Vacuum effects in an asymptotically uniformly accelerated frame with a constant magnetic field

Víctor M. Villalba *
Centro de Física
Instituto Venezolano de Investigaciones Científicas, IVIC
Apdo 21827, Caracas 1020-A, Venezuela

Juan Mateu †
Centro de Investigaciones de Astronomía CIDA,

Abstract

In the present article we solve the Dirac-Pauli and Klein Gordon equations in an asymptotically uniformly accelerated frame when a constant magnetic field is present. We compute, via the Bogoliubov coefficients, the density of scalar and spin 1/2 particles created. We discuss the rôle played by the magnetic field and the thermal character of the spectrum.
I. INTRODUCTION

The study of quantum effects in nonintertial frames of reference has been thoroughly discussed in the literature. The pioneer articles of Fulling and Unruh1,2 showing the non-equivalence of the quantization of scalar fields in Rindler and Minkowski coordinates and the thermal character of the radiation were the origin of a large body of articles devoted to analyze quantum measurement processes in uniformly accelerated frames and possible interpretations thereof.

The advantage of considering Rindler coordinates are many. They can be associated with a uniformly accelerated observer. They also possess a global timelike Killing vector and the (massive and massless) Klein-Gordon as well as the Dirac equations are separable in the Rindler coordinates. The Rindler Coordinates can be extended to cover the whole space time and thermal effects can be related, via the equivalence principle, with the Hawking effect3,4.

The study of quantum effects in non uniformly accelerated frames of reference presents, at first glance, different technical problems. Among them we can mention that the system of coordinates associated with non-Rindler Kinematics do not possess in general a timelike Killing vector, and therefore a standard interpretation of positive and negative frequency solutions is absent. The complete separation of variables of the Klein-Gordon and the Dirac equations is possible only in a restricted set of coordinates, and those coordinates allowing separability sometimes present coordinate singularities; therefore the quantization scheme fails.

Among the non-static coordinate systems where the Klein-Gordon and Dirac equations separate we have5,6

\[t + x = \frac{2}{\omega} \sinh \omega (T + X), \quad t - x = \frac{1}{\omega} e^{-\omega (T - X)}, \quad y = y, \quad z = z. \tag{1.1} \]

The line element associated with the coordinate transformation (1.1) is

\[ds^2 = \left(e^{-2\omega T} + e^{2\omega X} \right) (dX^2 - dT^2) + dy^2 + dz^2. \tag{1.2} \]

The separability of the Klein-Gordon equation in (1.1) has been discussed by Kalnins5, one the authors has accomplished a complete separability of the Dirac7 equation in (1.1).

The kinematics associated with the coordinates (1.1) have been exhaustively analyzed by Costa6,8. The proper time along $X = X_0$ is

\[s = \frac{1}{\omega} e^{-2\omega T} + e^{2\omega X_0} + \frac{1}{\omega} e^{\omega X_0} \sinh^{-1} e^{\omega (T + X_0)}. \]

Considering T as the evolution parameter, we have that an observer co-moving to the system (1.1) has a four-velocity given by

\[\mathbf{V} = \left(\cosh \omega (X + T) + \frac{e^{\omega (X - T)}}{2}, \cosh \omega (X + T) - \frac{e^{\omega (X - T)}}{2}, 0, 0 \right) \tag{1.3} \]

and experiences an acceleration whose components are
\[a_{t,x} = \frac{\omega \sinh \omega (X + T) \mp e^{\omega (X-T)} e^{2\omega X}}{e^{-2\omega T} + e^{2\omega X}} + \cosh \omega (X + T) \frac{e^{\omega (X-T)}}{(e^{-2\omega T} + e^{2\omega X})^2} e^{-2\omega T}, \quad a_y = 0, \quad a_z = 0. \]

(1.4)

From the absolute value of the acceleration, we readily obtain that \(a = |a^\mu a_\mu|^{1/2} \) takes the form

\[a = \omega e^{2\omega X} \left(e^{-2\omega T} + e^{2\omega X}\right)^{-\frac{3}{2}}. \]

(1.5)

From (1.5) we obtain that the accelerated frame becomes inertial as \(T \to -\infty \), and on the other hand it evolves toward an uniformly accelerated frame as \(T \to +\infty \).

Quantum effects in the non-inertial frame (1.1) have been discussed by Costa6 and by Percoco and Villalba9 for Dirac Particles. The nonexistence of a global timelike Killing vector for the line element (1.2) precludes making a straightforward identification of the positive and negative frequency solutions of the scalar and Dirac wave equations. In order to circumvent this difficulty, we identify positive and negative frequency modes comparing the asymptotic solutions of the wave equations with those obtained for the relativistic Hamilton-Jacobi equation.

Recently, Bautista10, has discussed, in a Rindler accelerated frame, vacuum effect associated with a spin 1/2 particle with anomalous magnetic moment in a constant magnetic field directed along the acceleration. The author obtains a Planckian distribution of created particles that depends on the magnetic field via the non-minimal anomalous coupling. The author also discusses deviation of the energy density from a thermal distribution due to the magnetic field. As a preliminary step towards a deeper understanding of quantum processes in non inertial frames of reference, in the present paper we analyze vacuum effects associated with scalar and spin 1/2 particles in the coordinates (1.1), when a constant magnetic field is also present.

The article is structured as follows: In Section II, we solve the relativistic Hamilton-Jacobi equation with a constant magnetic field in the accelerated frame (1.1). In Sec. III, we solve the Klein-Gordon equation and compute the rate of scalar particles created. In Sec. IV, we solve the Dirac equation with anomalous magnetic moment and compute the density of particles related by the magnetic field in the non inertial frame (1.1). Finally, we discuss the results obtained in this article in Sec. V.

