Coulomb-oscillator duality in spaces of constant curvature

E. G. Kalnins
Department of Mathematics and Statistics,
University of Waikato,
Hamilton, New Zealand.

W. Miller, Jr.
School of Mathematics, University of Minnesota,
Minneapolis, Minnesota, 55455, U.S.A.

and G. S. Pogosyan*
Laboratory of Theoretical Physics,
Joint Institute for Nuclear Research,
Dubna, Moscow Region 141980, Russia

June 17, 1999

PACS: 02.20.+b, 03.65.Fd

Abstract

In this paper we construct generalizations to spheres of the well known Levi-Civita, Kustaanheimo-Steifel and Hurwitz regularizing transformations in Euclidean spaces of dimensions 2, 3 and 5. The corresponding classical and quantum mechanical analogues of the Kepler-Coulomb problem on these spheres are discussed.

*Work supported in part by the Russian Foundation for Basic Research under grant 98-01-00330
1 Introduction

It is well known that the problem of a body moving under the influence of a central force field with potential \(V(r) = -\mu/r \) has a singularity at the origin. We refer to this as the Kepler problem. This problem is usually posed in 3 dimensions, but since the motion is always constrained to a plane perpendicular to the constant angular momentum vector we can reduce it to 2 dimensions with Newtonian equations of motion and energy integral

\[
\frac{d^2}{dt^2} r = -\frac{\mu}{r^3} r, \quad \frac{1}{2} \left(\frac{dr}{dt} \right)^2 - \frac{\mu}{r} + \frac{1}{2r^2} = h, \tag{1}
\]

where \(r^2 = r \cdot r, \) \(r^{2\Phi} = c \) and \(r = (x, y) = (r \cos \theta, r \sin \theta) \). As is well known \([1, 2]\), in two dimensions the Levi-Civita transformation effectively removes the singularity and rewrites this problem in terms of the classical harmonic oscillator. In this process the original problem has been regularized. To achieve the regularization, instead of \(t \) we use the variable \(s \) defined by

\[
s = \int \frac{dt}{r}, \quad \frac{d}{dt} = \frac{1}{r} \frac{d}{ds}. \tag{2}
\]

With \(x' = \frac{dx}{ds} \) etc., the original equations (1) are

\[
\frac{r''}{r} - \frac{r'}{r} + \frac{\mu}{r} r = 0, \quad \frac{1}{2r^2} r' \cdot r' - \frac{\mu}{r} = h. \tag{3}
\]

Instead of using the variables \((x, y)\) it is convenient to make the transformation \([1]\)

\[
\begin{vmatrix}
 x \\
 y
\end{vmatrix} = \begin{vmatrix}
 u_1 & -u_2 \\
 u_2 & u_1
\end{vmatrix} \quad \text{or} \quad r = L(u)u. \tag{4}
\]

From the explicit form of these relations it follows that \(r' = 2L(u)u' \). The equations of motion are equivalent to

\[
u'' + \frac{\mu}{2} - \frac{u' \cdot u'}{u \cdot u} u = u, \quad \frac{\mu}{2} = u' \cdot u' - \frac{h}{2} u \cdot u. \tag{5}
\]

Consequently we have the regularized equation of motion

\[
u'' - \frac{h}{2} u = 0.
\]

This is essentially the equation for the harmonic oscillator if \(h < 0 \). The solution \(u_1 = \alpha \cos(\omega s), \) \(u_2 = \beta \sin(\omega s), \) \(\omega^2 = -h/2 \) is equivalent to elliptical motion.

The relationship between the harmonic oscillator and the corresponding Kepler problem can also be easily seen from the point of view of Hamilton-Jacobi theory. Indeed the Hamiltonian can be written in the two equivalent forms

\[
H = \frac{1}{2} (p_x^2 + p_y^2) + \frac{\mu}{\sqrt{x^2 + y^2}} = \frac{1}{8(u_1^2 + u_2^2)}[p_{u_1}^2 + p_{u_2}^2 + 8\mu]. \tag{6}
\]

If we now write down the corresponding Hamilton-Jacobi equation via the substitutions

\[
p_{u_1} \rightarrow \partial_{u_1} S = S_{u_1}, \quad p_{u_2} \rightarrow \partial_{u_2} S = S_{u_2}
\]
we obtain
\[S_{u_1}^2 + S_{u_2}^2 + 8\mu - 8E(u_1^2 + u_2^2) = 0. \] (7)
This is just the Hamilton-Jacobi equation for a mechanical system with Hamiltonian
\[H' = p_{u_1}^2 + p_{u_2}^2 - 8E(u_1^2 + u_2^2) \]
and energy \(-8\mu\). (This is the pseudo-Coulomb problem, see [4, 5]. Reference [4] also obtains (7) as an application of Stäckel transform theory).

This transformation also achieves a regularization of the corresponding quantum mechanical problem, which we call the quantum Coulomb problem. Indeed, the Schrödinger equation in the presence of the potential \(V(r) = -\mu/r \) in two dimensions has the form
\[-\frac{1}{2}(\partial^2_x + \partial^2_y)\Psi - \frac{\mu}{\sqrt{x^2 + y^2}}\Psi = E\Psi. \] (8)
In the coordinates \((u_1, u_2)\), (8) becomes [3]
\[(\partial^2_{u_1} + \partial^2_{u_2})\Phi + \{8\mu + 8E(u_1^2 + u_2^2)\}\Phi = 0. \] (9)
Here, (9) has all the appearances of the Schrödinger equation in a oscillator potential \(V(u_1, u_2) = -4E(u_1^2 + u_2^2) \) and energy \(E = 4\mu \). Note that for scattering state \(E > 0 \) we have the repulsive oscillator potential and for \(E = 0 \) the free motion. For \(E < 0 \) we get the attractive oscillator potential and the corresponding bound state energy spectrum can be easily computed from this reformulation of the Coulomb problem, although the weight function for the inner product is no longer the same [2, 3, 4, 6]. (Indeed, the Virial Theorem states that for the Coulomb problem the change in weight function does not alter the bound state spectrum, [6]). The wave functions have the form \(\Phi = \varphi_1(u_1)\varphi_2(u_2) \) where the functions \(\varphi_\lambda \) satisfy
\[(\partial^2_{u_\lambda} + \kappa_\lambda + 8Eu_\lambda^2)\varphi_\lambda = 0, \quad \lambda = 1, 2, \quad \kappa_1 + \kappa_2 = 8\mu. \]
The bound state eigenvalues are quantised according to
\[\kappa_\lambda = 2\sqrt{-2E(2n_\lambda + 1)}, \quad \lambda = 1, 2, \] (10)
where \(n_1, n_2 \) are integers. Taking into account [7], \(\Phi(-u_1, -u_2) = (-1)^{n_1+n_2}\Phi(u_1, u_2) \) and using that \(\Psi(x) \) is even in variable \(x \): \(\Psi[x(u)] = \Psi[x(-u)] \), [because two points \((-u_1, -u_2)\) and \((u_1, u_2)\) in \(u \)-space map to the same point in the plane \((x, y)\)] we find from (10) the energy spectrum of the two dimensional Coulomb system [8, 9]
\[E_N = -\frac{\mu^2}{2(N + \frac{1}{2})^2}, \quad N = \frac{n_1 + n_2}{2} = 0, 1, 2, \ldots. \]
It is well known that the regularizing transformations (4) that we have discussed for the Kepler and Coulomb problems in two dimensional Euclidean spaces are also possible in the case of three (Kustaanheimo-Stiefel transformation for mapping \(\mathbb{R}^4 \to \mathbb{R}^3 \)) [2, 10, 11, 12] and five (Hurwitz transformation for mapping \(\mathbb{R}^8 \to \mathbb{R}^5 \)) [13, 14, 15, 16, 17, 18, 19] dimensions. The only difference in these cases is that additional constraints are
required. These transformations have been employed to solve many problems in classical and quantum mechanics (see [14] and references therein).

As in flat space, the study of the Kepler-Coulomb system in constant curvature spaces has a long history. It was first introduced in quantum mechanics by Schrödinger [20], who used the factorization method to solve the Schrödinger equation and to find the energy spectrum for the harmonic potential as an analog of the Kepler-Coulomb potential on the three-dimensional sphere. Later, two- and three-dimensional Coulomb and oscillator systems were investigated by many authors in [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31].

However, in spite of these achievements the question of finding all transformations that both generalize the Levi-Civita, Kustaanheimo-Steifel and Hurwitz transformations for spaces with constant curvature and preserve the Kepler-Coulomb and oscillator duality has been open till now. The answer to this question is a main aim of our paper.

The paper is organized as follows. In §2 we present the transformations that generalize the flat space Levi-Civita transformation and correspond to the map $S^2_{\mathbb{C}} \rightarrow S^2_{\mathbb{R}}$ from complex into real two-dimensional spheres. We show also that this transformation establishes the correspondence between Kepler-Coulomb and oscillator systems in classical and quantum mechanics. In §3, in analogy with §2, we construct the Kustaanheimo-Steifel and Hurwitz transformation and show Kepler-Coulomb and oscillator duality for mappings $S^4_{\mathbb{C}} \rightarrow S^3_{\mathbb{R}}$ and $S^8_{\mathbb{C}} \rightarrow S^5_{\mathbb{R}}$, respectively. §4 is devoted to a summary and discussion of our findings. In the Appendix we give some formulas determining the connections between Laplace-Beltrami operators and the volume elements in different spaces.

2 The transformation on the 2-sphere

The potential, which is the analogue of the Coulomb potential in quantum mechanics and the gravitational potential for the Kepler problem, is taken to be [20, 21]

$$V = -\frac{\mu}{R} \frac{s_3}{\sqrt{s_1^2 + s_2^2}}, \tag{11}$$

where (s_1, s_2, s_3) are the Cartesian coordinates in the ambient Euclidean space and R is the radius of the sphere

$$s \cdot s \equiv s_1^2 + s_2^2 + s_3^2 = R^2.$$

(Note that $V = -\frac{\mu}{R} \cot \alpha$ where α is the arc length distance from s to the north pole of the sphere. Furthermore, the leading term in the Laurent series expansion in α about the north pole is $-\frac{\mu}{R \alpha}$).

This problem is easily transformed into a much simpler one via the transform

$$s_1 = i\sqrt{u_1^2 + u_2^2 + u_3^2} \cdot \frac{u_1^2 - u_2^2}{2u_3},$$

$$s_2 = i\sqrt{u_1^2 + u_2^2 + u_3^2} \cdot \frac{u_1 u_2}{u_3},$$

$$s_3 = \sqrt{u_1^2 + u_2^2 + u_3^2} \cdot \left(u_3 + \frac{u_1^2 + u_2^2}{2u_3} \right), \tag{12}$$
or in matrix form

\[
\begin{pmatrix}
 s_1 \\
 s_2 \\
 s_3
\end{pmatrix} = \begin{pmatrix}
 \sqrt{u_1^2 + u_2^2 + u_3^2} & iu_1 & -iu_2 & 0 \\
 iu_2 & iu_1 & 0 & u_3 \\
 u_1 & u_2 & 2u_3
\end{pmatrix} \begin{pmatrix}
 u_1 \\
 u_2 \\
 u_3
\end{pmatrix}.
\]

(13)

The advantage of this transform is the Euler identity [3]

\[
s_1^2 + s_2^2 + s_3^2 = (u_1^2 + u_2^2 + u_3^2)^2,
\]

(14)

from which we see that the point \(u = (u_1, u_2, u_3) \) lies on the complex “sphere” \(S_{2C} \):

\[
u_1^2 + u_2^2 + u_3^2 = D^2
\]

with the real radius \(D \) if \(s = (s_1, s_2, s_3) \) lies on the real sphere \(S_2 \) with radius \(R \), and \(R = D^2 \).

