} = \frac{S}{\lambda}. \] (1.8)

Again, this assumes \(\lambda \) is the same across the set or that a suitable average will fare well enough. There is an entire spectrum of weighted entropies and dimensions to characterize the fractal for which similar relationships to (1.8) have been conjectured [2,3]. Using (1.8) in (1.6), we then estimate the cross-section to be
\[\sigma = \pi b_c^2 \frac{e^{-\lambda(1-D)}}{1 - e^{-\lambda(1-D)}}. \] (1.9)

We could have deduced the cross-section directly from the fractal property. The proliferation of periodic orbits form a fractal set which fills an area in the orbital plane. The set, by definition of the fractal dimensionality, therefore has a thickness. That thickness is determined by the fractal dimension. According to the usual determination of the width of a fractal set, the number of fixed points in the direction \(dr \) which can be covered by boxes of size \(\epsilon \) is given by \(N \sim (\epsilon/b)^{-D} \). The length of this set is then \(N\epsilon = b(\epsilon/b)^{1-D} \) with \(\epsilon \sim b e^{-\lambda n} \). Summing and dividing by \(2 \) we again derive the area of eqn. (1.9).

We can conservatively evaluate \(\sigma \) by using the unperturbed values. The dimension of the boundary is zero in the unperturbed, nonchaotic system. To estimate \(\lambda \), we vary eqn. (1.1) around the unstable circular orbit. For a chargeless Schwarzschild black hole of mass \(M \), the last unstable circular orbit lies at \(R = 3M \) with \(b_c = 3\sqrt{3}M \). The perturbed radial motion grows as \(\delta R/R \sim e^{-\phi} \), or in units of \(\phi = 2\pi n \), the exponent is \(\lambda = 2\pi \). We then estimate \(\sigma \sim O(10^{-3})\pi b_c^2 \). For an extremal black hole \((Q = M) \), the last unstable circular orbit occurs at \(R = 2M \) with \(b_c = 4M \). At second order we find \(\delta R/R \simeq e^{-\phi}/\sqrt{2} \). Measuring \(\phi \) in terms of the

![FIG. 2. The color coded fractal basin boundaries for two extremal black holes with \(Q = M = 1 \). The initial location of the photon is painted black if it sticks to the mass at \((0, 1) \), grey if it sticks to \((0, -1) \), and white if it escapes. The initial radial velocity is \(\dot{r} = 0 \) and \(\dot{\phi} > 0 \) is set by eqn. (1.15). The error tolerance was \(\sim 10^{-8} \).](image)
winding number, $\phi \sim 2\pi n$, we read off $\lambda \simeq \sqrt{2}\pi$. For an extremal black hole, the cross-section is larger with $\sigma \sim O(10^{-2})\pi b_c^2$; that is, a hundredth the capture cross-section.

Unlike other more conventional estimates of the width of a stochastic layer, this estimate requires knowledge of only a few simple properties of the system and does not require a complicated examination of the dynamical equations. Unlike other more conventional estimates, there are inherent shortcomings. As with the glory calculations [1], the effect is dominated by the trajectories which wind around the black hole the fewest number of times. These trajectories may not model the fractal set of underlying periodic orbits as well as those which execute many windings and spend the most time chaotically scattering off the set. In other words, the sum in eqn. (1.5) is dominated by the first few n while eqn. (1.4) is a large n limit. Given this caveat, we can see how well the approximation fares in a given dynamical system. To explicitly illustrate, we consider scattering around two extremal black holes. A pair of black holes with equal charge and mass are able to coexist in a static configuration with the electrostatic repulsion caused by their charge just balancing the gravitational attraction of their masses. While the resultant Majumdar-Papapetrou configuration with the electrostatic repulsion caused by their masses. While the resultant Majumdar-Papapetrou system is static, the geodesics around the pair of black holes are known to be chaotic [6,7]. We isolate fractal basin boundaries [7–11] for massless particles as has already been done for massive particles [7].

The Lagrangian for motion in this space can be written in isotropic coordinates as

$$\mathcal{L} = -\frac{1}{2} U^{-2} \dot{i}^2 + \frac{1}{2} U^2 \left(\dot{\phi}^2 + r^2 \dot{\Omega}^2 \right)$$

(1.10)

with $\dot{\Omega}^2 = \sin^2 \theta \dot{\theta}^2 + \dot{\phi}^2$ and an overdot denotes differentiation with respect to an affine parameter. Schwarzschild coordinates are recovered with $R = U r$. The metric components are determined by

$$U = 1 + \frac{M}{r_1} + \frac{M}{r_2} \ ,$$

(1.11)

where r_1 is the coordinate distance from one black hole and r_2 is the coordinate distance from the other. The event horizons occur at $r_1 = 0$ and at $r_2 = 0$. We place a black hole with mass M and charge $Q = M$ at $(r, \theta, \phi) = (M, \pi/2, \pi/2)$ and an identical companion at $(M, \pi/2, -\pi/2)$ so that

$$r_1^2 = r^2 - 2Mr \sin \phi + M^2$$

$$r_2^2 = r^2 + 2Mr \sin \phi + M^2 \ .$$

(1.12)