II. SOLUTION OF THE HAMILTON-JACOBI EQUATION

The relativistic Hamilton-Jacobi equation coupled to an electromagnetic field can be written as6,11

\[g^{\alpha \beta} \left(\partial_\alpha S - eA_\alpha \right) \left(\partial_\beta S - eA_\beta \right) + m^2 = 0 \]

(2.1)

where here and elsewhere we adopt the units where \(c = 1 \), and \(\hbar = 1 \). The vector potential associated with a constant magnetic field \(\vec{B} = B_x \hat{x} \) directed along the acceleration (1.4) has the form

\[\vec{A} = (0, 0, B_z \hat{z}, 0) \]

(2.2)
It is not difficult to verify that (2.2) satisfies the conditions \(\nabla_\mu A^\mu = 0 \) and \(F^{\alpha \beta} F_{\alpha \beta} = 2B_x^2 \).

Substituting the line element (1.2) into (2.1) we obtain

\[
\frac{1}{e^{\omega X} + e^{-\omega T}} \left[(\partial_X S)^2 - (\partial_T S)^2 \right] + (\omega_o z - \partial_y S)^2 + (\partial_z S)^2 + m^2 = 0 \tag{2.3}
\]

where \(\omega_o = eB_x \). The solution of Eq. (2.3) has the form

\[
S(X, y, z, T) = -k_y y \pm i \int \sqrt{m^2 - \lambda^2 + (k_y + \omega_o z)^2} dz \pm \int \sqrt{k - \lambda^2 e^{2\omega X}} dX \pm \int \sqrt{k + \lambda^2 e^{-2\omega T}} dT, \tag{2.4}
\]

which in the asymptotic limit as \(X \to \infty \) and \(T \to -\infty \) reduces to

\[
S(X, y, z, T) = -k_y y \pm i \int \sqrt{m^2 - \lambda^2 + (k_y + \omega_o z)^2} dz \pm \frac{\lambda}{\omega} e^{\omega X} \pm \frac{\lambda}{\omega} e^{-\omega T}. \tag{2.5}
\]

The wave function \(u(X, y, z, T) = e^{iS} \) gives the quasi-classical asymptotes of the solutions of the Klein-Gordon and Dirac equations. In the remote past, as \(T \to -\infty \), \(u_{-\infty}(X, y, z, T) \) takes the form

\[
u_{-\infty}(X, y, z, T) = C(y, z) e^{-\frac{1}{2} e^{\omega X} \pm \frac{1}{2} e^{-\omega T}} \tag{2.6}
\]

where in (2.6) the upper and lower signs correspond respectively to positive and negative frequency modes.

Analogously, we have that as \(X \to \infty \) and \(T \to \infty \) (2.4) reduces to

\[
S(X, y, z, T) = -k_y y \pm i \int \sqrt{m^2 - \lambda^2 + (k_y + \omega_o z)^2} dz \pm \frac{\lambda}{\omega} e^{\omega X} \pm \frac{\lambda}{\omega} e^{-\omega T} \tag{2.7}
\]

and consequently,

\[
u_{\infty}(X, y, z, T) = C'(y, z) e^{-\frac{1}{2} e^{\omega X} \pm \frac{1}{2} e^{-\omega T}} \exp(\pm \frac{i\lambda^2 e^{-2\omega T}}{2\omega \sqrt{k}}) \tag{2.8}
\]

where, in the present case, the upper sign corresponds to positive frequency modes and the lower sign to negative modes.

The results (2.6) and (2.8) give the quasi-classical asymptotic behaviors of the relativistic wave equations in the accelerated coordinates (1.1).

III. SOLUTION OF THE KLEIN GORDON EQUATION

In this section we proceed to solve the Klein-Gordon equation, coupled to a constant magnetic field, in the accelerated coordinates with the line element given by (1.2).

The covariant generalization of the Klein Gordon equation is\(^4,12\)

\[
g^{\alpha \beta}(\nabla_\alpha - ieA_\alpha)(\nabla_\beta - ieA_\beta)\Phi - m^2\Phi = 0 \tag{3.1}
\]

where \(\nabla_\alpha = \partial_\alpha - \Gamma_\alpha \) is the covariant derivative, and \(A_\alpha \) is the vector potential given by (2.2).
Substituting Eq. (1.2) into (3.1) we readily obtain

\[
\left[\frac{1}{e^{-2\omega T} + e^{2\omega X}} \left(\partial_T^2 - \partial_X^2 \right) - \left(\partial_y^2 + \partial_z^2 \right) + i2eB_xz\partial_y + e^2B_xz^2 - m^2 \right] \psi = 0. \tag{3.2}
\]

Since Eq. (3.2) commutes with the operator \(-i\partial_y\) we can look for a solution of the form \(\psi = \phi(X, z, T)e^{ik_yy}\) which reduces Eq. (3.2) to

\[
\left\{ \frac{1}{e^{-2\omega T} + e^{2\omega X}} \left(\partial_T^2 - \partial_X^2 \right) + \left(eB_xz - k_y \right)^2 - \partial_z^2 - m^2 \right\} \phi = 0. \tag{3.3}
\]

Eq. (3.3) can be separated in the form \(\phi(X, z, T) = \eta(X, T)f(z)\). The resulting equations are

\[
\left[\frac{1}{e^{-2\omega T} + e^{2\omega X}} \left(\partial_T^2 - \partial_X^2 \right) + \lambda^2 \right] \eta = 0 \tag{3.4}
\]

\[
\frac{d^2f}{dz^2} = \left[(\omega_0z - k_y)^2 + (-m^2 - \lambda^2) \right] f(z) \tag{3.5}
\]

where \(\lambda\) is a separation constant. Variables \(X\) and \(T\) can be separated in Eq. (3.4) after making the substitution: \(\eta(X, T) = f_X(X)f_T(T)\). The resulting equations for \(X\) and \(T\) are

\[
\frac{d^2f_X}{dX^2} = -\left(-\lambda^2 e^{2\omega X} + \epsilon^2\right)f_X(X) \tag{3.6}
\]

\[
\frac{d^2f_T}{dT^2} = -\left(+\lambda^2 e^{-2\omega T} + \epsilon^2\right)f_T(T) \tag{3.7}
\]