In the general case the two-dimensional complex sphere \(S_{2C} \) may be parametrized by four real variables (the constraint \(u_1^2 + u_2^2 + u_3^2 = D^2 \) includes two equations for real and imaginary parts). The requirement of reality of the Cartesian variables \(s_i \) leads to two more equations and the formula (12) corresponds to the mapping from a two-dimensional submanifold (or surface) in the complex sphere \(S_{2C} \) (four dimensional real space) to the sphere \(S_2 \). To verify we introduce ordinary spherical coordinates on \(S_2 \):

\[
s_1 = R \sin \chi \cos \varphi, \quad s_2 = R \sin \chi \sin \varphi, \quad s_3 = R \cos \chi.
\]

(15)

From transformation (12) we have

\[
s_3 = \frac{R}{2} \left(\frac{u_3}{D} + \frac{D}{u_3} \right).
\]

(16)

Putting \(s_3 = R \cos \chi \) in formula (16) we get \(u_3 = De^{i\chi} \) and then the corresponding points on the complex sphere \(S_{2C} \) are

\[
u_1 = D \sqrt{1 - e^{2i\chi} \cos \frac{\varphi}{2}}, \quad u_2 = D \sqrt{1 - e^{2i\chi} \sin \frac{\varphi}{2}}, \quad u_3 = De^{i\chi}
\]

(17)

where \(0 \leq \chi \leq \pi, \ 0 \leq \varphi \leq 4\pi \). Note that the transformation (12) is not one to one; two points \((-u_1, -u_2, u_3)\) and \((u_1, u_2, u_3)\) on the sphere in \(u \)-space correspond to one point on the sphere in \(s \)-space. Thus, when the variables \((u_1, u_2, u_3)\) cover the sphere in \(u \)-space, the variables \(s_i \) cover the sphere in \(s \)-space twice.

Let us now introduce nonhomogeneous coordinates according to [32]

\[
\bar{s}_i = R \frac{s_i}{s_3}, \quad \bar{u}_i = D \frac{u_i}{u_3}, \quad D^2 = R, \quad i = 1, 2.
\]

(18)

Then formula (12) transforms to

\[
\bar{s}_1 = \frac{i(\bar{u}_1^2 - \bar{u}_2^2)}{2(1 + \frac{\bar{u}_1^2 + \bar{u}_2^2}{2D^2})}, \quad \bar{s}_2 = \frac{i\bar{u}_1 \cdot \bar{u}_2}{(1 + \frac{\bar{u}_1^2 + \bar{u}_2^2}{2D^2})}.
\]

(19)

In the contraction limit \(D \rightarrow \infty \) we obtain

\[
\bar{s}_1 = \frac{i\bar{u}_1^2 - \bar{u}_2^2}{2}, \quad \bar{s}_2 = i\bar{u}_1 \cdot \bar{u}_2.
\]

(20)
which coincides with the flat space Levi-Civita transformation (4) up to the additional mapping \(\bar{u}_i \rightarrow e^{-i\frac{\pi}{4}}\sqrt{2}\bar{u}_i \).

The relationship between the infinitesimal distances is
\[
ds \cdot ds = (u_1^2 + u_2^2 + u_3^2) \left[(u \cdot du)^2 - \frac{u_1^2 + u_2^2}{u_3^2} du \cdot du \right] + 3(u \cdot du)^2. \tag{21}\]

Thus, when restricted to the sphere, the infinitesimal distances are related by
\[
\frac{ds \cdot ds}{R} = -\left(\frac{u_1^2 + u_2^2}{u_3^2} \right) du \cdot du, \tag{22}\]
and we see that as in flat space the transformation (12) is conformal.

2.1 Classical motion

Just as in the case of Euclidean space, the classical equations of motion under the influence of a Coulomb potential can be simplified. The classical equations are
\[
\ddot{s} = -(s \cdot \dot{s})s - \nabla V, \tag{23}\]

where the first term on the right hand side is the centripetal force term, corresponding to the constraint of the motion to the sphere, and the potential satisfies
\[
s \cdot \nabla V = 0. \tag{24}\]

Here, \(s = \frac{ds}{dt} \). (In studying (23) and (24) we initially regard the coordinates \(s \) as unconstrained and then restrict our attention to solutions on the sphere). In the case of potential (11) these equations become
\[
\frac{d^2}{dt^2}s_j = -s_j(\dot{s} \cdot \dot{s}) - \frac{\mu}{R^2} s_j s_3^2, \quad j = 1, 2\]
\[
\frac{d^2}{dt^2}s_3 = -s_3(\dot{s} \cdot \dot{s}) + \frac{\mu}{R^2} \frac{1}{(s_1^2 + s_2^2)^{\frac{3}{2}}},
\]

subject to the constraints
\[
s \cdot s = R^2 \tag{25}\]

and its differential consequences
\[s \cdot \dot{s} = 0, \quad s \cdot \ddot{s} + \dot{s} \cdot \dot{s} = 0.\]

From the equations of motion we immediately deduce the energy integral
\[
\frac{1}{2} \dot{s} \cdot \dot{s} + V = E. \tag{26}\]

We choose a new variable \(\tau \) such that
\[
\frac{d\tau}{dt} = \frac{1}{D^2} \frac{u_3^2}{u_1^2 + u_2^2}.\]
In terms of the variables \(\tau \) and \(u_i \), the equations of motion can now be written in the form

\[
(u'_1)^2 + (u'_2)^2 + (u'_3)^2 - 2D^2(E + \frac{i\mu}{D^2}) + \frac{2D^4}{u_3^2}(E - \frac{i\mu}{D^2}) = 0 \quad (27)
\]

\[
u_1'' + 2(E + \frac{i\mu}{D^2})u_1 = 0, \quad u_2'' + 2(E + \frac{i\mu}{D^2})u_2 = 0 \quad (28)
\]

\[
u_3'' + 2(E + \frac{i\mu}{D^2})u_3 - \frac{2D^4}{u_3^2}(E - \frac{i\mu}{D^2}) = 0, \quad (29)
\]

subject to the constraint \(u \cdot u = D^2 \) and its differential consequences \(u \cdot u' = 0, \ u \cdot u'' + u' \cdot u' = 0 \), where \(u'_i = \frac{du_i}{d\tau} \). These equations are equivalent to the equations of motion we would obtain by choosing the Hamiltonian

\[
H = \frac{1}{2}(p_{u_1}^2 + p_{u_2}^2 + p_{u_3}^2) - (E + \frac{i\mu}{D^2})(u_1^2 + u_2^2 + u_3^2) + \frac{D^4}{u_3^2}(E - \frac{i\mu}{D^2}), \quad (30)
\]

regarding the variables \(u_i \) as independent and using the variable \(\tau \) as time. In fact, to solve the classical mechanical problem from the point of view of the Hamilton-Jacobi equation, we use the relation

\[
\frac{1}{2}(p_{s_1}^2 + p_{s_2}^2 + p_{s_3}^2) - \frac{\mu}{R} \frac{s_3}{\sqrt{s_1^2 + s_2^2}} - E \equiv - \frac{u_3^2}{u_1^2 + u_2^2} \left[\frac{1}{2D^2}(p_{u_1}^2 + p_{u_2}^2 + p_{u_3}^2) - (i \frac{\mu}{D^2} + E) + \frac{D^4}{u_3^2}(E - \frac{i\mu}{D^2}) \right] = 0, \quad (31)
\]

together with the substitutions \(p_{u_i} = \frac{\partial S}{\partial u_i} \) and \(p_{s_j} = \frac{\partial S}{\partial s_j} \) to obtain the Hamilton-Jacobi equations

\[
\left(\frac{\partial S}{\partial s_1} \right)^2 + \left(\frac{\partial S}{\partial s_2} \right)^2 + \left(\frac{\partial S}{\partial s_3} \right)^2 - 2\frac{\mu}{R} \frac{s_3}{\sqrt{s_1^2 + s_2^2}} - 2E = 0, \quad (32)
\]

\[
\left(\frac{\partial S}{\partial u_1} \right)^2 + \left(\frac{\partial S}{\partial u_2} \right)^2 + \left(\frac{\partial S}{\partial u_3} \right)^2 - 2D^2(i \frac{\mu}{D^2} + E) + \frac{2D^4}{u_3^2}(E - \frac{i\mu}{D^2}) = 0. \quad (33)
\]

This last equation can be solved by separation of variables in the spherical coordinates on the complex sphere \(S_{2C} \) (17).

2.2 Quantum motion

If we write the Schrödinger equation on the sphere for the Coulomb potential (11)

\[
\frac{1}{2}\Delta_s \Psi + \left(E + \frac{\mu}{R} \frac{s_3}{\sqrt{s_1^2 + s_2^2}} \right) \Psi = 0, \quad (34)
\]

and use the transformation (12), we obtain [see formula (145)]

\[
\frac{1}{2}\Delta_u \psi + \left(E - \frac{\omega^2 D^2 u_1^2 + u_2^2}{2 u_3^2} \right) \psi = 0 \quad (35)
\]
where

\[E = 2i\mu, \quad \omega^2 = 2\left(E - \frac{i\mu}{D^2}\right). \] (36)

Thus we see that the Coulomb problem on the real sphere \(S_2 \) is equivalent to the corresponding quantum mechanical problem on the complex sphere \(S_{2C} \) with the oscillator potential (Higgs oscillator \([21, 26, 27]\)) and energy \(2i\mu \), but with an altered inner product (see the Appendix).

Let us consider the Schrödinger equation (35). Using the complex spherical coordinates (17) we obtain

\[
\frac{1}{\sin \chi} \frac{\partial}{\partial \chi} \sin \chi \frac{\partial \psi}{\partial \chi} + \frac{1}{\sin^2 \chi} \frac{\partial \psi}{\partial \varphi} + \left\{ \omega^2 D^4 - iE D^2 \frac{e^{i\chi}}{\sin \chi} \right\} \psi = 0.
\] (37)

To solve this equation we first complexify the Coulomb coupling constant \(\mu \) by setting \(k = i\mu \) in the formulas for \(E \) and \(\omega \)

\[E = 2k, \quad \omega^2 = 2\left(E - \frac{k}{D^2}\right). \] (38)

Further, we analytically continue the variable \(\chi \) into the complex domain \(G: 0 \leq \text{Re} \chi \leq \pi \) and \(0 \leq \text{Im} \chi < \infty \), (see Fig.1) and pass from the variable \(\chi \) to \(\vartheta \), defined by

\[e^{i\chi} = \cos \vartheta. \] (39)

Figure 1: Domain \(G = \{ 0 \leq \text{Re} \chi \leq \pi; 0 \leq \text{Im} \chi < \infty \} \) on the complex plane of \(\chi \).
For real \(\theta \) this substitution is possible if \(\text{Re} \chi = 0 \) or \(\text{Re} \chi = \pi \) and \(\text{Im} \chi \in (0, \infty) \), which corresponds to the motion on the upper \((0 \leq \vartheta \leq \frac{\pi}{2})\) or lower \((\frac{\pi}{2} \leq \vartheta \leq \pi)\) hemispheres of the real sphere. In any case conditions (39) and (38) translate the oscillator problem from the complex to the real sphere with spherical coordinates \((\vartheta, \varphi/2)\). In these coordinates we can rewrite (37) in the form

\[
\frac{1}{\sin \vartheta} \frac{\partial}{\partial \vartheta} \sin \vartheta \frac{\partial \psi}{\partial \vartheta} + \frac{4}{\sin^2 \vartheta} \frac{\partial^2 \psi}{\partial \varphi^2} + \left\{ (2\mathcal{E}D^2 + \omega^2D^4) - \frac{\omega^2D^4}{\cos^2 \vartheta} \right\} \psi = 0. \tag{40}
\]

Using the separation of variables ansatz

\[
\psi(\vartheta, \varphi) = R(\vartheta) \frac{e^{im\varphi}}{\sqrt{2\pi}}, \quad m = 0, \pm 1, \pm 2, \ldots \tag{41}
\]

we obtain

\[
\frac{1}{\sin \vartheta} \frac{d}{d\vartheta} \sin \vartheta \frac{dR}{d\vartheta} + \left\{ (2\mathcal{E}D^2 + \omega^2D^4) - \frac{\omega^2D^4}{\cos^2 \vartheta} - \frac{m^2}{\sin^2 \vartheta} \right\} R = 0. \tag{42}
\]

The corresponding solution regular at the points \(\vartheta = 0, \pi/2 \) takes the form [7]

\[
R_{n,m}(\vartheta) = C_{n,m}(\nu) (\sin \vartheta)^{|m|} (\cos \vartheta)^{\nu + \frac{1}{2}} 2F_1(-n_r, n_r + \nu + |m| + 1; |m| + 1; \sin^2 \vartheta) = C_{n,m}(\nu) \frac{(n_r)!|m|!}{(n_r + |m|)!} (\sin \vartheta)^{|m|} (\cos \vartheta)^{\nu + \frac{1}{2}} P_{n_r}^{(|m|, \nu)}(\cos 2\vartheta) \tag{43}
\]

with energy spectrum given by expression

\[
\mathcal{E} = \frac{1}{2D^2}[(n + 1)(n + 2) + (2\nu - 1)(n + 1)], \quad \nu = \left(\omega^2D^4 + \frac{1}{4} \right)^{1/2} \tag{44}
\]

where \(C_{n,m}(\nu) \) is the normalization constant, \(P_{n_r}^{(\nu, \beta)}(x) \) is a Jacobi polynomial, \(n_r = 0, 1, 2, \ldots \) is the “radial” and \(n = 2n_r + |m| \) is the principal quantum number.

