Massive symmetric tensor field on AdS

Aleksey Polishchuk
Steklov Mathematical Institute, Gubkin str.8, GSP-1, 117966, Moscow, Russia

Abstract

The two-point Green function of a local operator in CFT corresponding to a massive symmetric tensor field on the AdS background is computed in the framework of the AdS/CFT correspondence. The obtained two-point function is shown to coincide with the two-point function of the graviton in the limit when the mass vanishes.

1 Introduction

The AdS/CFT correspondence conjectured in [1] states that in the large N limit and at large 't Hooft coupling $\lambda = g^2_{YM} N$ the classical supergravity/M-theory on the Anti-de Sitter space (AdS) times a compact manifold is dual to a certain $SU(N)$ conformal gauge theory (CFT) defined on the boundary of AdS. One notable example of this correspondence being the duality between $D=4$, $\mathcal{N}=4$ supersymmetric Yang-Mills theory and $D=10$ Type IIB supergravity theory on $AdS_5 \times S^5$. The precise formulation of the conjecture was given in [2], [3] where it was proposed to identify the generating functional for connected Green functions of local operators in CFT with the on-shell value of the supergravity action under the restriction that the supergravity fields satisfy the Dirichlet conditions on the boundary of AdS. Recall that in the standard representation of AdS as an upper-half space $x_0 > 0$, $x^k \in \mathbb{R}$, $k = 1, \ldots d$ with the metric

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = \frac{1}{x_0^d} (dx^0 dx^0 + \eta^{ij} dx^i dx^j),$$

where η^{ij} could be either Minkowski or Euclidean, the boundary includes the plane $x_0 = 0$ as well as the point $x_0 = \infty$. Since the boundary is located infinitely far away from any point in the interior the supergravity action is infrared divergent and must be regularized. As was pointed out in [4] the consistent regularization procedure (with respect to Ward identities) requires one to shift the boundary of AdS to the surface in the interior defined by $x_0 = \varepsilon$. Then the Dirichlet boundary value problem for supergravity fields is properly defined and one can compute the on shell value of the supergravity action as a functional of the boundary fields. With the account of this regularization procedure the standard formulation of the AdS/CFT correspondence assumes the form:

$$\langle O(x_1) \cdots O(x_n) \rangle = \lim_{\varepsilon \to 0} \frac{\delta}{\delta \phi_1(x_1)} \cdots \frac{\delta}{\delta \phi_n(x_n)} S_{\text{on-shell}} (\phi_1(x_1), \ldots, \phi_n(x_n)) \bigg|_{\phi_i(x_i) = \phi_i(x_0 = \varepsilon, x_i)} ,$$

where x_i are some points on the boundary of AdS_{d+1}, $O_i(x_i)$ are gauge invariant composite operators in CFT and $\phi_i(x_i)$ are the corresponding supergravity fields. Here we used the convention in which the coordinates x^μ of AdS_{d+1} are split according to: $x = (x_0, x)$, so that $x \in \mathbb{R}^d$. The action $S_{\text{on-shell}}$ is the sum of the bulk supergravity action and the boundary terms necessary to make the AdS/CFT correspondence complete. The origin of these boundary terms was elucidated in [5] where it was shown that they appear in passing from the Hamiltonian description of the bulk action to the Lagrangian one.

The AdS/CFT correspondence has been tested by computing various two- and three-point functions of local operators in $D = 4$, $\mathcal{N} = 4$ supersymmetric Yang-Mills theory on AdS_5. In particular two-point functions
corresponding to scalars [3] - [8], vectors [3, 4, 9, 10], spinors [10] - [12], the Rarita-Schwinger field [13] - [16], antisymmetric form fields [17] - [20] and the graviton [5], [21], [22] were computed on the AdS background. The only field in the supergravity spectrum, found in [23], that has evaded the attention is the massive symmetric traceless second-rank tensor field defined by the action found in [24] for the case of AdS$_5$ and its natural generalization for AdS$_{d+1}$. In this paper we fill in the gap by computing the remaining two-point Green function.

We note that the Dirichlet boundary value problem for the massive symmetric tensor field is nontrivial due to the fact that the equations of motion for various components are coupled. Furthermore, in computing the two-point Green function we have to stick with the regularization procedure described above in order to obtain the consistent result. At the end of our computation we find that in the limit when the mass vanishes the correlation function reduces to that of the massless symmetric tensor field, i.e. the graviton.