where \(\epsilon\) is a constant of separation. Eq. (3.6) takes a more familiar form in terms of Bessel functions\(^{13,14}\) after introducing the variable \(u = e^{\omega X}\)

\[
u^2 \frac{d^2f_X}{du^2} + u \frac{df_X}{du} + \left(\frac{\epsilon^2}{\omega^2} - \frac{\lambda^2}{\omega^2}u^2 \right) f_u = 0 \tag{3.8}
\]

whose solution are the modified Bessel functions\(^{13}\) \(I_\nu(z)\) and \(K_\nu(z)\)

\[
f_X(X) = AI_{\pm\nu} \left(\frac{\lambda}{\omega} e^{\omega X} \right) + BK_{\nu} \left(\frac{\lambda}{\omega} e^{\omega X} \right) \tag{3.9}
\]

where \(A\), \(B\) are arbitrary constants and \(\nu = \frac{\epsilon}{\omega}\). The solution of Eq. (3.7) can be obtained in the same manner. Introducing the change of variables \(v = e^{-\omega T}\) in (3.7) we get the Bessel equation

\[
u^2 \frac{d^2f_T}{dv^2} + v \frac{df_T}{dv} + \left(\frac{k}{\omega^2} + \frac{\lambda^2}{\omega^2}v^2 \right) f_v = 0 \tag{3.10}
\]

whose solutions can be expressed in terms of the Hankel functions\(^{13}\) \(H^{(1)}_\nu(z)\) and \(H^{(2)}_\nu(z)\)
\[f_T(T) = A' H_{iv}^{(1)} \left(\frac{\lambda}{\omega} e^{-\omega T} \right) + B' H_{iv}^{(2)} \left(\frac{\lambda}{\omega} e^{-\omega T} \right) \]

(3.11)

where \(A' \) and \(B' \) are arbitrary constants.

In order to solve Eq. (3.5), we introduce the new variable \(x = \sqrt{\frac{2}{\omega_o}}(\omega_o z + k_y) \). Eq. (3.5) takes the form

\[\frac{d^2 f}{dx^2} - \left[\frac{x^2}{4} + a \right] f(x) = 0 \]

(3.12)

where \(a = -\frac{\mu^2 + \lambda^2}{2\omega_o} \). Eq. (3.12) is the Parabolic cylinder equation\(^{13} \). Therefore the solution of Eq. (3.5) is

\[f(x) = U \left(a, \sqrt{\frac{2}{\omega_o}}(\omega_o z + k_y) \right) \]

(3.13)

Let us analyze the asymptotic behavior of the solutions of Eq. (3.2) As \(X \rightarrow \infty \) and \(T \rightarrow -\infty \) we obtain that

\[
\eta_{-\infty}(X,T) = K_{iv} \left(\frac{\lambda}{\omega} e^{\omega X} \right) \left[A_{-\infty} H_{iv}^{(1)} \left(\frac{\lambda}{\omega} e^{-\omega T} \right) + B_{-\infty} H_{iv}^{(2)} \left(\frac{\lambda}{\omega} e^{-\omega T} \right) \right] = e^{-\frac{\pi}{\omega} e^{-\omega X}} \left[A'_{-\infty} e^{i\pi \omega X} + B'_{-\infty} e^{-i\pi \omega X} \right] \]

(3.14)

comparing (3.14) with (2.6) we identify the first right hand side term as a positive frequency mode, and the second term as a negative frequency. On the other hand when \(X \rightarrow \infty \) and \(T \rightarrow +\infty \) we obtain

\[
\eta_{\infty}(X,T) = K_{iv} \left(\frac{\lambda}{\omega} e^{\omega X} \right) \left[A_{\infty} J_{iv}^{(1)} \left(\frac{\lambda}{\omega} e^{-\omega T} \right) + B_{\infty} J_{iv}^{(2)} \left(\frac{\lambda}{\omega} e^{-\omega T} \right) \right] = e^{-\frac{\pi}{\omega} e^{\omega X}} \left[A'_{\infty} e^{-i\pi \omega X} + B'_{\infty} e^{i\pi \omega X} \right] \]

(3.15)

Also, comparing (3.15) with (2.8) we can identify the first and second right hand side terms in (3.15) as positive and negative frequency modes respectively.

Now, we are going to express an inertial positive frequency mode \(\eta \) in terms of the accelerated modes in the asymptotic future \(T \rightarrow +\infty \)

\[
\eta_{\text{inertial}}(X,T) = C_0 K_{iv} \left(\frac{\lambda}{\omega} e^{\omega X} \right) H_{iv}^{(1)} \left(\frac{\lambda}{\omega} e^{-\omega T} \right) \]

(3.16)

in terms of the accelerated modes in the asymptotic future \(T \rightarrow +\infty \)

\[
\eta_{\text{acc}}(X,T) = C_1 K_{iv} \left(\frac{\lambda}{\omega} e^{\omega X} \right) J_{iv} \left(\frac{\lambda}{\omega} e^{-\omega T} \right) \]

(3.17)

where \(C_1 \) and \(C_0 \) are normalization constants according to the standard inner product\(^3 \)

\[
\langle \eta_i, \eta_j \rangle = \left(\int \eta_i \bar{\eta}_j \, dS^a \right) \]

for the Klein Gordon equation. The recurrence relation between \(H_{iv}^{(1)}(z) \) and \(J_{iv}(z) \) permits one to express \(\eta_{\text{inertial}}(X,T) \) in terms of \(\eta_{\text{acc}}(X,T) \) as follows

\[
\eta_{\text{inertial}}(X,T) = \frac{C_0}{C_1} \left[\frac{e^{\pi \nu}}{\sinh \pi \nu} \eta_{\text{acc}}(X,T) - \frac{1}{\sinh \pi \nu} \eta_{\text{acc}}^*(X,T) \right]. \]