The geodesic motion is found by evolving the conjugate momenta, $\Pi_t = \partial \mathcal{L} / \partial \dot{t}$, $\Pi_\phi = \partial \mathcal{L} / \partial \dot{\phi}$. Two coordinates are automatically conserved with

$$\Pi_t = \frac{i}{U^2} = E$$

$$\Pi_\phi = r^2 U^2 \dot{\phi} = L_\phi \ .$$

(1.13)

while two are dynamical

$$\Pi_\phi = r^2 U^2 \dot{\phi}$$

$$\Pi_r = U^2 \dot{r}$$

(1.14)

and evolve according to the equations $\dot{\Pi}_t = \partial \mathcal{L} / \partial \dot{t}$, $\dot{\Pi}_r = \partial \mathcal{L} / \partial \dot{r}$. There is an additional constraint equation, equivalent to the conservation of energy obtained by setting $\mathcal{L} = 0$ so that the photons travel along null geodesics:

$$\dot{r}^2 + r^2 \dot{\phi}^2 = E^2 \ .$$

(1.15)

We have assumed that $L_\phi = 0$ and so consider motion in the plane defined by the binary system ($\theta = \pi/2$).

We numerically evolve the geodesic equations, ensuring that the energy is conserved according to eqn. (1.15). In isotropic coordinates, the last unstable circular orbit around an isolated black hole occurs at $r = M$. So, in the black hole pair, we expect to see chaos around $r_1 = M$ and $r_2 = M$, which is precisely what we find as illustrated by the fractal basin boundaries of fig. 2 [7,8]. We look at an initial slice through the plane of the binary system. We submerge the black holes and their surrounding area in a bath of light, a photon at each location in space with $\dot{r} = 0$ initially and $\dot{\phi} > 0$ set by eqn. (1.15). We color code the initial location black if the photon which originated there fell into the hole at $r_1 = 0$, grey if it fell into $r_2 = 0$, and white if it escaped. The result is the mixed, fractal basin boundary as shown in fig. 2. The lower panel focuses in on one region to show the repetition of the fractal structure. The dimension of this boundary is $1 + D \simeq 1.1$.

If we take Δb to be roughly the size of the white strip in the lower panel of fig. 2, we would estimate $\delta r / M \sim 0.02$. Of course, the meaning of this coordinate thickness is ambiguous. Still it is reassuring that it is comparable in magnitude to the value we would have guessed from our 'generic approximation using the unperturbed λ and the measured value of $D \sim 0.1$, which gives $\Delta b / b_c \sim 0.02$, although the extreme agreement is certainly fortuitous. The cross section is again about $\sigma \sim O(10^{-2})\pi b_c^2$.

It is not immediately obvious if the approximation underestimates or overestimates the cross-section. Some elements are underestimated. For instance, there are additional contributions to the defocused light from the inner regions of the binary system which are not included in the estimate of eqn. (1.9). Also, any realistic astrophysical black hole with a companion will only be more chaotic than this crisp example. The metric will not be static and it is likely that the evolution of the spacetime itself will be chaotic. The companion needed to provide the luminous source may well be on an unpredictable trajectory contributing to the probability of defocusing. On the other hand, the calculation was restricted to the orbital plane where the effect would be largest and the relative orientation of the observer may decrease the signal.
The cross-section of the beam is roughly πd^2 relative to the black hole separation as shown in Fig. 3.

We can use the estimate of the cross-section from the Majumdar-Papapetrou spacetime to give rough predictions for the observability of the effect. To a distant observer, a black hole with a pulsar companion will appear to radiate with a luminosity

$$L_{\text{BH}} \simeq L_\star \left(\frac{\sigma}{\theta_{\text{beam}}} \right) \left(\frac{\tau}{\tau_*} \right)$$ \hspace{1cm} (1.16)

where L_\star is the observed luminosity of the star, the binary lies at a distance d from the Earth, and d_\star is the relative star and black hole separation as shown in Fig. 3. The cross-section of the beam is roughly $\pi d_\star^2 \sin^2(\theta_{\text{beam}})$ where θ_{beam} is the half-angle subtended by the pulse. We further assume that the time it takes the beam to sweep over the black hole τ_* is comparable to the characteristic time τ for the captured light to decay off the black hole. We take the companion to be at a distance of $d_* \sim 10^6 M_{\text{BH}}$. Using $\sigma \sim O(10^{-3}) \pi 27 M^2$ and assuming $\theta_{\text{beam}} \sim 5^\circ$ we estimate

$$L_{\text{BH}} > 3.6 \times 10^{-2n+1} L_\star$$ \hspace{1cm} (1.17)

Notice that this is the most pessimistic estimate. The black hole luminosity is suppressed relative to the incident luminosity by $\sigma/\sigma_{\text{beam}}$. Since σ_{beam} is much larger than the scattering cross-section, the returned radiation looks small. However, the incident radiation can accumulate as the pulse returns again and again heating up the companion providing a brighter electromagnetic signal to observe. The details of such a scenario are far from clear but the possibilities are worth investigating.

While we have been promoting chaotic defocusing as a means to view the inner orbits around a black hole, there are other observable consequences of the chaotic flows. For instance gravity-waves are a natural and inevitable source for the perturbations [12,13] and the implications for the direct detection of gravity-waves from the last stages of inspiral in a compact binary will certainly be significant. More immediately observable, the disrupted motions of an accretion disk around black hole candidates could lead to an indirect detection of gravity-waves. Whether in radio waves or gravity waves, chaos may in fact make black holes bright.

I am particularly grateful to Neil Cornish for numerous critical discussions. Many of these ideas grew out of our related collaborations. I also thank John Barrow, Pedro Ferreira, John Hibbard, Andrew Jaffe and Mike Eracleous for their interest and valuable comments.