To compute the normalization constant \(C_{n,m}(\nu) \) for the reduced system we require that the wave function (41) satisfy the normalization condition (see the Appendix):

\[
-\frac{D^2}{2} \int_{S_2} \psi_{n,m} \psi_{n,m}^* \frac{u_1^2 + u_3^2}{u_2^2} dv(u) = \mathcal{E}^4 \int_0^\pi R_{n,m} R_{n,m}^\circ \sin \chi d\chi = 1 \tag{45}
\]

where the symbol ”\(\circ \)” means the complex conjugate together with the inversion \(\chi \rightarrow -\chi \), i.e. \(\psi^\circ(\chi, \varphi) = \psi^*(-\chi, \varphi) \). [We choose the scalar product as \(\psi^\circ \psi \) because for real \(\omega^2 \) and \(\mathcal{E} \) the function \(\psi^\circ(\chi, \vartheta) \) also belongs to the solution space of (37).]

Consider now the integral over contour \(G \) in the complex plane of variable \(\chi \) (see Fig.1)

\[
\oint R_{n,m} R_{n,m}^\circ \sin \chi d\chi = \int_0^\pi R_{n,m} R_{n,m}^\circ \sin \chi d\chi + \int_{\pi+i\infty}^{\pi-i\infty} R_{n,m} R_{n,m}^\circ \sin \chi d\chi + \int_{i\infty}^{i\infty} R_{n,m} R_{n,m}^\circ \sin \chi d\chi + \int_{i\infty}^{0} R_{n,m} R_{n,m}^\circ \sin \chi d\chi. \tag{46}
\]
Using the facts that the integrand vanishes as $e^{2i\nu \chi}$ and that $R_{n,m}(\chi)$ is regular in the domain G (see Fig.1), then according to the Cauchy theorem we have

$$
\int_0^\pi R_{n,m} R_{n,m}^o \sin \chi d\chi = \int_0^{i\infty} R_{n,m} R_{n,m}^o \sin \chi d\chi - \int_\pi^{i\infty} R_{n,m} R_{n,m}^o \sin \chi d\chi = \left[1 - e^{2i(\nu + \frac{1}{2})} \right] \int_0^{i\infty} R_{n,m} R_{n,m}^o \sin \chi d\chi.
$$

(47)

Making the substitution (17) in the right integral of eq. (47), we find

$$
\int_0^\pi R_{n,m} R_{n,m}^o \sin \chi d\chi = \left[1 - e^{2i(\nu + \frac{1}{2})} \right] \int_0^{\pi/2} [R_{n,m}]^2 \sin \theta \tan^2 \theta d\theta.
$$

(48)

Using the following formulas for integration of the two Jacobi polynomials [33]

$$
\int_{-1}^1 (1 - x)^\alpha (1 + x)^\beta [P_n^{(\alpha,\beta)}(x)]^2 dx = \frac{2^{\alpha+\beta+1} \Gamma(n + \alpha + 1) \Gamma(n + \beta + 1)}{(2n + \alpha + \beta + 1)n! \Gamma(n + \alpha + \beta + 1)}
$$

and

$$
\int_{-1}^1 (1 - x)^\alpha (1 + x)^{\beta-1} [P_n^{(\alpha,\beta)}(x)]^2 dx = \frac{2^{\alpha+\beta} \Gamma(n + \alpha + 1) \Gamma(n + \beta + 1)}{(\beta)n! \Gamma(n + \alpha + \beta + 1)}
$$

we find

$$
C_{n,m}(\nu) = \frac{2}{(|m|)!} \sqrt{-\nu(\nu + 2n_r + |m| + 1) (n_r + |m|)! \Gamma(|m| + n_r + \nu + 1)} D^4 [1 - e^{2i(\nu + \frac{1}{2})}] (2n_r + |m| + 1) (n_r) \Gamma(n_r + \nu + 1).
$$

(49)

The wave function $\psi(\theta, \varphi) \equiv \psi_{n,m}(\theta, \varphi)$ is then given by eqs. (41), (43) and (49).

Now we can construct the Coulomb wave functions and eigenvalue spectrum. From transformation

$$
\psi_{n,m}(\theta, \varphi + 2\pi) = e^{i\mu \theta} \psi_{n,m}(\theta, \varphi)
$$

(50)

and requirement of 2π periodicity for the wave functions (41) we see that only even azimuthal angular momentum states of the oscillator correspond to the reduced system. Then, introducing new angular and principal quantum numbers M and N by the condition

$$
n = 2n_r + |m| = 2n_r + 2|M| = 2N, \quad N = 0, 1, 2, ..., |M| = 0, 1, 2, ..N,
$$

(51)

comparing (38) with expression (44) for the oscillator energy spectrum, and putting $k = i\mu$, we find the energy spectrum for reduced systems

$$
E_N = \frac{N(N + 1)}{2R^2} - \frac{\mu^2}{2(N + \frac{1}{2})^2}.
$$

(52)

This formula coincides with that obtained from other methods in works [21, 26, 27].

Transforming θ back to the variable χ by (39), we see that (44) and (38) imply

$$
\nu = i\sigma - (N + \frac{1}{2}), \quad \sigma = \frac{\mu R}{N + \frac{1}{2}}.
$$

10
Using
\[\frac{\Gamma(1/2 + |M| + i\sigma)}{\Gamma(1/2 - |M| + i\sigma)} = (-1)^{|M|} \frac{|\Gamma(1/2 + |M| + i\sigma)|^2}{|\Gamma(1/2 + i\sigma)|^2} \]
\[= \frac{(-1)^{|M|}}{\pi} \cosh \sigma \pi |\Gamma(1/2 + |M| + i\sigma)|^2 \quad (53) \]
we easily get from (41), (43) and (49) the eigenfunction of Schrödinger equation (34)
\[\Psi_{NM}(\chi, \varphi) = C_{NM}(\sigma) e^{-i\chi(N-|M|-i\sigma)} (\sin \chi)^{|M|} \]
\[\times \quad _2F_1(-N + |M|, |M| + i\sigma + \frac{1}{2}; 2|M| + 1; 1 - e^{2i\chi}) \frac{e^{iM\varphi}}{\sqrt{2\pi}}. \quad (54) \]
where now
\[C_{NM}(\sigma) = \frac{2^{|M|}}{R(2|M|)!} \sqrt{\frac{|(N + \frac{1}{2})^2 + \sigma^2|(N + |M|)!}{\pi(N + \frac{1}{2})(N - |M|)!}} e^{\sigma \pi} |\Gamma(|M| + 1/2 + i\sigma)| \quad (55) \]
By direct calculation it may be shown that the Coulomb wave function (54) satisfies the normalization condition
\[R^2 \int_0^\pi \sin \chi d\chi \int_0^{2\pi} d\varphi \Psi_{NM} \Psi^*_{N'M'} = \delta_{NN'} \delta_{MM'}. \]
Thus, by reduction from the two-dimensional quantum oscillator on the complex sphere we have constructed the wave function and energy spectrum for the Coulomb problem on the two-dimensional real sphere \(S_2 \). Formula (54) for Coulomb wave functions on the two-dimensional sphere is new.

Now let us consider the flat space contraction. In the contraction limit \(R \to \infty \) the energy spectrum for finite \(N \) goes to the discrete energy spectrum of the two-dimensional hydrogen atom [8, 9]
\[\lim_{R \to \infty} E_N(R) = -\frac{\mu^2}{2(N + \frac{1}{2})^2}, \quad N = 0, 1, ... \]
In the limit \(R \to \infty \), putting \(\tan \chi \sim \chi \sim \frac{r}{R} \), where \(r \) is the radius-vector in the two-dimensional tangent plane and using the asymptotic formulas [34]
\[\lim_{R \to \infty} \quad _2F_1(-N + |M|, |M| + i\sigma + \frac{1}{2}; 2|M| + 1; 1 - e^{2i\chi}) \]
\[= \quad _1F_1(-N + |M|, 2|M| + 1; \frac{2\mu r}{N + \frac{1}{2}}) \]
\[\lim_{|y| \to \infty} |\Gamma(x + iy)| e^{\frac{\pi}{2} |y|^2} \quad \lim_{\gamma \to \infty} \Gamma(x + \alpha) \Gamma(x + \beta) = z^{\alpha - \beta}, \quad (56) \]
we obtain the well known Coulomb wave function with correct normalization factor [9]

\[
\lim_{R \to \infty, \chi \to 0} \Psi_{NM}(\chi, \varphi) = \frac{\mu \sqrt{2}}{(N + \frac{1}{2})^{3/2}} \sqrt{\frac{(N + |M|)!}{(N - |M|)!}} \left(\frac{2\mu r}{N + \frac{1}{2}} \right)^{|M|} e^{-\frac{\mu r}{N + \frac{1}{2}}} \\
\times \ _1F_1(-N + |M|, 2|M| + 1; \frac{2\mu r}{N + \frac{1}{2}}) e^{iM\varphi} \sqrt{2\pi}.
\]

(57)

In the case for large \(R \) and \(N \) such that \(N \sim kR \), (where \(k \) is constant) we obtain the formula for continuous spectrum: \(E = k^2/2 \). Now taking into account that \(\sigma \sim \frac{\mu}{k} \) and using the asymptotic relation (56), we have

\[
\lim_{R \to \infty, \chi \to 0} \sqrt{R} \Psi_{NM}(\chi, \varphi) = \sqrt{\frac{k}{\pi}} e^{\frac{\pi \mu}{2k}} \Gamma(|M| + 1/2 + i\mu/k) \left(\frac{2kr}{2|M|}\right)! e^{-i\pi} \\
\times \ _1F_1(|M| + \frac{i\mu}{k} + \frac{1}{2}; 2|M| + 1; 2ikr) e^{iM\varphi} \sqrt{2\pi}.
\]

(58)

which coincides with the formula for the two-dimensional Coulomb scattering wave function in polar coordinates [35].

3 The three and five dimensional Kepler - Coulomb problems

In complete analogy with the three- and five-dimensional Euclidean case the corresponding regularizing transformations exist for the Kepler and Coulomb problems in spheres of dimension 3 and 5. Indeed if we consider motion on the sphere of dimension \(n \) then the classical equations of motion in the presence of a potential are just (23), (24) again, where now

\[
s = (s_1, \ldots, s_{n+1}),
\]

subject to the constraints

\[
s \cdot s = R^2
\]

(60)

and its differential consequences

\[
s \cdot \dot{s} = 0, \quad s \cdot \ddot{s} + \dot{s} \cdot \dot{s} = 0.
\]

If we choose our potential to be

\[
V = -\frac{\mu}{R} \frac{s_{n+1}}{\sqrt{s_1^2 + \ldots + s_n^2}}
\]

(61)

these equations assume the form

\[
\frac{d^2}{dt^2} s_j = -s_j\dot{s} \cdot \dot{s} - \frac{\mu}{R} \frac{s_j s_{n+1}}{(s \cdot s)^2}, \quad j = 1, \ldots, n,
\]

(62)
\[
\frac{d^2}{dt^2}s_{n+1} = -s_{n+1}\dot{s} \cdot \dot{s} + \frac{\mu}{R(s \cdot s)^2}.
\] (63)

The energy integral again has the form (26).

We are particularly interested in dimensions \(n = 3, 5 \). We deal with each of these cases separately.

