Quantum Gravity of a Brane-like Universe *

Aharon Davidson and David Karasik

Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
(davidson@bguemail.bgu.ac.il, karasik@bguemail.bgu.ac.il)

Quantum gravity of a brane-like Universe is formulated, and its Einstein limit is approached. Regge-Teitelboim embedding of Arnowitt-Deser-Misner formalism, parameterized by the coordinates $y^A(t, x^i)$, is governed by some $\rho_{AB}(y, y', y'')$. Invoking a novel Lagrange multiplier λ, accompanying the lapse function N and the shift vector N^i, we derive the quadratic Hamiltonian

$$\mathcal{H} = \frac{1}{2}N \left[P_A \left((\rho - \lambda I)^{-1} \right)^{AB} P_B + \lambda \right] + N^i y^A P_A .$$

The inclusion of matter resembles minimal coupling. Setting $P_A = -\frac{i}{\hbar} \frac{\delta}{\delta y^A}$, we derive a bifurcated Wheeler-Dewitt-like equation. Einstein gravity, associated with λ being a certain 4-fold degenerate eigenvalue of ρ_{AB}, is characterized by a vanishing center-of-mass momentum $\int P_A dx = 0$. Troublesome $(\rho - \lambda I)^{-1}$ is replaced then by regular M^{-1}, such that $M^{-1}(\rho - \lambda I)$ defines a projection operator, modifying the Hamiltonian accordingly.

A prevailing theory is always seeded by a remarkably simple idea. Regge-Teitelboim gravity [1], a criticized rival [2] of Einstein gravity, may eventually fall into such a category. After all, who can resist the philosophy that the first principle which governs the evolution of the entire Universe is essentially the one which determines the world-manifold behavior of particles, strings and membranes. Following such a viewpoint, the Universe, to be referred to as a brane-like Universe, is viewed as a 4-dim extended object [3] floating in some (say) 10-dim flat Minkowski background. Some cosmological fingerprints [4] of such a brane-like Universe have already been revealed. Staying on practical grounds, however, Regge-Teitelboim gravity needs not be considered a target by itself. In fact, recalling its original underlying motivation, this theory attempted to establish a viable mathematical trail towards the unification of quantum mechanics with Einstein gravity. This conjecture was driven by several remarkable facts:

- Regge-Teitelboim gravity is, by construction, a continuation of string theory. Unlike in Einstein gravity, the metric tensor $g_{\mu\nu}(x)$ does not serve as a canonical field; this role has been taken over by the embedding vector $y^A(x)$.
- Although Einstein equations are traded for $[(G^{\mu\nu} - T^{\mu\nu})y^M]_{,\nu} = 0$, energy/momentum conservation is still automatic.
- Regge-Teitelboim gravity exhibits a built-in Einstein limit. In turn, every solution of Einstein equations is automatically a solution of Regge-Teitelboim equations.

It has been speculated, relying on the structural similarity to string/membrane theory, that quantum Regge-Teitelboim gravity may be a somewhat easier task to achieve than quantum Einstein gravity. The real target is then the Einstein limit of the theory, which in principle may call for additional first-class geometric constraints. The trouble is, however, that the parent Regge-Teitelboim Hamiltonian has never been derived!

In this short essay, by deriving the quadratic Hamiltonian of a gravitating brane-like Universe, we have overcome the dead-end reached by Regge-Teitelboim, thereby opening the door for the quantum Einstein gravity limit. A key role in our formalism is played by a novel non-dynamical field λ which accompanies the standard Lagrange multipliers, the lapse function N and the shift vector N^i. Starting from the purely gravitational case, a generic Regge-Teitelboim configuration is parameterized by $\mu^2 > 0$, recognized as the analogue of (mass)2. Quite surprisingly, an Einstein configuration turns out to be characterized by $\mu^2 = 0$. In this language, Einstein gravity can be interpreted as the 'massless' limit of Regge-Teitelboin gravity.

Given the background Minkowski metric η_{AB} and some embedding vector $y^A(t, x^i)$, the induced 4-dim line-element can be put in the Arnowitt-Deser-Misner (ADM) form

$$ds^2 = -N^2 dt^2 + h_{ij}(dx^i + N^i dt)(dx^j + N^j dt) ,$$

provided the 3-metric h_{ij}, the shift vector N_i, and the lapse function N are identified with

*Honorable mentioned, Gravity Research Foundation (1998)
Notice the time-like unit vector \(n^A \equiv \frac{1}{N} (\dot{y}^A - N^i \dot{y}^i) \) orthogonal to \(y^A \).