2 Equations of motion

The starting point in the calculation is the action for the symmetric traceless second-rank tensor $\phi_{\mu\nu}$ on AdS$_{d+1}$ which is a generalization of the action derived in [24]:

$$S[\phi_{\mu\nu}] = \int_{AdS} d^{d+1}x \sqrt{|g|} \left(-\frac{1}{4} \nabla_{\lambda} \phi_{\mu\nu} \nabla^{\lambda} \phi^{\mu\nu} + \frac{1}{2} \nabla_{\mu} \phi^{\mu\nu} \nabla^{\lambda} \phi_{\lambda\nu} + \frac{1}{2} \phi_{\mu\nu} \phi^{\mu\nu} - \frac{1}{4} m^2 \phi_{\mu\nu} \phi^{\mu\nu} \right),$$ \hspace{1cm} (2.1)

where g is the determinant of the AdS metric $g_{\mu\nu}$. Let us note that this action already contains the appropriate boundary terms and so can be readily used for computing the two-point Green function. The action (2.1) leads to the following equations of motion

$$\nabla^{\lambda} \nabla_{\lambda} \phi^{\mu\nu} - \nabla_{\mu} \nabla^{\lambda} \phi^{\nu}_{\lambda} - \nabla_{\nu} \nabla^{\lambda} \phi^{\mu}_{\lambda} + \frac{2\delta_{\nu}^{\mu}}{d+1} \nabla^{\lambda} \nabla_{\lambda} \phi^{\nu}_{0} + (2 - m^2) \phi^{\nu}_{0} = 0,$$ \hspace{1cm} (2.2)

where ∇ is the Levi-Civita connection computed on the AdS background. The massive term in (2.2) destroys the standard symmetry: $\delta \phi_{\mu\nu} = \nabla_{\mu} \xi_{\nu} + \nabla_{\nu} \xi_{\mu}$, which is present in the case of the massless symmetric tensor field [5]. As a result of this symmetry breaking one can no longer perform gauge fixing. Since ϕ^{ν}_{0} is traceless, we can eliminate the component ϕ^{0}_{0} from the equations of motion by using the constraint $\phi^{0}_{0} + \phi^{i}_{0} = 0$. Let us introduce a concise notation:

$$\phi = \phi^{i}, \ \phi^{\nu}_{0} = \phi_{0}, \ \varphi = \partial_{i} \phi^{i}.$$

Then starting from (2.2) one can obtain the following system of coupled differential equations

$$\left((d-1) \left(\partial_{0} - \frac{(d-1)}{x_0} \right) \partial_{0} - (d+1) \left(\square - \frac{m^2}{x_0^2} \right) \right) \phi = 2(d-1) \left(\partial_{0} + \frac{1}{x_0} \right) \varphi - 2\partial_{i} \partial_{j} \phi^{i}_{j},$$ \hspace{1cm} (2.3)

$$\left(\partial_{0}^2 - \frac{d-1}{x_0} \partial_{0} - \square - \frac{m^2}{x_0^2} \right) \partial_{0} \partial_{j} \phi^{i}_{j} + 2(d-1) \frac{m^2}{x_0^2} \varphi = \left(\partial_{0}^2 - \frac{d-1}{x_0} \partial_{0} - \square + \frac{m^2}{x_0^2} \right) \phi.$$ \hspace{1cm} (2.4)

Here eq.(2.3) corresponds to $\mu = \nu = 0$ in (2.2) while eq.(2.4) is found by taking $\mu = 0, \nu = i$ and then differentiating with respect to x_i. Further, eq.(2.5) is obtained by applying the differential operator $\partial_{0} \partial_{j}^{i}$ to eq.(2.2) with $\mu = i, \nu = j$. To simplify the notation, we chose the convention in which indices are raised and lowered with the flat metric $\eta^{\mu\nu} = x_0^2 g^{\mu\nu}$ so that, in particular, $\square = \eta^{\mu\nu} \partial_{\mu} \partial_{\nu}$. Also for definiteness we assume that the flat metric $\eta^{\mu\nu}$ is Euclidean. Obviously the obtained results can be easily extended to the case when $\eta^{\mu\nu}$ is Minkowski. By introducing new variables

$$\vartheta = \left(\partial_{0}^2 - \frac{d+3}{x_0} \partial_{0} + \frac{2(d+2)}{x_0^2} + \square - \frac{m^2}{x_0^2} \right) \phi,$$

$$\rho = \varphi - \left(\partial_{0} - \frac{d+1}{x_0} \right) \phi,$$

$$\tau = \partial_{0} \partial_{i} \phi^{i}_{j} - \left(\frac{d-1}{x_0} \partial_{0} - \square - \frac{(d-1)(d+2) + m^2}{x_0^2} \right) \phi$$