3.1 Generalized KS transformation

For \(n = 3 \) we choose the \(u_j \) coordinates in five dimensional space according to

\[
s_1 = i\sqrt{u_1^2 + u_2^2 + u_3^2 + u_4^2 + u_5^2} \cdot \frac{u_1 u_3 + u_2 u_4}{u_5},
\]

\[
s_2 = i\sqrt{u_1^2 + u_2^2 + u_3^2 + u_4^2 + u_5^2} \cdot \frac{u_2 u_3 - u_1 u_4}{u_5},
\]

\[
s_3 = i\sqrt{u_1^2 + u_2^2 + u_3^2 + u_4^2 + u_5^2} \cdot \frac{u_1^2 + u_2^2 - u_3^2 - u_4^2}{2u_5},
\]

\[
s_4 = \sqrt{u_1^2 + u_2^2 + u_3^2 + u_4^2 + u_5^2} \cdot \left(u_5 + \frac{u_1^2 + u_2^2 + u_3^2 + u_4^2}{2u_5} \right).
\] (64)

The basic identity is

\[
s_1^2 + s_2^2 + s_3^2 + s_4^2 = (u_1^2 + u_2^2 + u_3^2 + u_4^2 + u_5^2)^2,
\]

and the basic relationship for the infinitesimal distances is

\[
ds_1^2 + ds_2^2 + ds_3^2 + ds_4^2 =
\]

\[
-\frac{D^2}{u_5^2} \left((u_1^2 + u_2^2 + u_3^2 + u_4^2)[du_1^2 + du_2^2 + du_3^2 + du_4^2] + (u_4 du_3 - u_3 du_4 + u_2 du_1 - u_1 du_2)^2 \right),
\]

where the constraint for mapping between the 3-sphere: \(\sum_{i=1}^{4} s_i^2 = R^2 \) and the complex 4-sphere: \(\sum_{i=1}^{5} u_i^2 = D^2 \) is clearly

\[
u_4 du_3 - u_3 du_4 + u_2 du_1 - u_1 du_2 = 0.
\] (66)

In this section we will use the Eulerian spherical coordinates on the complex 4-sphere \(S_{4C} \)

\[
u_1 = D\sqrt{1 - e^{2i\chi} \cos \frac{\beta}{2} \cos \frac{\alpha + \gamma}{2}}, \quad u_2 = D\sqrt{1 - e^{2i\chi} \cos \frac{\beta}{2} \sin \frac{\alpha + \gamma}{2}},
\]

\[
u_3 = D\sqrt{1 - e^{2i\chi} \sin \frac{\beta}{2} \cos \frac{\alpha - \gamma}{2}}, \quad u_4 = D\sqrt{1 - e^{2i\chi} \sin \frac{\beta}{2} \sin \frac{\alpha - \gamma}{2}},
\]

\[
u_5 = De^{i\chi},
\] (67)

where the ranges of the variables are given by

\[0 \leq \chi \leq \pi, \quad 0 \leq \beta \leq \pi, \quad 0 \leq \alpha < 2\pi, \quad 0 \leq \gamma < 4\pi.
\]

The corresponding spherical coordinates on \(S_3 \) are

\[
s_1 = R \sin \chi \sin \beta \cos \alpha, \quad s_2 = R \sin \chi \sin \beta \sin \alpha,
\]

\[
s_3 = R \sin \chi \cos \beta, \quad s_4 = R \cos \chi.
\]
3.1.1 Classical motion

In analogy with our previous analysis we choose a new variable \(\tau \) according to

\[
\frac{d\tau}{dt} = \frac{1}{D^2} \frac{u_5^2}{u_1^2 + u_2^2 + u_3^2 + u_4^2}.
\]

In the \(u \) coordinates the equations of motion can be written as

\[
(u_1')^2 + (u_2')^2 + (u_3')^2 + (u_4')^2 + (u_5')^2 - 2D^2(E + \frac{i\mu}{D^2}) + \frac{2D^4}{u_5^2}(E - \frac{i\mu}{D^2}) = 0,
\]

\[
u_j'' + 2(E + \frac{i\mu}{D^2})u_j = 0, \quad j = 1, 2, 3, 4,
\]

\[
u_5'' + 2(E + \frac{i\mu}{D^2})u_5 - \frac{2D^4}{u_5^2}(E - \frac{i\mu}{D^2}) = 0,
\]

subject to the constraints

\[
\sum_{k=1}^{5} u_k^2 = D^2, \quad \sum_{k=1}^{5} u_k u'_k = 0,
\]

\[
\sum_{k=1}^{5} (u_k u''_k + (u'_k)^2) = 0, \quad u_4 u'_3 - u_3 u'_4 + u_2 u'_1 - u_1 u'_2 = 0.
\]

Note that equations (68) are compatible with these constraints. Here, the Kepler problem on the sphere in three dimensions is equivalent to choosing a Hamiltonian

\[
H = \frac{1}{2}(p_{u_1}^2 + p_{u_2}^2 + p_{u_3}^2 + p_{u_4}^2 + p_{u_5}^2) - (E + \frac{i\mu}{D^2})(u_1^2 + u_2^2 + u_3^2 + u_4^2 + u_5^2) + \frac{2D^4}{u_5^2}(E - \frac{i\mu}{D^2}),
\]

regarding the variables \(u_j \) as independent and \(\tau \) as time. The only difference is that there is now the constraint

\[
u_4 p_{u_3} - u_3 p_{u_4} + u_2 p_{u_1} - u_1 p_{u_2} = 0.
\]

In terms of the Hamilton-Jacobi formulation we have the relation

\[
\frac{1}{2}(p_{s_1}^2 + p_{s_2}^2 + p_{s_3}^2 + p_{s_4}^2) - \frac{\mu}{R} \frac{s_4}{\sqrt{s_1^2 + s_2^2 + s_3^2}} - E = \frac{u_4^2}{u_1^2 + u_2^2 + u_3^2 + u_4^2} \left[\frac{1}{2D^2}(p_{u_1}^2 + p_{u_2}^2 + p_{u_3}^2 + p_{u_4}^2 + p_{u_5}^2) - (E + \frac{i\mu}{D^2})(u_1^2 + u_2^2 + u_3^2 + u_4^2 + u_5^2) + \frac{D^4}{u_5^2}(E - \frac{i\mu}{D^2}) \right] = 0.
\]

With the usual substitutions, the corresponding Hamilton-Jacobi equations are

\[
\sum_{k=1}^{4} \left(\frac{\partial S}{\partial s_k} \right)^2 - \left(2E + \frac{2\mu}{R} \frac{s_4}{\sqrt{s_1^2 + s_2^2 + s_3^2}} \right) = 0,
\]

14
or
\[\frac{1}{2D^2} \sum_{k=1}^{5} \left(\frac{\partial S}{\partial u_k} \right)^2 + \left[\frac{D^2}{u_5^2} (E - i\mu) - \left(E + \frac{i\mu}{D^2} \right) \right] = 0, \] (71)
and the constraint has become
\[\mathcal{L} \cdot S = 0 \] (72)
where operator \(\mathcal{L} \) is
\[\mathcal{L} = u_2 \frac{\partial}{\partial u_1} - u_4 \frac{\partial}{\partial u_3} - u_3 \frac{\partial}{\partial u_4}. \] (73)
Equation (71) can be solved by separation of variables in the spherical coordinates (67) on the complex sphere \(S_{4C} \).

3.1.2 Quantum motion

The associated quantum Kepler-Coulomb problem on the sphere corresponding to the potential (61)
\[\frac{1}{2} \Delta^{(3)}_s \Psi + \left(E + \frac{\mu}{R} \frac{s_4}{\sqrt{s_1^2 + s_2^2 + s_3^2}} \right) \Psi = 0 \] (74)
translates directly to [see formula (152)]
\[\frac{1}{2} \Delta^{(4)}_u \Phi + \left(\mathcal{E} - \frac{\omega^2 D^2}{2} \frac{u_1^2 + u_2^2 + u_3^2 + u_4^2}{u_5^2} \right) \Phi = 0 \] (75)
with the constraint
\[\mathcal{L} \cdot \Phi = 0, \] (76)
where \(\mathcal{L} \) is given by (73),
\[\Psi = u_5 \frac{i}{2} \Phi, \] (77)
and
\[\mathcal{E} = 2i\mu - \frac{1}{D^2}, \quad \omega^2 D^2 = 2ED^2 - 2i\mu + \frac{3}{4D^2}. \] (78)

Here \(\Delta^{(3)}_s \) and \(\Delta^{(4)}_u \) are Laplace-Beltrami operators on the spheres \(S_3 \) and \(S_{4C} \), respectively.

Consider the Schrödinger equation (75) in complex spherical coordinates (67). We have
\[\frac{e^{-i\chi}}{\sin^2 \chi} \frac{\partial}{\partial \chi} e^{i\chi} \sin^2 \chi \frac{\partial \Phi}{\partial \chi} \left[\omega^2 D^4 - i\mathcal{E} D^2 \frac{e^{i\chi}}{\sin \chi} + \frac{\vec{L}^2}{\sin^2 \chi} \right] \Phi = 0 \] (79)
where the operator \(\vec{L}^2 \) are defined in (150). We complexify the angle \(\chi \) to the domain \(G \) (see Fig.1) by the transformation (39), such that \(\vartheta \in [0, \frac{\pi}{2}] \) and also complexify \(\mu \) by setting \(k = i\mu \) in expression for \(\mathcal{E} \) and \(\omega^2 \). Then equation (79) transforms to the Schrödinger equation for the oscillator problem on real sphere \(S_4 \).

15
We make the ansatz
\[\Phi(\vartheta, \alpha, \beta, \gamma) = (\sin \vartheta)^{-3} Z(\vartheta) \mathcal{D}_{m_1,m_2}^\ell(\alpha, \beta, \gamma) \]
(80)

where
\[\mathcal{D}_{m_1,m_2}^\ell(\alpha, \beta, \gamma) = e^{im_1 \alpha} \mathcal{D}_{m_1,m_2}^\ell(\beta) e^{im_2 \gamma} \]
(81)
is the Wigner function [36], satisfying the eigenvalue equation
\[\hat{L}^2 \mathcal{D}_{m_1,m_2}^\ell(\alpha, \beta, \gamma) = \ell(\ell + 1) \mathcal{D}_{m_1,m_2}^\ell(\alpha, \beta, \gamma), \]
(82)
and normalization condition
\[\int \mathcal{D}_{m_1,m_2}^{\ell'}(\alpha, \beta, \gamma) \mathcal{D}_{m_1,m_2}^\ell(\alpha, \beta, \gamma) \frac{1}{8} \sin \beta d\beta d\alpha d\gamma = \frac{2\pi^2}{2\ell + 1} \delta_{\ell\ell'} \delta_{m_1m_1'} \delta_{m_2m_2'}. \]
(83)

Then the function \(Z(\vartheta) \) satisfies
\[\frac{d^2 Z}{d\vartheta^2} + \left[\left(2\mathcal{E} D^2 + \omega^2 D^4 + \frac{9}{4} \right) - \omega^2 D^4 \frac{\sin^2 \vartheta}{\cos^2 \vartheta} \right] Z = 0. \]
(84)
The corresponding solution regular at \(\vartheta = 0, \pi/2 \) and energy spectrum are given by
\[Z_{n,\ell}(\vartheta) = \text{const} (\sin \vartheta)^{2\ell} (\cos \vartheta)^{\nu + \frac{1}{2}} F_1(-n_r, n_r + 2\ell + \nu + 2; 2\ell + 2; \sin^2 \vartheta), \]
(85)
\[\mathcal{E} = \frac{1}{2D^2}[(n + 1)(n + 4) + (2\nu - 1)(n + 2)], \]
(86)
where \(\nu = (\omega^2 D^4 + \frac{1}{4})^{\frac{1}{2}}, n = 2n_r + 2\ell = 0, 1, 2, \ldots \) is the principal quantum number. The other quantum numbers are
\[n_r = 0, 1, \ldots, n, \quad 2\ell = 0, 1, \ldots, n, \quad m_1, m_2 = -\ell, -\ell + 1, \ldots, \ell - 1, \ell. \]