(3.18)
Since the inertial and accelerated modes are related via the Bogoliubov coefficients3,4 α and β

\begin{equation}
\eta_{i(\text{inertial})} = \sum_j \alpha_{ij} \eta_{j(\text{acc})} + \beta_{ij} \eta_{j(\text{acc})}^* \tag{3.19}
\end{equation}

we have that Eq. (3.18) gives immediately the values of α_{ij} and β_{ij}

\begin{equation}
\alpha_{ij} = \frac{C_0}{C_1 \sinh \pi \nu} \delta_{ij} = \alpha \delta_{ij}, \quad \beta_{ij} = -\frac{C_0}{C_1 \sinh \pi \nu} \delta_{ij} = \beta \delta_{ij}. \tag{3.20}
\end{equation}

Since $|\alpha|^2 - |\beta|^2 = 1$ and

\begin{equation}
\left| \frac{\beta}{\alpha} \right| = e^{-\pi \nu} \tag{3.21}
\end{equation}

the density of created particles15 has the form

\begin{equation}
\langle 0_{\text{acc}} | N | 0_{\text{acc}} \rangle = |\beta|^2 = \frac{1}{e^{2\pi \nu} - 1} \tag{3.22}
\end{equation}

which can be identified as a Planck distribution with a temperature

\begin{equation}
T_o = \frac{\omega}{2\pi K_B} \tag{3.23}
\end{equation}

The temperature measured by the accelerated observer can be obtained using the relation3,16:

\begin{equation}
T = (g_{00})^{-1/2} T_o \tag{3.24}
\end{equation}

In the asymptotic limit as $T \to +\infty$ we have $\lim_{T \to +\infty} (g_{00})^{-1/2} = e^{-\omega X}$ and the temperature T takes the value

\begin{equation}
T = \frac{\omega e^{-\omega X}}{2\pi K_B} = \frac{a_{+\infty}}{2\pi K_B} \tag{3.25}
\end{equation}

then we obtain that the temperature is proportional to the asymptotic value of the acceleration.

\section*{IV. SOLUTION OF THE DIRAC-PAULI EQUATION}

In this section we solve the Dirac equation with anomalous magnetic moment in the accelerated coordinates (1.1) when a constant magnetic field is present.

The covariant generalization of the Dirac-Pauli equation in curvilinear coordinates is10,12

\begin{equation}
\left\{ \gamma^\alpha (\partial_\alpha - \Gamma_\alpha) + \frac{\mu}{2} \gamma^\alpha \gamma^\beta F_{\alpha \beta} + m \right\} \Psi = 0 \tag{4.1}
\end{equation}

where γ^α are the curvilinear Dirac matrices satisfying the anticommutation relations $\left\{ \gamma^\alpha, \gamma^\beta \right\}_+ = 2g^{\alpha\beta}$, Γ_α are the spinor connections and $F_{\alpha \beta}$ is the electromagnetic tensor. The curvilinear γ^α matrices are related to the constant Minkowski $\hat{\gamma}^i$ matrices with $\left\{ \hat{\gamma}^i, \hat{\gamma}^j \right\}_+ = 2\eta^{ij}$ via the tetrad h^α_i. 7
\[\gamma^\alpha = h_i^\alpha \tilde{\gamma}^i \]
(4.2)

In order to write the curvilinear Dirac matrices in Eq (4.1) we have to choose a tetrad \(h_i^\alpha \). Here we are going to work in the diagonal tetrad gauge, where \(h_i^\alpha \) takes the form

\[
h_i^\alpha = \begin{pmatrix}
\frac{1}{\sqrt{e^{-2\omega T} + e^{2\omega X}}} & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{e^{-2\omega T} + e^{2\omega X}}} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]
(4.3)

It is easy to verify that \(g^{ik} = \eta^j h_i^j h^k_j \). In this tetrad gauge, the curvilinear Dirac matrices can be expressed in terms of the constant \(\tilde{\gamma}^i \) as follows

\[\gamma^0 = \tilde{\gamma}^0, \quad \gamma^1 = \sqrt{e^{-2\omega T} + e^{2\omega X}} \tilde{\gamma}^0, \quad \gamma^2 = \tilde{\gamma}^2, \quad \gamma^3 = \tilde{\gamma}^3. \]
(4.4)

In the Diagonal tetrad gauge (4.3) the spinor connections, defined by the relation\(^{17}\):

\[\Gamma_\mu = \frac{1}{4} g_{\lambda\alpha} \left(\frac{\partial h_i^\alpha}{\partial x^\mu} h_i^\mu - \Gamma^\alpha_{\nu\mu} \right) s^{\lambda\nu} \]
(4.5)

with \(s^{\lambda\nu} = \frac{1}{2} (\gamma^\lambda \gamma^\nu - \gamma^\nu \gamma^\lambda) \), take the form

\[\Gamma_0 = -\frac{1}{2} \omega e^{2\omega X} (e^{-2\omega T} + e^{2\omega X})^{-1} \tilde{\gamma}^1 \tilde{\gamma}^0, \quad \Gamma_1 = \frac{1}{2} \omega e^{-2\omega T} (e^{-2\omega T} + e^{2\omega X})^{-1} \tilde{\gamma}^1 \tilde{\gamma}^0, \]
\[\Gamma_2 = 0, \quad \Gamma_3 = 0. \]
(4.6)

Substituting (4.6), (4.4) and (2.2) into (4.1) we obtain

\[
\frac{\tau^1}{\sqrt{e^{2\omega X} + e^{-2\omega T}}} \left[\frac{\partial \psi}{\partial x} + \frac{\omega e^{2\omega X}}{2(e^{2\omega X} + e^{-2\omega T})} \psi \right] + \frac{\tau^2}{\sqrt{e^{2\omega X} + e^{-2\omega T}}} \left[\frac{\partial \psi}{\partial y} - i e B_x \sqrt{2} \psi \right] + \frac{\tau^3}{\sqrt{2}} \frac{\partial \psi}{\partial z} + m \psi + i \mu_e \tilde{\gamma}^2 \tilde{\gamma}^3 \psi = 0.
\]
(4.7)