The gravitational Regge-Teitelboim Lagrangian density is the standard one (the canonical fields are not). Up to a surface term, it can be written in the form

\[
\mathcal{L} = -\sqrt{h} \left[NR^{(3)} - \frac{1}{N} (K_{ij}K^{ij} - K^2) + 2NA \right] ,
\]

where \(R^{(3)} \) denotes the 3-dim Ricci scalar constructed by means of the 3-metric \(h_{ij} \), and \(K_{ij} \equiv NK_{ij} \) is the extrinsic curvature \(K_{ij} \) factorized by the lapse function \(N \). \(K_{ij} \) is free of mixed derivative \(\dot{y}^A \)-terms, and since \(\dot{y}^A \)-terms are absent in the first place, the Lagrangian \(\mathcal{L}(y, \dot{y}, \eta, y|ij, \ldots) \) is apparently ripe for the Hamiltonian formalism.

The fact that the 3-metric \(h_{ij} \) is \(\dot{y}^A \)-independent helps us to derive the momenta \(P_A \) conjugate to \(y^A \), that is

\[
P_A \equiv \frac{\delta \mathcal{L}}{\delta \dot{y}^A} = \sqrt{h} \left[R^{(3)} + \frac{1}{N^2} (K_{ij}K^{ij} - K^2) + 2A \right] n^A + \frac{2}{N} (K_{ij} - h^{ij}K)y^A_{\{ij\}} \right] .
\]

To simplify the algebraic structure of \(P^A \), define the \(\dot{y}^A \)-independent tensor

\[
\rho^{AB} \equiv 2\sqrt{h} \left[(h^{na}h_{ab} - h^{ij}h_{ij})y^A_{\{ab\}ij} + \left(R^{(3)} + 2A \right) \eta^{AB} \right] ,
\]

to finally arrive at

\[
P^A = \frac{1}{2} (\eta mn) n^A + \rho^A_B n^B.
\]

One can immediately verify, in analogy with Wheeler-DeWitt theory and string theory, that the Hamiltonian \(\mathcal{H} \) vanishes

\[
\mathcal{H} = \dot{y}^A P_A - \mathcal{L} = N \left(n^A P_A - \frac{1}{N} \mathcal{L} \right) + N^i y^A P_A = 0 ,
\]

and thus can be interpreted as a sum of constraints. Invoking the powerful embedding identity \(\eta_{AB} \dot{y}^A y^B \equiv 0 \), the first constraint \(y^A P_A = 0 \) is easily extracted, reflecting the fact that \(y^A n_A = 0 \). The second constraint is hidden within \(n^A P_A - \frac{1}{N} \mathcal{L} = 0 \). A naive attempt to solve \(n^A (\rho, P) \) and substitute into \(n^2 + 1 = 0 \), falls short. The cubic equation involved rarely admits simple solutions, and even in cases it does, the resulting constraint is anything but a quadratic form in the momenta.

The way out involves the definition of a quantity \(\lambda \), such that

\[
P^A = (\rho - \lambda I)_B n^B .
\]

The price for an independent \(\lambda \) being an additional constraint \(nmn + 2\lambda = 0 \). Assuming that \(\lambda \) is not an eigenvalue of \(\rho_B \), we can solve for \(n^A (\rho, P, \lambda) \) and find

\[
n^A = \left[(\rho - \lambda I)^{-1} \right]_B^A P^B .
\]

The leftover constraints can then be grouped into

\[
P(\rho - \lambda I)^{-2} P + 1 = 0 , \quad P(\rho - \lambda I)^{-1} P + \lambda = 0 .
\]

The first of which, owing to \(\frac{d}{d\lambda} (\rho - \lambda I)^{-1} = (\rho - \lambda I)^{-2} \), can be regarded superfluous provided we elevate \(\lambda \) to the level of a canonical non-dynamical variable. Note in passing that the special case \(\rho_B^A \sim \delta_B^A \) corresponds to
a Nambu-Goto string. Explicitly, \(\rho = 4 \Lambda \sqrt{h} I \) fixes \(\lambda = 2 \Lambda \sqrt{h} \), and gives rise to the familiar Virasoro constraint

\[
P^2 + 4 \Lambda^2 \eta_{AB} y^A y^B = 0.
\]

Altogether, the Regge-Teitelboim Hamiltonian acquires the quadratic form

\[
\mathcal{H} = \frac{1}{2} N \left[P_A \left((\rho - \lambda I)^{-1} \right)^{AB} P_B + \lambda \right] + N^i y^A_i P_A
\]

