Neutron stars inspiralling into a stellar envelope can accrete at rates vastly exceeding the Eddington limit if the flow develops pressures high enough to allow neutrinos to radiate the released gravitational energy. It has been suggested that this hypercritical mode of accretion leads inevitably to the formation of stellar mass black holes during common envelope evolution. We study the hydrodynamics of this flow at large radii ($R \gg R_{\text{ns}}$), and show that for low Mach number flows, in two dimensions, modest density gradients in the stellar envelope suffice to produce a hot, advection dominated accretion disk around the accreting object. The formation of outflows from such a disk is highly probable, and we discuss the impact of the resultant mass loss and feedback of energy into the envelope for the survival of the neutron star. Unless outflows are weaker than those inferred for well observed accreting systems, we argue that in most cases insufficient accretion occurs to force collapse to a black hole before the envelope has been ejected. This conclusions is of interest for black hole formation in general, for some models of gamma ray bursts, and for predictions of the event rate in future LIGO observations.