Introducing the spinor \(\Phi \),

\[\Psi = \Phi \]
(4.8)

we eliminate the contribution terms due to the spinor connections. The Dirac equation takes the form

\[
\frac{\phi^1}{\sqrt{e^{2\omega X} + e^{-2\omega T}}} \left[\frac{\partial \Phi}{\partial x} + \frac{\phi^1}{\omega} \frac{\partial \Phi}{\partial y} - i e B_x \phi^2 \right] + \phi^2 \frac{\partial \Phi}{\partial y} + \phi^3 \frac{\partial \Phi}{\partial z} + m \Phi + i \mu_o \tilde{\gamma}^2 \tilde{\gamma}^3 \Phi = 0
\]
(4.9)

where \(\mu_o = \mu B_x \). In order to solve Eq. (4.9) we proceed to separate variables using the algebraic method of separation developed by Shishkin and Villalba\(^{7,18-20}\). The idea behind the method is to reduce Eq. (4.9) to a sum of two commuting first order differential operators

\[
\left(\hat{K}_1(T, X) + \hat{K}_2(y, z) \right) \psi = 0, \quad \left[\hat{K}_1(T, X), \hat{K}_2(y, z) \right] = 0
\]
(4.10)
where in the present case, \(\psi = \gamma^3 \gamma^2 \Phi \) and
\[
\hat{K}_1 = \frac{\gamma^1 \gamma^2 \gamma^3 \partial_X + \gamma^1 \gamma^2 \gamma^3 \partial_T}{\sqrt{e^{2\omega X} + e^{-2\omega T}}} \quad \hat{K}_2 = \gamma^3 \left(\partial_y - i \frac{e B_x}{\sqrt{2}} z \right) - \gamma^2 \partial_z + \gamma^2 \gamma^3 m - i \mu_0. \tag{4.11}
\]
Since \(\hat{K}_1 \) and \(\hat{K}_2 \) satisfy (4.10) they satisfy the eigenvalue equations
\[
K_1 \psi = -i \lambda \psi, \quad K_2 \psi = i \lambda \psi. \tag{4.12}
\]
Now, we proceed to solve equation \(K_1 \psi = -i \lambda \psi \):
\[
(\gamma^1 \gamma^2 \gamma^3 \partial_X + \gamma^4 \gamma^2 \gamma^3 \partial_T) \psi = -i \lambda \sqrt{e^{2\omega X} + e^{-2\omega T}} \psi \tag{4.13}
\]
applying the transformation \(\psi = S \phi \) defined by:
\[
S = e^{\Xi(X,T)} e^{(i \gamma^1 \gamma^4 \Theta(X,T))} \tag{4.14}
\]
we reduce Eq. (4.13) to the form
\[
(\gamma^1 \gamma^2 \gamma^3 \partial_X + \gamma^1 \gamma^2 \gamma^3 \partial_T) \phi + \gamma^4 \gamma^2 \gamma^3 [\partial_X \Xi(X,T) + i \partial_T \Theta(X,T)] \phi + \gamma^4 \gamma^2 \gamma^3 [\partial_T \Xi(X,T) + i \partial_X \Theta(X,T)] \phi = -i \lambda \sqrt{e^{2\omega X} + e^{-2\omega T}} e^{2i \gamma^1 \gamma^4 \Theta(X,T)} \phi \tag{4.15}
\]
In order to separate variables in (4.15) we demand that the terms inside the brackets vanish, i.e.
\[
\partial_X \Xi(X,T) = -i \partial_T \Theta(X,T), \quad \partial_T \Xi(X,T) = -i \partial_X \Theta(X,T) \tag{4.16}
\]
the solution of Eq. (4.16) is
\[
\Xi(X,T) = \frac{i}{2} \arctan \left(e^{\omega(X+T)} \right), \quad \Theta(X,T) = \frac{1}{2} \arctan \left(e^{-\omega(X+T)} \right) \tag{4.17}
\]
which determines the spinor transformation \(S \) Eq. (4.14). Eq. (4.15) reduces to
\[
(\gamma^1 \gamma^2 \gamma^3 \partial_X + \gamma^1 \gamma^2 \gamma^3 \partial_T) \phi = i \lambda \left(e^{\omega X} + i \gamma^1 \gamma^4 e^{-\omega T} \right) \phi. \tag{4.18}
\]
Let \(L_1 \) and \(L_2 \) be the commuting operators
\[
L_1 = \gamma^1 \gamma^2 \gamma^3 \partial_X - i \lambda e^{\omega X}, \quad L_2 = \gamma^1 \gamma^2 \gamma^3 \partial_T + \lambda e^{-\omega T}, \quad [L_1, L_2] = 0. \tag{4.19}
\]
Eq. (4.18) can be expressed in terms of \(L_1 \) and \(L_2 \) as follows:
\[
(L_1 + L_2 \gamma^1 \gamma^4) \phi = 0. \tag{4.20}
\]
In order to solve Eq. (4.20) we introduce the auxiliary spinor
\[
\phi = (\gamma^1 \gamma^4 L_1 - L_2) W, \tag{4.21}
\]
substituting (4.21) into (4.20) we have that \((L_1 \gamma^1 \gamma^4 L_1 - L_2 \gamma^1 \gamma^4 L_2) W = 0 \). This allows separation of variables as follows:
\[
(\partial_X^2 - \lambda^2 e^{2\omega X} + i\lambda\omega e^{\omega X}\gamma^1 \gamma^2 \gamma^3) W = -\epsilon^2 W
\]

(4.22)

\[
(\partial_T^2 + \lambda^2 e^{-2\omega T} + \lambda\omega e^{-\omega T}\gamma^1 \gamma^2 \gamma^3) W = -\epsilon^2 W
\]

(4.23)

where \(\epsilon\) is a constant of separation.