(11)

with \(N, N^i \), and notably \(\lambda \) serving as Lagrange multipliers. \((\rho - \lambda I)^{-1} \) plays a role analogous to the Wheeler-DeWitt metric on superspace. Here, however, superspace has been traded for the embedding spacetime itself, and \((\rho - \lambda I)^{-1} \) needs not be confused with the metric \(\eta_{AB} \). Once matter is included, the momenta \(P_A \) conjugate to \(y^A \) receives an extra contribution

\[
\Delta P_A = \frac{\delta L_{\text{matter}}}{\delta \dot{y}^A} = \frac{1}{2} N \pi^A \sqrt{h} T_{AB} \delta y^B \eta_{ij} y^j_i + \lambda \eta_{AB} \delta y^B \Delta y^A = \frac{1}{2} N \pi^A \sqrt{h} T_{AB} \delta y^B \eta_{ij} y^j_i + \lambda \eta_{AB} \delta y^B \Delta y^A.
\]

(13)

To be more specific, consider the case where \(\Phi(x) \) stands for a scalar field. The corresponding energy/momentum projections are

\[
T_{nn} = \left(T^{\mu \nu} y^A_{\mu} y^B_{\nu} \right) n_A n_B, \quad T_{ni} = \left(T^{\mu \nu} y^A_{\mu} y^B_{\nu} \right) n_A y^B_i.
\]

(12)

In a more general case, e.g. for a gauge field \(A^i \), the door is open for non-gravitational constraints to enter the Hamiltonian.

At the quantum level, we set \(P_A \equiv -i \delta \delta y^A \). Up to order ambiguities, the wave functional \(\Psi \) of an empty brane-like Universe [5–7] is subject to three Virasoro-type constraints: The momentum constraint equation

\[
y^A_i \frac{\delta \Psi}{\delta y^A_i} = 0,
\]

(15)

is accompanied by the bifurcated Wheeler-Dewitt-like equation

\[
\frac{\delta}{\delta y^A} ((\rho - \lambda I)^{-1})^{AB} \frac{\delta}{\delta y^B} \Psi = \lambda \Psi
\]

\[
\frac{\delta}{\delta y^A} ((\rho - \lambda I)^{-2})^{AB} \frac{\delta}{\delta y^B} \Psi = \Psi
\]

(16)

Upon the inclusion of matter, the ordinary functional derivatives are replaced by covariant functional derivatives (and \(\rho \) gets modified) according to the above prescription.

The Einstein limit of Regge-Teitelboim gravity has two faces:

- First, using the purely geometric relation

\[
2G_{nn} = R^{(3)} + \frac{1}{N^2} (K_{ij} K^{ij} - K^2),
\]

we infer that

\[
\rho_{AB} - \lambda \eta_{AB} = 2 \sqrt{h} \left[(h^{ia} h^{jb} - h^{ij} h^{ab}) y_{A|a} y_{B|b} + (G_{nn} - T_{nn}) \eta_{AB} \right].
\]

(18)

Appealing now to the embedding identity \(\eta_{AB} y^A_{ij} y^B_{ki} = 0 \), one concludes that Einstein equation \(G_{nn} = T_{nn} \) can be satisfied if and only if
\begin{equation}
(\rho_{AB} - \lambda \eta_{AB})y^B_{\alpha} = 0.
\end{equation}

We have learned that the Einstein case is characterized by \(\lambda \) being a 4-fold degenerate eigenvalue of \(\rho_{AB} \). In turn, \((\rho - \lambda I)^{-1} \) does not make sense, and we face the unpleasant consequence that not all components of \(n^A \) are expressible in terms of momenta. This is, however, a curable situation. The residual \(n \)'s are treated as non-dynamical variables, and the troublesome \((\rho - \lambda I)^{-1} \) is replaced by some regular \(M^{-1} \), such that \(M^{-1}(\rho - \lambda I) \) defines the proper projection operator.

\bullet Second, using the dynamical relation

\begin{equation}
P_A = \sqrt{\hbar} \left[(G_{nn} - T_{nn}) n^A - (G_{ni} - T_{ni}) h^{ij} y^A_j + \left(y^A_{ij} n_B y^B_{ji} \delta^{ik} h^{jl} - h^{ij} h^{kl} \right) \right],
\end{equation}

one observes that if Einstein equations \(G_{ni} = T_{ni} \) and \(G_{nn} = T_{nn} \) are both satisfied, \(P^A \) makes a total derivative. On the other hand, reflecting the Poincare invariance of the embedding spacetime, we know that the center-of-mass momentum \(\mu^A \equiv \int d^3x P^A \) is a Noether conserved vector. And since the Arnowitt-Deser-Misner formalism exclusively involves compact 3-spaces, \(\mu^A \) must vanish if Einstein equations are to be respected. Whereas a generic Regge-Teitelboim configuration exhibits a non-vanishing Casimir \(\mu^2 = \eta_{AB} \mu^A \mu^B \), easily recognized as the analogue of \((\text{mass})^2\). Einstein configurations come with \(\mu^2 = 0 \). In this language, Einstein gravity can be interpreted as the 'massless' limit of Regge-Teitelboim gravity.