2
and imposing the condition that all fields vanish at the boundary \(x_0 \to \infty \) one can recast eqs.(2.3)-(2.5) into the following form

\[
(d+1)\vartheta = -2d\partial_0 \rho, \\
(d-1)\partial_0 - \frac{d^2-3d-2}{x_0} \vartheta = -2d \left(\frac{d+1}{x_0^2} - \Box - \frac{m^2}{x_0^2} \right) \rho, \\
(d-1)\vartheta = -2(d-1) \left(\partial_0 + \frac{1}{x_0} \right) \rho + 2\tau.
\]

From these equations it follows that the most general solution for the Fourier mode of \(\phi \), entering into \(\vartheta \), is given by:

\[
\phi(x_0, \mathbf{k}) = A(\varepsilon, \mathbf{k}) x_0^{\frac{d+2}{2}} K_\Delta(kx_0) + B(\varepsilon, \mathbf{k}) x_0^{\frac{d+2}{2}} I_\Delta(kx_0) - C(\varepsilon, \mathbf{k}) x_0^{\frac{d+2}{2}} \int_{\xi_0}^{\infty} d\xi \xi^{-\nu^2-2} \times \\
\theta(kx_0 - \xi) \left[K_\Delta(kx_0) I_\Delta(\xi) - I_\Delta(kx_0) K_\Delta(\xi) \right] \left[\alpha K_\nu(\eta \xi) - (\eta \xi) K_{\nu+1}(\eta \xi) + \nu K_{\nu}(\eta \xi) \right].
\]

(2.6)

Here \(k = |\mathbf{k}|, C(\varepsilon, \mathbf{k}) \) is the constant of integration corresponding to the Fourier mode of \(\rho \):

\[
\rho(x_0, \mathbf{k}) \sim k C(\varepsilon, \mathbf{k}) x_0^{\frac{d}{2}} K_{\nu}(\eta kx_0),
\]

\(\alpha, \Delta, \nu \) and \(\eta \) are defined as follows

\[
\alpha = \frac{d^2 - 3d - 2}{2(d-1)}, \quad \Delta^2 = \left(\frac{d}{2} \right)^2 + m^2, \quad \eta^2 = \frac{d+1}{d-1}, \quad \nu^2 = 2\alpha^2 + \eta^2(d+1-m^2)
\]

and \(K_\Delta(\nu) \) and \(I_\Delta \) are modified Bessel functions [25]:

\[
K_\Delta(z) = \frac{\pi I_{-\Delta}(z) - I_\Delta(z)}{\sin \Delta \pi}, \quad I_\Delta(z) = \sum_{k=0}^{\infty} \frac{1}{k! \Gamma(\Delta + k + 1)} \left(\frac{z}{2} \right)^{\Delta + 2k}.
\]

Recall that modified Bessel functions satisfy the recurrence relations [25]:

\[
Z_{\Delta+1}(z) - Z_{\Delta-1}(z) = \pm \frac{2\Delta}{z} Z_\Delta(z), \quad Z_{\Delta+1}(z) + Z_{\Delta-1}(z) = \mp 2 \frac{d}{dz} Z_\Delta(z),
\]

(2.7)

where \(Z \) is either \(K \) or \(I \). From (2.6) it follows that \(\phi \) vanishes at \(x_0 \to \infty \) if and only if \(B(\varepsilon, \mathbf{k}) = C(\varepsilon, \mathbf{k}) = 0 \) so that \(\rho \equiv 0 \) and therefore \(\vartheta = 0 \). Taking into account the relation between \(\vartheta, \rho \) and \(\tau \) we find that \(\tau = 0 \).

Consequently,

\[
\phi(x_0, \mathbf{k}) = A(\varepsilon, \mathbf{k}) x_0^{\frac{d+2}{2}} K_\Delta(kx_0),
\]

(2.8)

\[
A = \left(\partial_0 - \frac{d+1}{x_0} \right) \phi,
\]

(2.9)

\[
\partial_i \partial^i \phi_j = \left(\frac{d-1}{x_0} \partial_0 + \Box - \frac{d-1(d+2) + m^2}{x_0^2} \right) \phi.
\]

(2.10)