When we choose the following representation for the Dirac matrices \(\tilde{\gamma}^i\):

\[
\tilde{\gamma}^1 = \begin{pmatrix} 0 & \sigma_1 \\ \sigma_1 & 0 \end{pmatrix}, \quad \tilde{\gamma}^2 = \begin{pmatrix} 0 & \sigma_2 \\ \sigma_2 & 0 \end{pmatrix}, \quad \tilde{\gamma}^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \tilde{\gamma}^4 = \begin{pmatrix} 0 & i\sigma_3 \\ i\sigma_3 & 0 \end{pmatrix}
\]

(4.24)

then the spinor \(W\) has the structure:

\[
W = \begin{pmatrix} \alpha(X)A(T) \\ \beta(X)B(T) \\ \gamma(X)C(T) \\ \delta(X)D(T) \end{pmatrix}.
\]

(4.25)

Substituting (4.25) into Eq. (4.22) we obtain

\[
\left(d_X^2 - \lambda^2 e^{2\omega X} - \lambda\omega e^{\omega X} + \epsilon^2 \right) \begin{pmatrix} \alpha(X) \\ \delta(X) \end{pmatrix} = 0,
\]

(4.26)

analogously, Eq. (4.23) reduces to

\[
\left(\partial_T^2 + \lambda^2 e^{-2\omega T} + i\lambda\omega e^{-\omega T} + \epsilon^2 \right) \begin{pmatrix} A(T) \\ D(t) \end{pmatrix} = 0,
\]

\[
\left(\partial_T^2 + \lambda^2 e^{-2\omega T} - i\lambda\omega e^{-\omega T} + \epsilon^2 \right) \begin{pmatrix} B(T) \\ C(t) \end{pmatrix} = 0
\]

(4.27)

In order to solve the system of equations (4.26), it suffices to solve the second order equation

\[
u^2 \frac{d^2 f}{du^2} + u \frac{df}{du} + \left(-\frac{\lambda^2}{\omega^2} u^2 \pm \frac{\lambda}{\omega} u + \frac{\epsilon^2}{\omega^2} \right) f = 0
\]

(4.28)

where \(u = e^{\omega X}\).

Analogously, we have that solving the system of equations (4.27) is equivalent to solve the Whittaker\(^{13}\) differential equation

\[
u^2 \frac{d^2 g}{dv^2} + v \frac{dg}{dv} + \left(\frac{\lambda^2}{\omega^2} v^2 \pm \frac{i\lambda}{\omega} v + \frac{\epsilon^2}{\omega^2} \right) g = 0
\]

(4.29)

where we have introduced the change of variable \(v = e^{-\omega T}\). The solution of Eqs. (4.28) and (4.29) can be expressed in terms of a combination of Whittaker functions

\[
F_{\kappa,\mu}(z) = C_1 M_{\kappa,\mu}(z) + C_2 W_{\kappa,\mu}(z) = C_1 e^{\pm \frac{\gamma^3}{2}} z^{\frac{1}{2} + \mu} M \left(\frac{1}{2} + \mu - \kappa, 1 + 2\mu; z \right) + C_2 e^{\pm \frac{\gamma^3}{2}} z^{\frac{1}{2} + \mu} U \left(\frac{1}{2} + \mu - \kappa, 1 + 2\mu; z \right).
\]

(4.30)
where \(\mu = \frac{i}{\omega} \).

The spinor \(\phi \) can be computed with the help of the inverse transformation (4.21):

\[
\phi = (\gamma^1 \gamma^2 L_1 - L_2) W = \begin{pmatrix}
-i\alpha(X) \left(\partial_T - i\lambda e^{-\omega T} \right) A(T) - B(T) \left(\partial_X + \lambda e^{\omega X} \right) \beta(X) \\
i\beta(X) \left(\partial_T + i\lambda e^{-\omega T} \right) B(T) - A(T) \left(\partial_X - \lambda e^{\omega X} \right) \alpha(X) \\
-\epsilon(\partial_T + i\lambda e^{-\omega T}) C(T) + D(T) \left(\partial_X - \lambda e^{\omega X} \right) \delta(X) \\
\end{pmatrix}
\]

(4.32)

The solutions of Eqns. (4.28) and (4.29) are

\[
f(u) = \frac{F_{\pm 1/2, \mu} \left(\frac{2\lambda}{\omega} u \right)}{\sqrt{u}}, \quad g(v) = \frac{F_{\pm 1/2, \mu} \left(\frac{2\lambda}{\omega} v \right)}{\sqrt{v}}
\]

(4.31)

where \(\mu = \frac{i}{\omega} \).

Substituting (4.33) and (4.34) into (4.32) we arrive at

\[
(\partial_T - i\lambda e^{-\omega T}) A(T) = i\epsilon B(T), \quad (\partial_T + i\lambda e^{-\omega T}) B(T) = i\epsilon A(T) \\
(\partial_T + i\lambda e^{-\omega T}) C(T) = \epsilon D(T), \quad (\partial_T - i\lambda e^{-\omega T}) D(T) = -\epsilon C(T).
\]

(4.34)

Substituting (4.33) and (4.34) into (4.32) we arrive at

\[
\phi = \epsilon \begin{pmatrix}
(-i + 1)\alpha(x) B(T) \\
(-i - 1)\beta(x) A(T) \\
(i - 1)\gamma(x) D(T) \\
(i + 1)\delta(x) C(T)
\end{pmatrix}
\]

(4.35)

where

\[
\alpha(u) = \frac{c_1}{\sqrt{u}} M_{-1/2, \mu} \left(\frac{2\lambda}{\omega} u \right), \quad \beta(u) = \frac{c_2}{\sqrt{u}} M_{1/2, \mu} \left(\frac{2\lambda}{\omega} u \right), \\
\gamma(u) = \frac{c_3}{\sqrt{u}} M_{1/2, \mu} \left(\frac{2\lambda}{\omega} u \right), \quad \delta(u) = \frac{c_4}{\sqrt{u}} M_{-1/2, \mu} \left(\frac{2\lambda}{\omega} u \right)
\]