Thus the wave function \(\Phi(\vartheta, \alpha, \beta, \gamma) \) normalized under the condition (see Appendix)
\[-i \frac{D^2}{2\pi} \int_{S_{4C}} \Phi_{n,\ell m_1 m_2} (\vartheta, \alpha, \beta, \gamma) \Phi_{n,\ell m_1 m_2} (u_1^2 + u_2^2 + u_3^2 + u_4^2) \frac{dv(u)}{u_5^2} = 1 \]
(87)
has the form
\[\Phi_{n,\ell m_1 m_2} (\vartheta, \alpha, \beta, \gamma) = C_{n,\ell}(\nu) \sqrt{\frac{2\ell + 1}{2\pi^2}} R_{n,\ell}(\vartheta) \mathcal{D}_{m_1,m_2}^\ell(\alpha, \beta, \gamma) \]
(88)
with
\[R_{n,\ell}(\vartheta) = (\sin \vartheta)^{2\ell} (\cos \vartheta)^{\nu + \frac{1}{2}} F_1(-n_r, n_r + 2\ell + \nu + 2; 2\ell + 2; \sin^2 \vartheta), \]
(89)
\[C_{n,\ell}(\nu) = \frac{\sqrt{\pi} D^2}{2} \sqrt{\frac{[(\nu + 2\ell + 2n_r + 2!)(2\ell + n_r + 1)\Gamma(2\ell + \nu + n_r + 2)}{(1 - e^{2i\nu}) \Gamma(\ell + n_r + 1)\Gamma(2\ell + 1)\Gamma(\nu + n_r + 1)}}. \]
(90)
We now construct the wave function and energy spectrum for the Schrödinger equation (74). The corresponding wave function \(\Psi(s) \) connecting with \(\Phi(u) \) by formula (77) is independent of the variable \(\gamma \) and \(2\pi \) periodic in \(\alpha \) (the transformation \(\alpha \rightarrow \alpha + 2\pi \) is equivalent the inversion \(u_i \rightarrow -u_i, \ i = 1, 2, 3, 4 \)). The constraint (76) in the spherical coordinate (67) is equivalent to

\[
\frac{\partial}{\partial \gamma} \cdot \Phi_{n, \ell m_1 m_2}(\vartheta, \alpha, \beta, \gamma) = m_2 \Phi_{n, \ell m_1 m_2}(\vartheta, \alpha, \beta, \gamma) = 0
\]

and we have \(m_2 = 0 \). From \(2\pi \) periodicity we get that \(\ell \) and \(m_1 \) are integers. Then, upon introducing the principal quantum number \(N = (n_r + \ell) + 1 = \frac{n}{2} + 1 \) and using the expression (78), we obtain the energy spectrum of the reduced system

\[
E = \frac{N^2 - 1}{2R^2} - \frac{\mu^2}{2N^2}; \quad N = 1, 2, \ldots
\]

where \(k = i\mu \). This spectrum coincides with that obtained from other methods [20, 24, 23].

Returning from \(\vartheta \) to the variable \(\chi \), observing that \(\nu = i\sigma - N, \quad \sigma = \frac{\mu R}{N} \)

and using the relations \((m_1 \equiv m) \)

\[
D_{m,0}^{\ell}(\alpha, \beta, \gamma) = (-1)^m \sqrt{\frac{4\pi}{2\ell + 1}} Y_{\ell m}(\beta, \alpha)
\]

we obtain the wave functions (with correct normalization) for the reduced system in the form

\[
\Psi_{N\ell m}(\chi, \beta, \alpha) = \sqrt{D} e^{i\chi/2} \Phi_{n, \ell m_0}(\chi, \alpha, \beta, \gamma) = \frac{(-1)^m}{\sqrt{R^3}} C_{n, \ell}(\sigma)(\sin \alpha)^\ell e^{-i\alpha(N-\ell-\nu)}
\]

\[
\times \frac{\sqrt{2\ell + 1}}{(2\ell + 1)!} \left[\frac{(N^2 + \sigma^2)(N + \ell)!}{2\pi N(N-\ell-1)!} \right] |\Gamma(1 + \ell + i\sigma)|.
\]

This solution is identical to that given for the Coulomb eigenfunction on \(S_3 \) in papers [23, 25]. Note that in [25] it already has been shown that the function (93) contracts as \(R \rightarrow \infty \) into the flat space Coulomb wave function for discrete and continuous energy spectrum.
3.2 Generalized Hurwitz transformation

The analogous problem in five dimensions can be realized via the variables

\[s_1 = \left(\sum_{k=1}^{9} u_k^2 \right)^{\frac{1}{2}} \frac{i}{u_9} (u_1 u_5 + u_2 u_6 - u_3 u_7 - u_4 u_8), \]
\[s_2 = \left(\sum_{k=1}^{9} u_k^2 \right)^{\frac{1}{2}} \frac{i}{u_9} (u_1 u_6 - u_2 u_5 + u_3 u_8 - u_4 u_7), \]
\[s_3 = \left(\sum_{k=1}^{9} u_k^2 \right)^{\frac{1}{2}} \frac{i}{u_9} (u_1 u_7 + u_2 u_8 + u_3 u_5 + u_4 u_6), \]
\[s_4 = \left(\sum_{k=1}^{9} u_k^2 \right)^{\frac{1}{2}} \frac{i}{u_9} (u_1 u_8 - u_2 u_7 - u_3 u_6 + u_4 u_5), \]
\[s_5 = \left(\sum_{k=1}^{9} u_k^2 \right)^{\frac{1}{2}} \frac{i}{2u_9} (u_1^2 + u_2^2 + u_3^2 + u_4^2 + u_5^2 - u_6^2 - u_7^2 - u_8^2), \]
\[s_6 = \left(\sum_{k=1}^{9} u_k^2 \right)^{\frac{1}{2}} \left(u_9 + \frac{1}{2u_9} \sum_{k=1}^{8} u_k^2 \right), \]

which satisfy

\[\sum_{j=1}^{6} s_j^2 = \left(\sum_{k=1}^{9} u_k^2 \right)^2. \] (95)

The relation between the infinitesimal distances on the five dimensional sphere \(S_5 \): \(\sum_{i=1}^{5} s_i^2 = R^2 \) and eight dimensional complex sphere \(S_{5C} \): \(\sum_{i=1}^{9} u_i^2 = D^2, (R = D^2) \) is

\[\frac{1}{R} \sum_{j=1}^{6} ds_j^2 = -\frac{1}{u_9^2} \left[\left(\sum_{k=1}^{9} u_k^2 \right) \sum_{i=1}^{8} du_i^2 + \omega_1^2 + \omega_2^2 + \omega_3^2 \right], \] (96)

where

\[\omega_1 = u_4 du_1 + u_5 du_2 - u_6 du_3 - u_4 du_4 - u_8 du_5 - u_7 du_6 + u_5 du_7 + u_5 du_8, \]
\[\omega_2 = u_3 du_1 - u_4 du_2 + u_5 du_3 + u_4 du_4 - u_7 du_5 + u_8 du_6 + u_5 du_7 + u_5 du_8, \]
\[\omega_3 = u_2 du_1 - u_1 du_2 + u_4 du_3 - u_3 du_4 + u_6 du_5 + u_5 du_6 + u_6 du_7 + u_7 du_8, \]

and the constraint for mapping \(S_{5C} \rightarrow S_5 \) corresponds to

\[\omega_i = 0, \quad i = 1, 2, 3. \]

Following [16] (see also [18]) we can supplement the transformation (94) with the angles

\[\alpha_H = \frac{1}{2} \left[\arctan \frac{2u_1 u_2}{u_1^2 - u_2^2} + \arctan \frac{2u_3 u_4}{u_3^2 - u_4^2} \right] \in [0, 2\pi) \]
\[\beta_H = 2\arctan \left(\frac{u_3^2 + u_4^2}{u_3^2 + u_4^2} \right)^{\frac{1}{2}} \in [0, \pi] \] (97)
\[\gamma_H = \frac{1}{2} \left[\arctan \frac{2u_1u_2}{u_1^2 - u_2^2} - \arctan \frac{2u_3u_4}{u_3^2 - u_4^2} \right] \in [0, 4\pi). \]

The transformations (94) and (97) correspond to \(S_8C \rightarrow S_8 = S_5 \otimes S_3 \). If we now choose the spherical coordinates on \(S_5 \) as

\[
\begin{align*}
 s_1 + is_2 &= R \sin \chi \sin \vartheta \cos \frac{\beta}{2} e^{i\frac{\alpha + \gamma}{2}}, \quad s_5 = R \sin \chi \cos \vartheta, \\
 s_3 + is_4 &= R \sin \chi \sin \vartheta \sin \frac{\beta}{2} e^{i\frac{\alpha - \gamma}{2}}, \quad s_6 = R \cos \chi.
\end{align*}
\]

then the corresponding (nonorthogonal) spherical coordinates on the eight dimensional complex sphere take the form \((D^2 = R) \)

\[
\begin{align*}
 u_1 &= D \sqrt{1 - e^{2ix}} \cos \frac{\vartheta}{2} \cos \frac{\beta}{2} \cos \frac{\alpha + \gamma + \gamma_H}{2} \\
 u_2 &= D \sqrt{1 - e^{2ix}} \cos \frac{\vartheta}{2} \sin \frac{\beta}{2} \cos \frac{\alpha + \gamma + \gamma_H}{2} \\
 u_3 &= D \sqrt{1 - e^{2ix}} \cos \frac{\vartheta}{2} \sin \frac{\beta}{2} \cos \frac{\alpha - \gamma - \alpha_H + \gamma_H}{2} \\
 u_4 &= D \sqrt{1 - e^{2ix}} \cos \frac{\vartheta}{2} \sin \frac{\beta}{2} \sin \frac{\alpha - \gamma - \alpha_H + \gamma_H}{2} \\
 u_5 &= D \sqrt{1 - e^{2ix}} \sin \frac{\vartheta}{2} \left(\cos \frac{\beta}{2} \cos \frac{\beta_H}{2} \cos \frac{\alpha + \gamma + \alpha_H + \gamma_H}{2} \\
 &+ \sin \frac{\beta}{2} \sin \frac{\beta_H}{2} \cos \frac{\alpha - \gamma - \alpha_H + \gamma_H}{2} \right) \\
 u_6 &= D \sqrt{1 - e^{2ix}} \sin \frac{\vartheta}{2} \left(\sin \frac{\beta}{2} \cos \frac{\beta_H}{2} \cos \frac{\alpha + \gamma + \alpha_H + \gamma_H}{2} \\
 &- \sin \frac{\beta}{2} \sin \frac{\beta_H}{2} \sin \frac{\alpha - \gamma - \alpha_H + \gamma_H}{2} \right) \\
 u_7 &= D \sqrt{1 - e^{2ix}} \sin \frac{\vartheta}{2} \left(\sin \frac{\beta}{2} \sin \frac{\beta_H}{2} \cos \frac{\alpha + \gamma - \alpha_H + \gamma_H}{2} \\
 &- \cos \frac{\beta}{2} \sin \frac{\beta_H}{2} \sin \frac{\alpha + \gamma - \alpha_H + \gamma_H}{2} \right) \\
 u_8 &= D \sqrt{1 - e^{2ix}} \sin \frac{\vartheta}{2} \left(\sin \frac{\beta}{2} \sin \frac{\beta_H}{2} \sin \frac{\alpha + \gamma - \alpha_H + \gamma_H}{2} \\
 &+ \cos \frac{\beta}{2} \sin \frac{\beta_H}{2} \sin \frac{\alpha + \gamma - \alpha_H + \gamma_H}{2} \right) \\
 u_9 &= De^{ix}
\end{align*}
\]

where \(\chi \in [0, \pi], \vartheta \in [0, \pi], \alpha \in [0, 2\pi], \beta \in [0, \pi] \) and \(\gamma \in [0, 4\pi] \).