From (2.8) and (2.10) we can easily deduce the Fourier mode solution for the field \(\pi(x_0, \mathbf{k}) \equiv k_i k^j \phi_j(x_0, \mathbf{k}) \):

\[
\pi(x_0, \mathbf{k}) = A(\varepsilon, \mathbf{k}) x_0^{\frac{d}{2}} \left((d-1)(x_0 k) K_{\Delta+1}(x_0 k) + (\Delta_-(\Delta_+ - 1) + (x_0 k)^2) K_\Delta(x_0 k) \right),
\]

where recurrence formulae (2.7) were used. Here we introduced a concise notation

\[
\Delta_- = \frac{d}{2} - \Delta, \quad \Delta_+ = \frac{d}{2} + \Delta.
\]
Taking the ratio of ϕ and π at $x_0 = \varepsilon$ results in the following relation

$$
\pi(k) = \varepsilon^{-2} \frac{d}{dx} \left((\Delta - \Delta_1) (\Delta + 1) + (\varepsilon k)^2 \right) K_\Delta \phi(k),
$$

where $\phi(k) = \pi(\varepsilon, k)$ and, similarly for other fields. In the limit $\varepsilon \to 0$, $\phi(k) \sim \varepsilon^{-2} \pi(k)$ and therefore if we keep $\phi(k)$ finite as $\varepsilon \to 0$, then $\phi(k)$ will tend to zero. On the other hand, keeping $\phi(k)$ finite leads to the divergence of $\pi(k)$. Consequently, we ought to fix $\phi(k)$ at $x_0 = \varepsilon$. Thus we have:

$$
\phi(x_0, k) = \frac{x_0^{\frac{d}{2}+2}}{\varepsilon x_0} \frac{K_\Delta(x_0 k)}{(d-1)(\varepsilon k)K_{\Delta+1}(\varepsilon k) + (\Delta - \Delta_1) + (\varepsilon k)^2 K_\Delta(\varepsilon k)} \pi(k),
$$

(2.11)

$$
\pi(x_0, k) = \frac{x_0^{\frac{d}{2}+1}}{\varepsilon x_0} \frac{(1 - \Delta) K_\Delta(x_0 k) - \pi(k)}{(d-1)(\varepsilon k)K_{\Delta+1}(\varepsilon k) + (\Delta - \Delta_1) + (\varepsilon k)^2 K_\Delta(\varepsilon k)} \pi(k),
$$

(2.12)

The Fourier mode solution for the field φ is found by substituting (2.11) into (2.9):

$$
\varphi(x_0, k) = \frac{x_0^{\frac{d}{2}+1}}{\varepsilon x_0} \frac{(1 - \Delta) K_\Delta(x_0 k) - \pi(k)}{(d-1)(\varepsilon k)K_{\Delta+1}(\varepsilon k) + (\Delta - \Delta_1) + (\varepsilon k)^2 K_\Delta(\varepsilon k)} \pi(k),
$$

(2.13)

where once again recurrence formulae (2.7) were used.

Next we turn our attention to the field φ_i. Here we need to use the following equations

$$
\left(\frac{\partial}{\partial x_i} - \frac{m^2}{x_0^2} \right) \varphi^i + \frac{2}{x_0} \partial^i \phi = \partial_0 \partial^k \phi^k, \tag{2.14}
$$

$$
\left(\partial_0 - \frac{d-1}{x_0} \right) \left(\frac{m^2}{x_0^2} \varphi^i_0 \right) + \frac{m^2}{x_0^2} \partial_0 \phi^j = \frac{2}{d+1} \partial_0 (\nabla^\mu \nabla^\nu \phi^\mu_0). \tag{2.15}
$$

Let us note that (2.14) corresponds to (ij)-component of (2.2) while (2.15) is obtained by differentiating (ij)-component of (2.2) with respect to x_i and then using (2.14) to express $\partial_0 \partial_i \phi^j$ in terms of φ_j. In both cases use was made of eqs.(2.8)-(2.10). Now we decompose φ_i into the transversal and longitudinal parts:

$$
\varphi^i_+ = \varphi_i - \frac{\partial_i}{\Box} \varphi.
$$

By rewriting (2.14) for the transversal part of φ_i and taking into account (2.4) one gets:

$$
\left(\frac{\partial}{\partial x_i} - \frac{m^2}{x_0^2} \right) \varphi^i_+ = \partial_0 \left(\partial_0 \phi^i_+ - \partial^j \partial^m \phi^j_m \right) . \tag{2.16}
$$

Next, substituting the transversal part of φ_i into (2.15) results in the following simple differential equation

$$
-x_0^2 \left(\partial_0 - \frac{d-1}{x_0} \right) \left(\frac{1}{x_0^2} \varphi^i_0 \right) = \partial_0 \partial_0 \phi^i_+ - \partial^j \partial^m \phi^j_m . \tag{2.17}
$$

By differentiating (2.17) with respect to x_0 and taking into account (2.16) we obtain an homogeneous differential equation for the field φ^i_+:

$$
\left(\partial_0^2 - \frac{d+1}{x_0} \partial_0 + \frac{d+1}{x_0} + \frac{m^2}{x_0^2} \right) \varphi^i_+ = 0 . \tag{2.18}
$$