(4.36)

and

\[
A(T) = \frac{d_1}{\sqrt{T}} F_{1/2, \mu} \left(\frac{2\lambda}{\omega} T \right), \quad B(T) = \frac{d_2}{\sqrt{T}} F_{1/2, -\mu} \left(\frac{2\lambda}{\omega} T \right), \\
C(T) = \frac{d_3}{\sqrt{T}} F_{-1/2, \mu} \left(\frac{2\lambda}{\omega} T \right), \quad D(T) = \frac{d_4}{\sqrt{T}} F_{-1/2, -\mu} \left(\frac{2\lambda}{\omega} T \right).
\]

(4.37)

Using the recurrence relations for the Whittaker functions we find that \(\phi \) has the form

\[
\phi = \begin{pmatrix}
a_1(i - 1)f_1 \\
-a_1(i + 1)f_2 \\
a_2(i + 1)f_1 \\
a_2(i - 1)f_2
\end{pmatrix}
\]

(4.38)
where

\[f_1 = \frac{\epsilon}{\sqrt{uv}} M_{-1/2,\mu} \left(\frac{2\lambda}{\omega} u \right) F_{-1/2,\mu} \left(\frac{2i\lambda}{\omega} v \right), \quad f_2 = \frac{\epsilon}{\sqrt{uv}} M_{1/2,\mu} \left(\frac{2\lambda}{\omega} u \right) F_{1/2,\mu} \left(\frac{2i\lambda}{\omega} v \right). \]

(4.39)

Recalling that \(\psi = S\phi \) where \(S \) is given by (4.14) we have that \(\psi \) takes the form

\[\psi = \begin{pmatrix} a_1 \cos \Theta (i - 1) f_1 - a_1 \sin \Theta (i + 1) f_2 \\ -a_1 \sin \Theta (i - 1) f_1 - a_1 \cos \Theta (i + 1) f_2 \\ a_2 \cos \Theta (i + 1) f_1 + a_2 \sin \Theta (i - 1) f_1 \\ -a_2 \sin \Theta (i + 1) f_2 + a_2 \cos \Theta (i - 1) f_1 \end{pmatrix} e^{\Xi}. \]

(4.40)

Now we proceed to solve the equations (4.12) governing the dependence of the spinor solution of the Dirac equation on the coordinates \(y \) and \(z \)

\[\left(\gamma^3 (\partial_y - ieB_x z) - \gamma^2 \partial_z + \gamma^2 \gamma^3 m - i\mu_o \right) \psi = i\lambda \psi. \]

(4.41)

Since \(\left[K_2, -i\partial_y \right] = 0 \), we have that \(\psi \) can be written as

\[\psi = e^{ik_y y} \varphi(z), \]

(4.42)

substituting (4.42) into (4.41) we obtain

\[\left(-i\gamma^3 (-k_y + \omega_o z) - \gamma^2 \partial_z + \gamma^2 \gamma^3 \mu \right) \varphi = i (\lambda + \mu_o) \varphi \]

(4.43)

where \(\omega_o = eB_z \). Introducing the spinor \(\varphi = \Sigma \theta \) with

\[\Sigma = \frac{1 - \gamma^1 \gamma^3}{\sqrt{2}} \]

(4.44)

we find that Eq (4.43) reduces to

\[\left(-i\gamma^1 (-k_y + \omega_o z) - \gamma^2 \partial_z + \gamma^2 \gamma^1 \mu \right) \theta = i (\lambda + \mu_o) \theta; \]

(4.45)

substituting into (4.45) the Dirac matrices in the representation (4.24) and considering a spinor with the structure

\[\theta = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{pmatrix} \]

(4.46)

we reduce our problem to that of solving the following system of partial differential equations:

\[[\partial_z - (-k_y + \omega_o z)] \theta_4 = (\mu + \lambda + \mu_o) \theta_1, \quad [\partial_z + (-k_y + \omega_o z)] \theta_1 = (\mu - \lambda - \mu_o) \theta_4, \]

(4.47)

\[[\partial_z - (-k_y + \omega_o z)] \theta_2 = (\mu + \lambda + \mu_o) \theta_3, \quad [\partial_z + (-k_y + \omega_o z)] \theta_3 = (\mu - \lambda - \mu_o) \theta_2. \]

(4.48)
Looking at (4.47) and (4.48) we see that $\theta_1 \sim \theta_3$ and $\theta_2 \sim \theta_4$ and therefore it is only necessary to solve one of the systems of coupled equations. Making the change of variable $x = \sqrt{\frac{2}{\omega_o}}(\omega_o z - k_y)$ we have

$$\frac{d^2}{dx^2} \theta_1 - \left[\frac{x^2}{4} + a \right] \theta_1 = 0,$$

(4.49)

$$\frac{d^2}{dx^2} \theta_4 - \left[\frac{x^2}{4} + (a + 1) \right] \theta_4 = 0,$$

(4.50)

where $a = \frac{\mu^2 - \lambda^2}{2\omega_o} - \frac{1}{2}$. Equations (4.49) and (4.50) are Parabolic cylinder equations and their solutions are

$$\theta_1 = d_1 U \left(a, \sqrt{\frac{2}{\omega_o}}(\omega_o z - k_y) \right), \quad \theta_3 = d_3 U \left(a, \sqrt{\frac{2}{\omega_o}}(\omega_o z - k_y) \right),$$

$$\theta_4 = d_4 U \left(a + 1, \sqrt{\frac{2}{\omega_o}}(\omega_o z - k_y) \right), \quad \theta_2 = d_2 U \left(a + 1, \sqrt{\frac{2}{\omega_o}}(\omega_o z - k_y) \right),$$