3.2.1 Classical motion

The Kepler-Coulomb potential on the five dimensional sphere \(S_5 \) has the form

\[
V = -\frac{\mu}{R} \frac{s_6}{\sqrt{s_1^2 + s_2^2 + s_3^2 + s_4^2 + s_5^2}}. \tag{99}
\]
As before we can define a new coordinate τ such that
\[\frac{d\tau}{dt} = \frac{1}{D^2} \frac{u_9^2}{\sum_{k=1}^{8} u_k^2}. \]

The corresponding equations of motion are given by
\[\sum_{\ell=1}^{9} (u_{\ell}^\prime)^2 - 2(E + \frac{i\mu}{D^2}) - \frac{2D^2}{u_9^2} (E - \frac{i\mu}{D^2}) = 0, \]
(100)

subject to the constraints
\[\sum_{\ell=1}^{9} u_{\ell}^2 = D^2, \quad \sum_{\ell=1}^{9} u_{\ell} u_{\ell}^\prime = 0, \quad \sum_{\ell=1}^{9} \left(u_{\ell} u_{\ell}^\prime + (u_{\ell}^\prime)^2 \right) = 0, \]
\[u_4 u_4^\prime + u_3 u_3^\prime - u_2 u_2^\prime - u_1 u_1^\prime - u_8 u_8^\prime - u_7 u_7^\prime + u_6 u_6^\prime + u_5 u_5^\prime = 0, \]
\[u_3 u_3^\prime - u_4 u_2^\prime - u_3 u_5^\prime + u_2 u_4^\prime - u_7 u_5^\prime + u_8 u_6^\prime + u_5 u_7^\prime - u_6 u_8^\prime = 0, \]
\[u_2 u_2^\prime - u_1 u_2^\prime - u_3 u_4^\prime - u_3 u_6^\prime - u_5 u_6^\prime - u_8 u_7^\prime - u_7 u_8^\prime = 0. \]

These equations of motion are equivalent to what we would obtain by choosing the Hamiltonian
\[H = \frac{1}{2} \sum_{\ell=1}^{9} p_{u_{\ell}}^2 - (E + \frac{i\mu}{D^2}) \sum_{\ell=1}^{9} u_{\ell}^2 + \frac{D^2}{u_9^2} (E - \frac{i\mu}{D^2}), \]
(101)

regarding the variables u_{ℓ} as independent and using τ as time. The associated constraints are
\[u_4 p_1 + u_3 p_2 - u_2 p_3 - u_1 p_4 - u_8 p_5 - u_7 p_6 + u_6 p_7 + u_5 p_8 = 0, \]
\[u_3 p_1 - u_4 p_2 - u_4 p_3 + u_2 p_4 - u_7 p_5 + u_8 p_6 + u_5 p_7 - u_6 p_8 = 0, \]
\[u_2 p_1 - u_1 p_2 + u_4 p_3 - u_3 p_4 + u_6 p_5 - u_5 p_6 + u_8 p_7 - u_7 p_8 = 0. \]
(102)

If we wish to solve this problem from the point of view of the Hamilton-Jacobi equation we use the relation
\[\frac{1}{2} \sum_{j=1}^{6} p_{s, j}^2 \frac{\mu}{R^2} \frac{1}{\sqrt{s_1^2 + s_2^2 + s_3^2 + s_4^2 + s_5^2}} - E = - \frac{u_9^2}{\sum_{k=1}^{8} u_k^2} \left\{ \frac{1}{2D^2} \sum_{\ell=1}^{9} u_{\ell}^2 - \left(\frac{i\mu}{D^2} + E \right) \sum_{\ell=1}^{9} u_{\ell}^2 + \frac{D^2}{u_9^2} (E - \frac{i\mu}{D^2}) \right\} = 0. \]

The corresponding Hamilton-Jacobi equations are
\[\frac{1}{2} \sum_{j=1}^{6} \left(\frac{\partial S}{\partial s, j} \right)^2 \frac{\mu}{R^2} \frac{1}{\sqrt{s_1^2 + s_2^2 + s_3^2 + s_4^2 + s_5^2}} - E = 0, \]
(103)
\[
\frac{1}{2D^2} \sum_{\ell=1}^{9} \left(\frac{\partial S}{\partial u_{\ell}} \right)^2 - \left(\frac{i\mu}{D^2} + E \right) \sum_{\ell=1}^{9} u_{\ell}^2 + \frac{D^2}{u_9} (E - \frac{i\mu}{D^2}) = 0, \tag{104}
\]

subject to the constraints
\[
\begin{align*}
 u_4 \frac{\partial S}{\partial u_1} + u_3 \frac{\partial S}{\partial u_2} - u_2 \frac{\partial S}{\partial u_3} - u_1 \frac{\partial S}{\partial u_4} - u_8 \frac{\partial S}{\partial u_5} - u_7 \frac{\partial S}{\partial u_6} + u_6 \frac{\partial S}{\partial u_7} + u_5 \frac{\partial S}{\partial u_8} &= 0, \\
 u_3 \frac{\partial S}{\partial u_1} - u_4 \frac{\partial S}{\partial u_2} - u_1 \frac{\partial S}{\partial u_3} - u_2 \frac{\partial S}{\partial u_4} - u_7 \frac{\partial S}{\partial u_5} + u_8 \frac{\partial S}{\partial u_6} + u_5 \frac{\partial S}{\partial u_7} - u_6 \frac{\partial S}{\partial u_8} &= 0, \\
 u_2 \frac{\partial S}{\partial u_1} - u_1 \frac{\partial S}{\partial u_2} + u_4 \frac{\partial S}{\partial u_3} - u_3 \frac{\partial S}{\partial u_4} - u_6 \frac{\partial S}{\partial u_5} - u_5 \frac{\partial S}{\partial u_6} + u_8 \frac{\partial S}{\partial u_7} - u_7 \frac{\partial S}{\partial u_8} &= 0.
\end{align*}
\]

3.2.2 Quantum motion

The Schrödinger equation for the 5-dimensional quantum Coulomb problem
\[
\frac{1}{2} \Delta^{(5)} s \Psi + \left(E + \frac{\mu}{R} \frac{s_6}{\sqrt{s_1^2 + s_2^2 + s_3^2 + s_4^2 + s_5^2}} \right) \Psi = 0 \tag{105}
\]
transforms to the 8-dimensional oscillator equation (see Appendix)
\[
\frac{1}{2} \Delta^{(8)} u \Phi + \left(\mathcal{E} - \frac{\omega^2 D^2}{2} \frac{1}{u_9} \sum_{i=1}^{8} u_i^2 \right) \Phi = 0 \tag{106}
\]
with constraints
\[
T_i \Phi = 0, \tag{107}
\]
where operator \(\vec{T} \) is given by formula (155),
\[
\mathcal{E} = \left(2i\mu - \frac{6}{D^2} \right), \quad \omega^2 D^2 = 2 \left(D^2 E - 2i\mu + \frac{15}{8D^2} \right), \tag{108}
\]
and
\[
\Psi = (u_9)^{\frac{3}{2}} \Phi. \tag{109}
\]

Considering the oscillator equation (106) in complex spherical coordinates (98) we get (see Appendix)
\[
\frac{e^{-3i\chi}}{\sin^4 \chi} \frac{\partial}{\partial \chi} \frac{e^{3i\chi} \sin^4 \chi}{\sin^4 \chi} \frac{\partial \Phi}{\partial \chi} + \left[\omega^2 D^4 - i\mathcal{E} D^2 \frac{e^{i\chi}}{\sin \chi} + \frac{\vec{M}^2}{\sin^2 \chi} \right] \Phi = 0, \tag{110}
\]
where the operator \(\vec{M}^2 \) has the form
\[
\vec{M}^2 = \frac{1}{\sin^3 \theta} \frac{\partial}{\partial \theta} \sin^3 \theta \frac{\partial}{\partial \theta} - \frac{\vec{L}^2}{\sin^2 \frac{\theta}{2}} - \frac{\vec{J}^2}{\cos^2 \frac{\theta}{2}}, \tag{111}
\]

21
and
\[J = \vec{L} + \vec{T}, \quad J^2 = \vec{L}^2 + \vec{T}^2 + 2\vec{L} \cdot \vec{T}. \]

As before, we make the complex transformation (39) and also complexify parameter \(\mu \) by putting \(k = i\mu \). We make the separation ansatz \[\Phi = R(\vartheta)Z(\theta)G(\alpha, \beta, \gamma; \alpha_H, \beta_H, \gamma_H) \]
where \(G \) is an eigenfunction of operators \(\vec{L}^2 \), \(\vec{T}^2 \) and \(J^2 \) with eigenvalues \(L(L+1) \), \(T(T+1) \), \(J(J+1) \), respectively. Correspondingly the wave function \(Z(\theta) \) is the eigenfunction of operator \(\vec{M}^2 \) with eigenvalue \(\lambda(\lambda+3) \). Because there is \(\vec{L} \cdot \vec{T} \) interaction the eigenvalue equation
\[J^2 G(\alpha, \beta, \gamma; \alpha_H, \beta_H, \gamma_H) = J(J+1)G(\alpha, \beta, \gamma; \alpha_H, \beta_H, \gamma_H) \]
can not be separated in variables \((\alpha, \beta, \gamma; \alpha_H, \beta_H, \gamma_H) \) but we can apply the rules for the addition of angular momenta \(\vec{L} \) and \(\vec{T} \) and, following [18] express \(G \) as a Clebsch-Gordan expansion
\[G_{LM;TT}^{JM} = \sum_{M=m'+t'} (J, M | L, m'; T, t') D_{m,m'}^L(\alpha, \beta, \gamma) D_{t,t'}^T(\alpha_H, \beta_H, \gamma_H) \]
where \((J, M | L, m'; T, t') \) are the Clebsch-Gordan coefficients. Note that the functions \(G_{LM;TT}^{JM} \) satisfy the normalization condition
\[\int_0^{2\pi} d\Omega_H \int_0^{2\pi} d\Omega_H G_{LM;TT}^{JM*} G_{LM;TT}^{JM'} = \left(\frac{2\pi^2}{2L+1} \right) \left(\frac{2\pi^2}{2T+1} \right) \delta_{JM, JM'} \delta_{LL} \delta_{TT} \delta_{MM} \delta_{mm'} \delta_{tt'}. \]

If we substitute ansatz (113) into the Schrödinger equation (110), then after separation of variables we obtain the differential equations
\[\frac{1}{\sin^3 \vartheta} \frac{d}{d\vartheta} \sin^3 \vartheta \frac{dZ}{d\vartheta} + \left[\lambda(\lambda+3) - \frac{2L(L+1)}{1 - \cos \theta} - \frac{2J(J+1)}{1 + \cos \theta} \right] Z = 0, \]
\[\frac{1}{\sin^7 \vartheta} \frac{d}{d\vartheta} \sin^7 \vartheta \frac{dR}{d\vartheta} + \left[(2D^2 E + \omega^2 D^4) - \frac{4\lambda(\lambda+3)}{\sin^2 \vartheta} - \frac{\omega^2 D^4}{\cos^2 \vartheta} \right] R = 0, \]
with real parameters
\[E = \left(2k - \frac{6}{D^2} \right), \quad \omega^2 D^2 = 2 \left(D^2 E - 2k + \frac{15}{8D^2} \right). \]

Consider equation (117). Taking the new function by \(v(\vartheta) = (\sin \vartheta)^3 Z(\theta) \) we obtain the Pöschl-Teller equation. Then the solution \(Z(\theta) \equiv Z_{LL}^{JM}(\theta) \) orthonormalized by the condition
\[\int_0^\pi Z_{LM}^{JM}(\theta)Z_{LM^*}^{J*M}(\theta) \sin^3 \theta d\theta = \delta_{LM} \]
22
has the form

\[
Z^{JL}_\lambda(\theta) = \sqrt{\frac{(2\lambda + 3)(\lambda + J + L + 2)!}{2^{2J+2L+2}(\lambda - L + J + 1)!}} \times (1 - \cos \theta)^J (1 + \cos \theta)^L \ P_{n_\theta}^{(2L+1,2J+1)}(\cos \theta), \quad n_\theta = 0, 1, 2, \ldots \tag{121}
\]

where \(\lambda \) is quantized as \(\lambda - L - J = n_\theta \).