The Fourier mode solution is given by:

$$
\varphi^i_+(x_0, k) = B_i(\varepsilon, k) x_0^{\frac{d}{2}+1} K_\Delta(x_0 k). \tag{2.19}
$$

\[1\text{Recall that in our convention indices are raised and lowered with the flat metric so that } \nabla_\mu \nabla_\nu \phi^\mu_0 \equiv \delta^\nu_\lambda \nabla_\mu \nabla^\lambda \phi^\mu_0.\]
To find $B_i(\epsilon, \Delta)$ substitute (2.19) into (2.17) to obtain the following formula
\[k_i\phi_i(x_0, \Delta) - \frac{k_i}{k^2} \pi(x_0, \Delta) = iB_i(\epsilon, \Delta) x_0^{\frac{d}{2}} ((x_0 \Delta) K_{\Delta+1}(x_0) + \Delta K_{\Delta}(x_0)). \] (2.20)

Taking the ratio of (2.20) and (2.19) at $x_0 = \epsilon$ we find:
\[k_i \phi_i(\Delta) - \frac{k_i}{k^2} \pi(\Delta) = i \epsilon^{-1} \frac{(\epsilon k) K_{\Delta+1}(\epsilon k) + \Delta K_{\Delta}(\epsilon k)}{K_{\Delta}(\epsilon k) + \Delta K_{\Delta}(\epsilon k)} \phi_i(\Delta). \] (2.21)

Using the same arguments as before one finds that in order to avoid the divergence at $\epsilon \to 0$ the solutions for the field ϕ^\perp_i and $k_i \phi_i - \frac{k_i}{k^2} \pi$ should take the following form
\[\phi^\perp_i(x_0, \Delta) = -i \epsilon^{-\frac{d+1}{2}} \frac{K_{\Delta}(x_0 \Delta)}{(\epsilon k) K_{\Delta+1}(\epsilon k) + \Delta K_{\Delta}(\epsilon k)} \left(k_i \phi_i(\Delta) - \frac{k_i}{k^2} \pi(\Delta)\right), \] (2.22)

Now combining (2.8), (2.9) and (2.17) one finds that
\[\nabla_\nu \phi^\perp_\mu = 0. \] (2.23)

Thus, equation (2.2) reduces to
\[\nabla^\lambda \nabla_\lambda \phi^\perp_\nu + (2 - m^2) \phi^\perp_\nu = 0. \]

In particular, setting $\mu = i$, $\nu = j$ and taking into account (2.23) we arrive at the following equation
\[\left(\partial_0^2 - \frac{d-1}{x_0} \partial_0 + \Box - \frac{m^2}{x_0^2}\right) \phi_j = \frac{2}{x_0} \left(\partial_j \phi^i + \partial^i \phi_j\right) + \frac{2 \delta^i_j}{x_0^2}. \] (2.24)

Let us introduce the transversal traceless part of ϕ_j:
\[\phi^\perp_j = \phi_j - \frac{1}{d-1} \partial^i \partial_i \phi^\perp_j - \frac{1}{d-1} \partial^i \partial_i \phi^\perp_j + \frac{1}{d-1} \partial^i \partial_i \partial_i \phi^\perp_j + \frac{1}{d-1} \left(\partial^i \partial_j \partial_i \partial_i - \delta^i_j\right) \left(\phi - \partial^i \phi^\perp_i\right). \] (2.25)

Rewriting (2.24) for the transversal traceless part yields:
\[\left(\partial_0^2 - \frac{d-1}{x_0} \partial_0 + \Box - \frac{m^2}{x_0^2}\right) \phi^\perp_j = 0. \] (2.26)

The Fourier mode solution of eq.(2.26) is
\[\phi^\perp_j(x_0, \kappa) = \frac{x_0^\frac{d}{2}}{(x_0^2 \kappa)^\frac{d-1}{2}} \left[K_{\Delta}(x_0 \kappa) \phi_j(\kappa) + K_{\Delta+1}(x_0 \kappa) \phi_j(\kappa) + \Delta K_{\Delta}(x_0 \kappa) \phi_j(\kappa) + \Delta K_{\Delta+1}(x_0 \kappa) \phi_j(\kappa)\right]. \] (2.27)

Taking into account (2.25), (2.27), (2.11), (2.12), and (2.22) we obtain:
\[\phi_j(x_0, \kappa) = \frac{x_0^2}{(x_0^2 \kappa)^2} \left[K_{\Delta}(x_0 \kappa) \phi_j(\kappa) + K_{\Delta+1}(x_0 \kappa) \phi_j(\kappa) + \Delta K_{\Delta}(x_0 \kappa) \phi_j(\kappa) + \Delta K_{\Delta+1}(x_0 \kappa) \phi_j(\kappa)\right] - \frac{k_i k_j}{k^2} \pi(\kappa) - \frac{2 k_i k_j}{k^2} \pi(\kappa) + \frac{d-1}{k^2} \left(\partial_i \partial_j \partial_i \partial_j - \delta^i_j\right) \left(K_{\Delta}(x_0 \kappa) + K_{\Delta+1}(x_0 \kappa)\right) - \frac{1}{d-1} \left(\partial^i \partial_j \partial_i \partial_j - \delta^i_j\right) \left(K_{\Delta}(x_0 \kappa) + K_{\Delta+1}(x_0 \kappa)\right) + \frac{d-1}{k^2} \left(\partial_i \partial_j \partial_i \partial_j - \delta^i_j\right) \left(K_{\Delta}(x_0 \kappa) + K_{\Delta+1}(x_0 \kappa)\right) - \frac{1}{d-1} \left(\partial^i \partial_j \partial_i \partial_j - \delta^i_j\right) \left(K_{\Delta}(x_0 \kappa) + K_{\Delta+1}(x_0 \kappa)\right) + \frac{d-1}{k^2} \left(\partial_i \partial_j \partial_i \partial_j - \delta^i_j\right) \left(K_{\Delta}(x_0 \kappa) + K_{\Delta+1}(x_0 \kappa)\right). \] (2.28)
while taking into account (2.21) and (2.13) gives:

\[
\varphi_i(x_0, k) = -(i\varepsilon) \left(\frac{x_0}{\varepsilon} \right)^{1+\Delta-} \left[\frac{K_\Delta(x_0 k)}{K_{\Delta+1}(\varepsilon k) + \Delta_+ K_\Delta(\varepsilon k)} \left(k_i \phi_i^j(k) - \frac{k_i}{k^2} \pi(k) \right) - \frac{(1 - \Delta_+) K_\Delta(x_0 k) - K_{\Delta+1}(x_0 k)}{3K_{\Delta+1}(\varepsilon k) + (\Delta_+ (\Delta_+ - 1) + (\varepsilon k)^2) K_\Delta(\varepsilon k) k^2 \pi(k)} \right],
\]

(2.29)

where we introduced a concise notation: \(K_\Delta(z) = z^\Delta K_\Delta(z) \).

3 Two-point Green function

To compute the Green function in the framework of the \(AdS/CFT \) correspondence we need to evaluate the on-shell value of the action. Taking into account the equations of motion (2.2) and (2.23) one finds that the on-shell value of (2.1) is

\[S_{\text{on-shell}} = \frac{e^{-d+1}}{4} \int_{x_0 = \varepsilon} d^d x \left(\phi_j^i \partial_0 \phi_i^j - 2\phi \partial_0 \phi + 2\phi \phi - 2\phi^k \partial_0 \phi_k^i + \frac{2(d + 1)}{\varepsilon} \left(\phi^2 + \phi^k \phi_k \right) \right). \]

Let us first consider the contribution to \(S_{\text{on-shell}} \) that depends locally on boundary fields, i.e. does not contain the normal derivative \(\partial_0 \). We expect that such terms do not contribute to the non-local part of \(S_{\text{on-shell}} \). So we need to consider the behavior of \(\phi \) and \(\varphi^k \) on the boundary of \(AdS \). To this end we note that according to (2.11) the field \(\phi(k) \) is local since

\[
K_\Delta(\varepsilon k) \left(\frac{1}{d-1}(\varepsilon k) K_{\Delta+1}(\varepsilon k) + (\Delta_+ (\Delta_+ - 1) + (\varepsilon k)^2) K_\Delta(\varepsilon k) \right) = \frac{1}{\Delta_+ (\Delta_+ - 1)} + O(\varepsilon^2 k^2),
\]

while expanding solution (2.29) in \(\varepsilon \) gives:

\[
\varphi_i(k) = -(i\varepsilon) \left[\frac{1}{\Delta_+} + O(\varepsilon^2 k^2) \right] \left(k_i \phi_i^j(k) - \frac{k_i}{k^2} \pi(k) \right) + \frac{1}{\Delta_+} + O(\varepsilon^2 k^2) \right] \left(\frac{k_i}{k^2} \pi(k) \right),
\]

(3.1)

Here we did not include terms of order \(\varepsilon^2 k^2 \) and higher. In deriving (3.1) use was made of the power series expansion of the modified Bessel function [25]:

\[
K_\Delta(z) = 2^{\Delta-1} \Gamma(\Delta) \left(1 + \frac{z^2}{4(1 - \Delta)} + \ldots \right),
\]

(3.2)

where ellipsis indicate terms of order \(z^4 \) and higher which evidently lead to local expressions as well as terms of order \(z^{2\Delta+2} \) which will become negligible in the limit \(\varepsilon \to 0 \). From expression (3.1) it follows that \(\varphi_i(k) \) is a local field. Consequently, the terms in (3.1) that depend only on the value of fields at the boundary do not contribute to the non-local part of \(S_{\text{on-shell}} \) as we have expected.