Let us now turn to the quasiradial equation (118). Setting \(w(\vartheta) = (\sin \vartheta)^{-\frac{7}{2}} R(\vartheta) \), we can rewrite this equation in the Pöschl-Teller form

\[
d^2w \over d\vartheta^2 + \left[(2D^2 \mathcal{E} + \omega^2 D^4 + \frac{49}{4}) - \frac{(2\lambda + 3)^2 - \frac{1}{4}}{\sin^2 \vartheta} - \frac{\omega^2 D^4}{\cos^2 \vartheta} \right] w = 0. \tag{122}
\]

Solving this equation we have following expression for quasiradial functions \(R(\vartheta) \equiv R_{n_r,\lambda}(\theta) \):

\[
R_{n_r,\lambda}(\theta) = (\sin \vartheta)^{2\lambda} (\cos \vartheta)^{\nu + \frac{1}{2}},
\]

\[
\times \ _2F_1(-n_r, n_r + \nu + 2\lambda + 4; 2\lambda + 4; \sin^2 \vartheta), \quad n_r = 0, 1, 2, \ldots \tag{123}
\]

with energy levels given by

\[
\mathcal{E} = \frac{1}{2D^2} [(n + 1)(n + 8) + (2\nu - 1)(n + 4)], \quad n = 0, 1, 2, \ldots \tag{124}
\]

where \(\nu = (\omega^2 D^4 + \frac{1}{4})^{\frac{1}{2}} \), and principal quantum number

\[
n = 2(n_r + \lambda) = 2(n_r + n_\theta + L + J).
\]

Thus, the full wave function \(\Phi \) is the simultaneous eigenfunction of the Hamiltonian and commuting operators \(M^2, J^2, L^2, T^2, J_3, L_3 \) and \(T_3 \). The explicit form of this function satisfying the normalization condition (see Appendix)

\[
-\frac{iD^5}{32\pi^2} \int_{S_{\mathcal{SC}}} \Phi^{JLT}_{n_r,\lambda Mmt} \Phi^{JLT\circ}_{n_r,\lambda Mmt} \sum_{i=1}^{8} u_i^2 \frac{dv(u)}{u_9^2} = 1
\]

is

\[
\Phi^{JLT}_{n_r,\lambda Mmt} = C_{n_r,\lambda}(\nu) \sqrt{\frac{(2L + 1)(2T + 1)}{2\pi^2}} R_{n_r,\lambda}(\vartheta) Z^{JL}_\lambda(\theta) G^{JM}_{Lm,Tl}(\alpha, \beta, \gamma; \alpha_H, \beta_H, \gamma_H) \tag{125}
\]

where \(R_{n_r,\lambda}(\vartheta) \) is given by formula (123) and

\[
C_{n_r,\lambda}(\nu) = \frac{4}{(2\lambda + 3)!} \sqrt{\frac{iv(\nu + 2\lambda + 2n_r + 4)\Gamma(2\lambda + \nu + n_r + 4)(n_r + 2\lambda + 3)!}{D^4\pi^2(1 - \epsilon^{2\nu r})(\lambda + n_r + 2)(n_r + 1)!\Gamma(\nu + n_r + 1)}}. \tag{126}
\]

Let us construct now the five-dimensional Coulomb system. The constraints tell us

\[
\tilde{T}^2 \Phi(u) = T(T + 1) \Phi(u) = 0. \tag{127}
\]
and therefore the oscillator eigenstates span the states with $T = 0$ and $L = J$. For $L = J$ the Jacobi polynomial in (121) is proportional to the Gegenbauer polynomial \[P_{\lambda-2L}^{(2L+1,2L+1)}(\cos \theta) = \frac{(4L + 2)! (\lambda + 1)!}{(2L + \lambda + 2)!} C^{2\lambda+\frac{3}{2}}_{\lambda-2L}(\cos \theta), \] (128)

and we obtain

\[
Z_{\lambda}^{JL}(\theta) \equiv Z_{I\lambda}(\theta) = 2^{2L+1} \Gamma(2L + \frac{3}{2}) \sqrt{\frac{(2\lambda + 3)(\lambda - 2L)!}{\pi(\lambda + 2L + 2)!}} \left(\frac{2L}{\lambda - 2L} \right)^{(\sin \theta)^{2L}} C^{2\lambda+\frac{3}{2}}_{2L+3}(\cos \theta). \] (129)

Then from properties of Clebsch-Gordan coefficients $r_{JM}^{L}(\alpha, \beta, \gamma; \alpha_H, \beta_H, \gamma_H) = 1$ we see that the expansion (115) yields

\[
G_{l\lambda}^{JM}(\alpha, \beta, \gamma; \alpha_H, \beta_H, \gamma_H) = D_{m,m'}^{L}(\alpha, \beta, \gamma) \delta_{J\lambda} \delta_{Mm'}. \] (130)

Thus, the function Φ now depends only on variables $(\vartheta, \theta, \alpha, \beta, \gamma)$. Observing that $\lambda = n_\vartheta + 2L = 0, 1, 2, \ldots, n$, introducing the new principal quantum number $N = (n_r + \lambda) = \frac{n}{2} = 0, 1, 2, \ldots$ and setting $k = i\mu$, we easily get from the oscillator energy spectrum (124) the reduced system energy levels

\[
E_N = \frac{N(N + 4)}{2R^2} - \frac{\mu^2}{2(N + 2)^2}. \] (131)

Noting that $\nu = i\sigma - (N + 2)$ and taking into account the formulas (123) and (125)-(130), we finally have the solution of the Schrödinger equation (105) as

\[
\Psi_{n_r,m_m'}^{L\lambda}(\chi, \theta; \alpha, \beta, \gamma) = D_{m_m'}^{L}(\alpha, \beta, \gamma) \Phi_{n_r,m_m'}^{L\lambda}(\chi, \theta; \alpha, \beta, \gamma) = N_{n_r}^{L\lambda}(\sigma) R_{n_r,\lambda}(\vartheta) Z_{L\lambda}(\theta) \sqrt{\frac{2L + 1}{2\pi^2}} D_{m_m'}^{L}(\alpha, \beta, \gamma) \] (132)

where $Z_{L\lambda}(\theta)$ is given by (129) and

\[
R_{n_r,\lambda}(\chi) = (\sin \chi)^{\lambda} e^{-i\chi(N - \lambda - i\sigma)} 2F_1(-N + \lambda, \lambda + 2 + i\sigma; 2\lambda + 4; 1 - e^{2i\chi}), \] (133)

\[
N_{n_r,\lambda}^{L}(\sigma) = \frac{2^{\lambda+2} e^{\frac{\pi i}{2}}}{(2\lambda + 3)!} \left[(N + 2)^2 + \sigma^2 \right] (\lambda + 3)! 2^{\lambda+2} e^{\frac{\pi i}{2}} \left[\Gamma(\lambda + 2 + i\sigma) \right]. \] (134)

Thus, we have constructed the wave function and energy spectrum for the five-dimensional Coulomb problem. In the contraction limit $R \to \infty$ for finite N we get the formula for the discrete energy spectrum of the five-dimensional Coulomb problem \[37\]

\[
\lim_{R \to \infty} E_N(R) = -\frac{\mu^2}{(N + 2)^2}, \quad N = 0, 1, \ldots
\]
Taking the limit \(R \to \infty \) and using asymptotic formulas as in (56) we get from (132)-(134)

\[
\lim_{R \to \infty} \Psi_{\lambda m m'}^{\lambda}(\chi, \theta; \alpha, \beta, \gamma) = R_{N \lambda}(r) Z_{\lambda}(\theta) \sqrt{\frac{2L + 1}{2\pi^2}} D_{m m'}^L(\alpha, \beta, \gamma)
\]

with

\[
R_{N \lambda}(r) = \frac{4\mu^{5/2}}{(N + 2)^3} \sqrt{(N + \lambda + 3)! (N - \lambda)!} \left(\frac{2\mu r}{N + 2} \right)^{\lambda} e^{-\frac{\pi i}{2}} \frac{1}{(2\lambda + 3)!} \frac{\Gamma(-N + \lambda; 2\lambda + 4; 2\mu r N + 2)}{N + 2},
\]

which coincides with the five-dimensional Coulomb wave function obtained in paper [37].

4 Summary and Discussion

In this paper we have constructed a series of mappings \(S_{2C} \to S_2, S_{4C} \to S_3 \) and \(S_{8C} \to S_5 \), that are generalize those well known from the Euclidean space Levi-Civita, Kustaanheimo-Steifel and Hurwitz transformations. We have shown, that as in case of flat space, these transformations permit one to establish the correspondence between the Kepler-Coulomb and oscillator problems in classical and quantum mechanics for the respective dimensions. We have seen that using these generalized transformations (12), (64) and (94) we can completely solve the quantum Coulomb system on the two-, three- and five-dimensional sphere, including eigenfunctions with correct normalization constant and energy spectrum.

For the solution of the quantum Coulomb problem, first we transformed the Schrödinger equation to the equation with oscillator potential on the complex sphere. Then, via complexification of the Coulomb coupling constant \(\mu (\mu = Ze^2) \) and the quasiradial variable \(\chi \) this problem was translated to the oscillator system on the real sphere and solved.

It is interesting to note that the complexification of constant \(Ze^2 / R \) and the quasiradial variable were first used by Barut, Inomata and Junker [24] in the path integral approach to the Coulomb system on the three-dimensional sphere and hyperboloid, and further were applied to two- and three-dimensional superintegrable systems on spaces with constant curvature [27, 30]. The substitution used in [24]

\[
e^{i\chi} = -\coth \beta, \quad \beta \in (-\infty, \infty)
\]

is correct as an analytic continuation to the region \(0 \leq \Re \chi \leq \pi \) and \(-\infty < \Im \chi \leq 0 \) and translates the Coulomb quasiradial equation with variable \(\chi \) to the modified Pöschl-Teller equation with variable \(\beta \). It is possible to show that there exists a connection between (136) and generalized Levi-Civita transformations on constant curvature spaces. Indeed, for instance, along with the mapping \(S_{2C} \to S_2 \) we can determine a mapping \(H_{2C} \to S_2 \), i.e. from the two-dimensional complex hyperboloid to the real sphere:

\[
s_1^2 + s_2^2 + s_3^2 = (u_3^2 - u_1^2 - u_2^2)^2.
\]

This transformation has the form

\[
s_1 = i \sqrt{u_3^2 - u_1^2 - u_2^2} \cdot \frac{u_1^2 - u_2^2}{2u_3},
\]

\[
s_2 = u_2,
\]

\[
s_3 = u_3.
\]
\begin{align}
 s_2 &= \sqrt{u_3^2 - u_1^2 - u_2^2} \cdot \frac{u_1 u_2}{u_3}, \\
 s_3 &= \sqrt{u_3^2 - u_1^2 - u_2^2} \left(u_3 - \frac{u_1^2 + u_2^2}{2u_3} \right),
\end{align}

and translates the Schrödinger equation for the Coulomb problem on the sphere to the oscillator problem on the complex hyperboloid. Then the substitution (136) transforms the oscillator problem from the complex to the real hyperboloid, a solution well known from papers [30, 29].

The method described in this paper can be applied not just to (11) but to many Coulomb-like potentials. In particular the generalized two-dimensional Kepler-Coulomb problem may be transformed to the Rosokhatius system on the two-dimensional sphere [28].

As we have seen, in spite of the similarity of transformations (4) and (12) on the sphere and Euclidean space there exist essential differences. Equations (12), (64) and (94) determine the transformations between complex and real spheres or in ambient spaces a mapping $C_{2p+1} \to R_{p+2}$ for $p = 1, 2, 4$. Evidently these facts are closely connected to Hurwitz theorem [38], according to which the nonbijective bilinear transformations satisfy the identity

\begin{equation}
 s_1^2 + s_2^2 + \ldots + s_f^2 = (u_1^2 + u_2^2 + \ldots + u_n^2)^2
\end{equation}

only for four pair of dimensions: $(f, n) = (1, 1), (2, 2), (3, 4)$ and $(5, 8)$, which corresponds to a mapping $R_{2p} \to R_{p+1}$ for $p = 1, 2, 4$ respectively.

For transformations between real spaces of constant curvature the situation is more complicated, and more interesting. For example, the two-dimensional transformation on the hyperboloid is

\begin{align}
 s_1 &= \sqrt{u_3^2 + u_1^2 + u_2^2} \cdot \frac{u_1^2 - u_3^2}{2u_3}, \\
 s_2 &= \sqrt{u_3^2 + u_1^2 + u_2^2} \frac{u_1 u_2}{u_3}, \\
 s_3 &= \sqrt{u_3^2 + u_1^2 + u_2^2} \left(u_3 \pm \frac{u_1^2 + u_2^2}{2u_3} \right),
\end{align}

and

\begin{equation}
 s_3^2 - s_2^2 - s_1^2 = (u_3^2 \pm u_1^2 \pm u_2^2)^2.
\end{equation}

Thus, the upper and lower hemispheres of the real sphere or the upper and lower sheets of the two-sheet hyperboloid in u-space map to the upper and lower sheets, respectively, of the two-sheet hyperboloid in s-space.

The next example is the transformation

\begin{align}
 s_1 &= \sqrt{u_1^2 + u_2^2 - u_3^2} \cdot \frac{u_1^2 - u_2^2}{2u_3}, \\
 s_2 &= \sqrt{u_1^2 + u_2^2 - u_3^2} \frac{u_1 u_2}{u_3}, \\
 s_3 &= \sqrt{u_1^2 + u_2^2 - u_3^2} \left(u_3 - \frac{u_1^2 + u_2^2}{2u_3} \right),
\end{align}
and
\[s_1^2 + s_2^2 - s_3^2 = (u_1^2 + u_2^2 - u_3^2)^2. \] (142)

Here the one-sheet hyperboloid in \(u \)-space maps to the one-sheet hyperboloid in \(s \)-space. From transformations (139) and (141) (using methods as in §2) it is easy to show that in the contraction limit \(D \to \infty \) this transformation goes to the real Levi-Civita transformation (up to the translation \(\bar{u}_i \to \sqrt{2}u_i \)) (4). This shows that the method of this article can be adapted to treat a Kepler-Coulomb system on the two- and one sheet hyperboloids.