Next we consider terms with the normal derivative \(\partial_0 \). In evaluating such terms it is useful to employ the following identity

\[
\frac{d}{dx_0} \left(\frac{x_0}{\varepsilon} \right)^{\gamma} \left. \frac{F(x_0 k)}{F(k)} \right|_{x_0 = \varepsilon} = \frac{\gamma}{\varepsilon} + \frac{k}{\varepsilon} \frac{d}{dk} \ln F(k \varepsilon).
\]

(3.3)

Taking into account solution (2.11), identity (3.3) and expansion (3.2) we find that \(\partial_0 \phi(\varepsilon, x) \) is equal to

\[
\partial_0 \phi(\varepsilon, x) = \int d^dk \frac{e^{-\Delta k \varepsilon}}{(2\pi)^d} e^{-\Delta k \varepsilon} \left(2 + \frac{2 + \Delta}{\varepsilon} + O(\varepsilon^2 k^2) \right) \varepsilon^2 \left(\frac{1}{\Delta_+ (\Delta_+ - 1)} + O(\varepsilon^2 k^2) \right) \pi(k).
\]

Clearly \(\partial_0 \phi \) is a local expression and therefore does not contribute to the non-local part of \(S_{\text{on-shell}} \). Consequently, the non-local part is entirely determined by the following expression

\[
\frac{e^{-d+1}}{4} \int_{x_0 = \varepsilon} d^d x \phi_i^j(x) \int d^dk \frac{e^{-\Delta k \varepsilon}}{(2\pi)^d} e^{-\Delta k \varepsilon} \left(\partial_0 \phi_i^j(x_0, k) \right).
\]

(3.4)
Taking into account solution (2.28), identity (3.3) and expansion (3.2) we see that the expression for $\partial_0 \phi_j$ gets three different contributions: the first contribution comes from differentiating the ratio $\frac{\Delta}{\varepsilon}$ raised to the power $\Delta - \varepsilon k^2)/2$ terms in the power expansion of the logarithmic derivative of various functions in (2.28) and the third contribution comes from $O(\varepsilon^{2\Delta-1} k^{2\Delta})$ terms in the same expansion. From (2.28) we can easily read off the first contribution which is equal to

$$\frac{\Delta}{\varepsilon} \phi_j(k) + \frac{\Delta}{\varepsilon} \left(\frac{k^4 k_j^2}{k^2} \phi_j(k) + \frac{k_j k_i^4}{k^2} \phi_i(k) - 2 \frac{k_j k_i^4}{k^4} \pi(k) \right) + \frac{\Delta}{\varepsilon} \frac{k_j k_i^4}{k^4} \pi(k) -$$

$$- 1 \left(\frac{k_j^4}{k^2} - \delta_j^i \right) \left(\frac{2 + \Delta}{\varepsilon k^2} \frac{1}{\Delta + (\Delta + 1)} - \frac{\Delta}{\varepsilon} \right) \pi(k)^2 =$$

$$= - 2 \frac{k_j k_i^4}{k^2} \frac{\varepsilon}{\Delta + (\Delta + 1)} \pi(k) + \text{local}, \quad (3.5)$$

where we took into account the expansion of ϕ_j into the transversal and longitudinal parts given by (2.25). Next, $O(\varepsilon^2 k^2)$ terms from the power series expansion of the logarithmic derivative give:

$$\frac{\varepsilon k^2}{2} \left[1 - \frac{\Delta}{\varepsilon} \phi_j(k) + \frac{\Delta}{\varepsilon} \left(\frac{1}{\Delta + (\Delta + 1)} \left(\frac{k^4 k_j^2}{k^2} \phi_j(k) + \frac{k_j k_i^4}{k^2} \phi_i(k) - 2 \frac{k_j k_i^4}{k^4} \pi(k) \right) +$$

$$+ \frac{1}{\Delta + (\Delta + 1)} \left(\frac{k^4 k_j^2}{k^2} - \delta_j^i \right) \left(\frac{1}{\Delta + (\Delta + 1)} \right) \pi(k)^2 \right] = \frac{\varepsilon k^2}{2} \left[\phi_j(k) - \frac{2 \Delta}{\Delta + (\Delta + 1)} \frac{k^4 k_j^2}{k^4} \phi_j(k) +$$

$$+ \frac{k_j k_i^4}{k^2} \phi_i(k) - 4 \Delta (1 - \Delta) \frac{k^4 k_j^2}{k^4} \pi(k) \right], \quad \kappa = - \frac{\Delta}{2 \Delta + (\Delta + 1)} \Gamma(1 - \Delta) \Gamma(1 + \Delta) \quad (3.6)$$

In the process of deriving (3.7) we dropped all terms containing δ_j^i since such terms are negligible in the limit $\varepsilon \to 0$. To understand why this is so, note that when δ_j^i is contracted with $\phi_j(x)$ from (3.4) it gives the trace $\phi(x)$ of $\phi_j(x)$ which according to (2.11) is order $O(\varepsilon^2)$ at $x_0 = \varepsilon$.

Now putting together (3.4) and (3.7) we arrive at the following formula for $S_{on-shell}$

$$S_{on-shell}[\phi^i_j] = \frac{\varepsilon^{2\Delta - d}}{4} \int \int d^4x \int d^4y \Phi_0'(x) \Phi_0'(y) \int d^4k \frac{1}{(2\pi)^4} e^{-i(k \cdot x - y \cdot y)} k^{2\Delta} \left[\frac{1}{2} \delta^i_j \delta^s_r + \frac{1}{2} \delta^i_j \delta^s_r \right]$$

$$- \frac{\Delta}{\Delta + (\Delta + 1)} \left(k^4 k^4 \delta^i_j + \frac{k_j k_i^4}{k^4} k^4 \pi(k) \right) + \frac{4\Delta (1 - \Delta)}{\Delta + (\Delta + 1)} \frac{k^4 k_j k_j k^4}{k^4} +$$

$$+ \frac{2\Delta}{\Delta + (\Delta + 1)} \left(\frac{(\Delta + s)^2}{2d\Delta} \delta^i_j \delta^s_r + \frac{k_j k_i^4}{k^2} \delta^i_j + \frac{k_j k_i^4}{k^2} \delta^i_j \right) \right], \quad (3.7)$$

where we introduced the traceless part of ϕ^i_j:

$$\Phi^i_j(x) = \phi^i_j(x) - \frac{\delta^i_j}{d} \phi(x).$$
In order to complete the calculation of the two-point Green function we need to evaluate the integral over \(k \) in (3.7). To this end, we employ the standard formula for the Fourier transformation of generalized functions [26]:

\[
\int \frac{d^d k}{(2\pi)^d} e^{-i k \cdot x} k^i k^{i_2} \cdots k^{i_n} = 2^{d-n} \Gamma \left(\frac{d + \delta - n}{2} \right) \left(i \right)^n \partial_{i_1} \partial_{i_2} \cdots \partial_{i_n} \frac{1}{|x|^{d + \delta - n}}.
\]

(3.8)

With the help of (3.8) we find that the non-local part of the on shell value of the action is equal to:

\[
S_{\text{on-shell}}[\phi^i_j] = \frac{C_{d,\Delta}}{2} \int d^d x d^d y \frac{\Phi^i_j(x) \Phi^i_j(y)}{|x - y|^{2\Delta + d}} \left[\frac{1}{2} J^i_j(x - y) J^i_j(x - y) + \frac{1}{2} J^i_j(x - y) J^i_j(x - y) - \frac{1}{d} \delta^i_j \delta^r_s \right],
\]

where we introduced

\[
J^i_j(x) = \delta^i_j - 2 \frac{x^i x^j}{x^2} \quad \text{and} \quad C_{d,\Delta} = \frac{\Delta(\Delta + 1) \Gamma(\Delta + 1) \epsilon^{2\Delta - d}}{\pi^{\frac{d}{2}}(\Delta + 1) \Gamma(\Delta)}.
\]

(3.9)

From this we can easily deduce the two-point function of local operators in the boundary CFT corresponding to the massive symmetric traceless rank two tensor field \(\Phi^i_j \):

\[
< O^i_j(x) O^r_s(y) > = \frac{C_{d,\Delta}}{|x - y|^{2\Delta + d}} \left[\frac{1}{2} J^i_j(x - y) J^i_j(x - y) + \frac{1}{2} J^i_j(x - y) J^i_j(x - y) - \frac{1}{d} \delta^i_j \delta^r_s \right].
\]

(3.10)

Note that in the limit \(m^2 \to 0 \) or, equivalently, \(\Delta \to \frac{d}{2} \), expression (3.10) correctly reproduces the two-point function corresponding to the massless symmetric tensor field (graviton) [5], [21], [22].

ACKNOWLEDGEMENT

The author would like to thank S.Frolov and G.Arutyunov for valuable discussions and A.Slavnov for the support during the preparation of the manuscript.

References