Finally, note that in this article we do not discuss two important questions. First is the correspondence between integrals of motion for Kepler-Coulomb and oscillator systems. Second is the connection between separable systems of coordinates (not only spherical) under mappings (12), (64) and (94). This investigation will be carried out elsewhere.

5 Appendix

We present some differential aspects of the generalized Levi-Civita, KS and Hurwitz transformations. These calculations we are related to those in [15, 18] for flat space.

5.1 Transformation \(S_2^C \to S_2 \)

The Laplace-Beltrami operator on the \(u \)-sphere in complex spherical coordinates (17) is
\[\Delta^{(2)}_u = \frac{1}{D^2} \left[(u_1 \partial_{u_2} - u_2 \partial_{u_1})^2 + (u_3 \partial_{u_2} - u_2 \partial_{u_3})^2 + (u_3 \partial_{u_2} - u_2 \partial_{u_3})^2 \right] \]
\[= \frac{2i}{D^2} \sin \chi e^{-i\chi} \left\{ \frac{1}{\sin \chi} \frac{\partial}{\partial \chi} \sin \chi \frac{\partial}{\partial \chi} + \frac{1}{\sin^2 \chi} \frac{\partial^2}{\partial \varphi^2} \right\} \] (143)
while the usual Laplace-Beltrami operator on the \(s \)-sphere in spherical coordinates \((\chi, \varphi)\) has the form
\[\Delta^{(2)}_s = \frac{1}{R^2} \left[(s_1 \partial_{s_2} - s_2 \partial_{s_1})^2 + (s_3 \partial_{s_2} - s_2 \partial_{s_3})^2 + (s_3 \partial_{s_2} - s_2 \partial_{s_3})^2 \right] \]
\[= \frac{1}{R^2} \left\{ \frac{1}{\sin \chi} \frac{\partial}{\partial \chi} \sin \chi \frac{\partial}{\partial \chi} + \frac{1}{\sin^2 \chi} \frac{\partial^2}{\partial \varphi^2} \right\} \] (144)

The two Laplacians are connected through
\[\Delta^{(2)}_s = -\frac{u_3^2}{u_1^2 + u_2^2} \frac{1}{D^2} \Delta^{(2)}_u. \] (145)

The volume elements in \(u \) and \(s \)-spaces are
\[dv(u) = -\frac{iD^2}{2} e^{i\chi} d\chi d\varphi, \quad dv(s) = R^2 \sin \chi d\chi d\varphi \] (146)
and
\[\frac{1}{R} dv(s) = -\frac{u_1^2 + u_2^2}{u_3^2} dv(u). \] (147)
We have (the variable \(\varphi \) runs the from 0 to \(4\pi \))
\[
\int_{S_2} \ldots dv(s) = -\frac{D^2}{2} \int_{S_2c} \ldots \frac{u_1^2 + u_2^2}{u_3^2} dv(u).
\] (148)

5.2 Transformation \(S_{4c} \rightarrow S_3 \)

The Laplace-Beltrami operator on the \(u \)-sphere in \((\chi, \alpha, \beta, \gamma)\) coordinates is
\[
\Delta_u^{(4)} = \frac{2i}{D^2} \sin \chi e^{-i\chi} \left[\frac{e^{-i\chi}}{\sin^2 \chi} \frac{\partial}{\partial \chi} e^{i\chi} \sin^2 \chi \frac{\partial}{\partial \chi} + \frac{\bar{L}^2}{\sin^2 \chi} \right]
\] (149)
where
\[
L_1 = i \left(\cos \alpha \cot \beta \frac{\partial}{\partial \alpha} + \sin \alpha \frac{\partial}{\partial \beta} - \frac{\cos \alpha}{\sin \beta} \frac{\partial}{\partial \gamma} \right),
\]
\[
L_2 = i \left(\sin \alpha \cot \beta \frac{\partial}{\partial \alpha} - \cos \alpha \frac{\partial}{\partial \beta} - \frac{\sin \alpha}{\sin \beta} \frac{\partial}{\partial \gamma} \right),
\]
\[
L_3 = -i \frac{\partial}{\partial \alpha},
\]
and
\[
\bar{L}^2 = \left[\frac{\partial^2}{\partial \beta^2} + \cot \beta \frac{\partial}{\partial \beta} + \frac{1}{\sin^2 \beta} \left(\frac{\partial^2}{\partial \gamma^2} - 2 \cos \beta \frac{\partial}{\partial \gamma} \frac{\partial}{\partial \alpha} + \frac{\partial^2}{\partial \alpha^2} \right) \right],
\] (151)
while the usual Laplace-Beltrami operator on the \(s \)-sphere in \((\chi, \beta, \alpha)\) coordinates is
\[
\Delta_s^{(3)} = \frac{1}{R^2} \left[\frac{1}{\sin^2 \chi} \frac{\partial}{\partial \chi} \sin^2 \chi \frac{\partial}{\partial \chi} + \frac{1}{\sin^2 \chi} \left(\frac{\partial^2}{\partial \beta^2} + \cot \beta \frac{\partial}{\partial \beta} + \frac{1}{\sin^2 \beta} \frac{\partial^2}{\partial \alpha^2} \right) \right].
\]
The two Laplace-Beltrami operators are connected by
\[
\Delta_u^{(4)} = \frac{2i}{D^2} \sin \chi e^{-i\chi} \left[D^4 \Delta_s^{(3)} + \left(\frac{1}{4} - i \cot \chi \right) + \frac{1}{\sin^2 \chi \sin^2 \beta} \frac{1}{\sin^2 \beta} \frac{\partial}{\partial \gamma} \left(\frac{\partial}{\partial \gamma} - 2 \cos \beta \frac{\partial}{\partial \alpha} \right) \right] e^{i\beta},
\]
and the operator acting on functions of variables \((\chi, \beta, \alpha)\) is
\[
\Delta_s^{(3)} = -u_5^{\frac{1}{2}} \left\{ \frac{u_5}{u_1^2 + u_2^2 + u_3^2 + u_4^2} \left[\frac{1}{D^2} \Delta_u^{(4)} - \frac{1}{D^4} \left(\frac{3}{4} u_1^2 + u_2^2 + u_3^2 + u_4^2 \right) \frac{u_5}{u_5^{\frac{1}{2}}} \right] \right\} u_5^{\frac{1}{2}}, (152)
\]
The volume elements on \(S_{4c} \) and \(S_3 \) are given by
\[
dv(u) = -\frac{D^4}{4} e^{2i\chi} \sin \chi \sin \beta d\chi d\beta d\alpha d\gamma, \quad dv(s) = R^3 \sin^2 \chi \sin \beta d\chi d\beta d\alpha,
\]
where
\[
\frac{u_1^2 + u_2^2 + u_3^2 + u_4^2}{u_5^3} \, dv(u) = \frac{i}{2D^2} \, dv(s) \, d\gamma.
\] (153)

Integration over \(\gamma \in [0,4\pi] \) gives
\[
\int_{S_3} \ldots dv(s) = -\frac{iD^2}{2\pi} \int_{S_{sc}} \ldots \frac{u_1^2 + u_2^2 + u_3^2 + u_4^2}{u_5^3} \, dv(u).
\]

5.3 Transformation \(S_{8c} \rightarrow S_5 \)

The Laplace-Beltrami operator on the \(u \)-sphere in \((\chi, \vartheta; \alpha, \beta, \gamma, \alpha_H, \beta_H, \gamma_H)\) coordinates is
\[
\Delta^{(8)}_u = \frac{2i}{D^2} \sin \chi e^{-i\chi} \left\{ \frac{e^{-3i\chi}}{\sin^4 \chi} \frac{\partial}{\partial \chi} \sin^4 \chi \frac{\partial}{\partial \chi} + \frac{1}{\sin^2 \chi} \frac{\partial}{\partial \vartheta} \sin^3 \vartheta \frac{\partial}{\partial \vartheta} \right. \\
- \frac{4(\vec{L}^2 + 2\vec{T} \cdot \vec{T} \sin^2 \frac{\vartheta}{2} + \vec{T}^2 \sin^2 \frac{\vartheta}{2})}{\sin^2 \vartheta} \left\}
\] (154)

where operator \(\vec{L} \) is given by (150) and \(\vec{T} \) is
\[
\begin{align*}
T_1 &= i \left(\cos \alpha_H \cot \beta_H \frac{\partial}{\partial \alpha_H} + \sin \alpha_H \frac{\partial}{\partial \beta_H} - \frac{\cos \alpha_H}{\sin \beta_H} \frac{\partial}{\partial \gamma_H} \right), \\
T_2 &= i \left(\sin \alpha_H \cot \beta_H \frac{\partial}{\partial \alpha_H} - \cos \alpha_H \frac{\partial}{\partial \beta_H} - \frac{\sin \alpha_H}{\sin \beta_H} \frac{\partial}{\partial \gamma_H} \right), \\
T_3 &= -i \frac{\partial}{\partial \alpha_H}.
\end{align*}
\] (155)

The Laplace-Beltrami operator on the five dimensional sphere in \((\chi, \vartheta; \alpha, \beta, \gamma)\) coordinates is
\[
\Delta^{(5)}_s = \frac{1}{R^2} \left[\frac{1}{\sin^4 \chi} \frac{\partial}{\partial \chi} \sin^4 \chi \frac{\partial}{\partial \chi} + \frac{1}{\sin^2 \chi} \left(\frac{1}{\sin^2 \vartheta} \frac{\partial}{\partial \vartheta} \sin^3 \vartheta \frac{\partial}{\partial \vartheta} - \frac{4\vec{L}^2}{\sin^2 \vartheta} \right) \right].
\] (156)

The Laplace-Beltrami operators are related by
\[
\Delta^{(8)}_u = \frac{2i}{D^2} \sin \chi e^{-i\chi} \left[D^4 \Delta^{(5)}_s + \left(\frac{9}{4} - 6i \cot \chi \right) - \frac{1}{\sin^2 \chi} \frac{2\vec{L} \cdot \vec{T} + \vec{T}^2}{\cos^2 \frac{\vartheta}{2}} \right] e^{i\chi}
\]
and the operator acting on a function of variables \((\chi, \vartheta; \alpha, \beta, \gamma)\) is
\[
\Delta^{(5)}_s = -u_9^4 \left\{ \frac{1}{D^2} \sum_{i=1}^{8} \frac{u_i^2}{u_9^2} \left[\Delta^{(8)}_u - \frac{1}{D^2} \left(12 + \frac{15}{4} \frac{1}{u_9^2} \sum_{i=1}^{8} u_i^2 \right) \right] \right\} u_9^{-\frac{4}{3}}.
\] (157)
The volume elements on S_{8C} and S_5 have the form
\begin{align*}
 dv(u) &= -8D^8 e^{4ix} \sin^3 \chi \sin^3 \theta d\chi d\theta d\Omega_H, \\
 dv(s) &= R^5 \sin^4 \chi \sin^3 \theta d\chi d\theta d\Omega,
\end{align*}
where
\[d\Omega = \frac{1}{8} \sin \beta d\alpha d\beta d\gamma. \]

We have
\[\frac{1}{u_9^5} \sum_{i=1}^{8} u_i^2 dv(u) = \frac{16i}{D^5} dv(s) d\Omega_H \]
and integration over the variables $(\alpha_H, \beta_H, \gamma_H)$ gives the formula
\[\int_{S_5} \ldots dv(s) = -\frac{iD^5}{32\pi^2} \int_{S_{8C}} \ldots \sum_{i=1}^{8} u_i^2 \frac{dv(u)}{u_9^5}. \]

Acknowledgments

We thank Professors A. Odzijewicz, A.N. Sissakian, V.M. Ter-Antonyan and P. Winternitz, and Drs. A.A. Izmest’ev and L.G. Mardoyan for interest in this work and very fruitful discussions. Two of the authors E.K. and G.P. thank each others institutions for kind hospitality during visits to Dubna and Hamilton.

References