(4.51)

with the help of the recurrence relations for the parabolic cylinder equation and the equations (4.47),(4.48), we can find the relation between the coefficients d_i:

$$\frac{d_1}{d_4} = -\frac{\sqrt{2\omega_o}}{\mu + \lambda + \mu_o},$$

(4.52)

and

$$\frac{d_3}{d_2} = -\frac{\sqrt{2\omega_o}}{\mu + \lambda + \mu_o},$$

(4.53)

consequently

$$\theta = \begin{pmatrix}
-\frac{\sqrt{2\omega_o}}{\mu + \lambda + \mu_o}d_4 U(a, x) \\
\frac{d_2 U(a + 1, x)}{d_2 U(a + 1, x)} \\
-\frac{\sqrt{2\omega_o}}{\mu + \lambda + \mu_o}d_2 U(a, x) \\
\frac{d_4 U(a + 1, x)}{d_4 U(a + 1, x)}
\end{pmatrix}.$$

(4.54)

The spinor φ is obtained using the matrix transformation Σ (4.44):

$$\varphi = \Sigma \theta = \frac{1}{\sqrt{2}} \begin{pmatrix}
\theta_1 + \theta_4 \\
\theta_2 + \theta_3 \\
-\theta_2 + \theta_3 \\
-\theta_1 + \theta_4
\end{pmatrix}.$$

(4.55)

From (4.44) and (4.42) we obtain

$$\psi = \frac{1}{\sqrt{2}} \begin{pmatrix}
d_4 U(a + 1, x) - \frac{\sqrt{2\omega_o}}{\mu + \lambda + \mu_o} U(a, x) \\
d_2 U(a + 1, x) - \frac{\sqrt{2\omega_o}}{\mu + \lambda + \mu_o} U(a, x) \\
-d_2 U(a + 1, x) + \frac{\sqrt{2\omega_o}}{\mu + \lambda + \mu_o} U(a, x) \\
d_4 U(a + 1, x) + \frac{\sqrt{2\omega_o}}{\mu + \lambda + \mu_o} U(a, x)
\end{pmatrix} e^{ik_y y}.$$

(4.56)
Combining (4.40) with (4.56) we find that the spinor ψ is

$$
\psi = \frac{1}{\sqrt{2}} \begin{pmatrix}
\cos \Theta (i - 1) f_1 - \sin \Theta (i + 1) f_2 (U(a + 1, x) - \frac{\sqrt{\omega}}{\mu + \lambda + \mu_\omega} U(a, x)) \\
- \sin \Theta (i - 1) f_1 - \cos \Theta (i + 1) f_2 (U(a + 1, x) - \frac{\sqrt{\omega}}{\mu + \lambda + \mu_\omega} U(a, x)) \\
\cos \Theta (i + 1) f_2 + \sin \Theta (i - 1) f_1 (U(a + 1, x) + \frac{\sqrt{\omega}}{\mu + \lambda + \mu_\omega} U(a, x)) \\
- \sin \Theta (i + 1) f_2 + \cos \Theta (i - 1) f_1 (U(a + 1, x) + \frac{\sqrt{\omega}}{\mu + \lambda + \mu_\omega} U(a, x))
\end{pmatrix} e^{i k y} e^{\Xi} \tag{4.57}
$$

Now, we proceed to analyze the asymptotic limits as $T \to -\infty$ and $T \to +\infty$. We will confine our attention to the solutions of the spinor (4.57). In the asymptotes we obtain a time dependent term multiplied by a factor depending on space variables. Here, we proceed like we did in Sec. III for the scalar case.

The relation between $W_{\lambda,\mu}(z)$ and $M_{\lambda,\mu}(z)$ will be helpful

$$
W_{\lambda,\mu}(z) = \frac{\Gamma(-2\mu)}{\Gamma(\frac{1}{2} - \mu - \lambda)} M_{\lambda,\mu}(z) + \frac{\Gamma(2\mu)}{\Gamma(\frac{1}{2} + \mu - \lambda)} M_{\lambda,-\mu}(z) \tag{4.58}
$$

Taking into account expression (4.58) we find that the solutions of Eq. (4.34) are related as follows

$$
W_{\lambda,\mu}(-\frac{2i\lambda}{\omega} v) = \frac{\Gamma(-2\mu)}{\Gamma(\frac{1}{2} - \mu - \lambda)} M_{\lambda,\mu}(-\frac{2i\lambda}{\omega} v) + \frac{\Gamma(2\mu)}{\Gamma(\frac{1}{2} + \mu - \lambda)} e^{i\pi(\mu - \frac{1}{2})} M_{\lambda,-\mu}(\frac{2i\lambda}{\omega} v) \tag{4.59}
$$

Looking at the quasi-classical behavior given by Eq. (2.8), we identify the positive and negative accelerated modes as

$$
\psi_{\text{acc}}^+ = N_1 M_{\lambda,\mu}(-\frac{2i\lambda}{\omega} v), \quad \psi_{\text{acc}}^- = N_1 M_{\lambda,-\mu}(\frac{2i\lambda}{\omega} v) \tag{4.60}
$$

where N_1 is a normalization constant. Also an inertial ($T \to -\infty$) positive frequency mode ψ_{ine}^+ is given by

$$
\psi_{\text{ine}}^+ = N_3 W_{\lambda,\mu}(-\frac{2i\lambda}{\omega} v) \tag{4.61}
$$

where N_3 is a normalization constant.

Looking at Eq. (4.59) and recalling that the inertial modes can be expressed in terms of the accelerated positive and negative modes via the Bogoliubov coefficients

$$
\psi_{\text{ine}}^+ = \alpha \psi_{\text{acc}}^+ + \beta \psi_{\text{acc}}^-, \tag{4.62}
$$

we get that

$$
\left| \frac{\beta}{\alpha} \right| = e^{-\frac{\pi}{\omega}} \tag{4.63}
$$

and taking into account that $|\alpha|^2 + |\beta|^2 = 1$, we find that the density of particles created is
\[<0_{\text{acc}}|N|0_{\text{acc}}> = |\beta|^2 = \frac{1}{1 + e^{2\pi \epsilon / \omega}}, \quad (4.64) \]
a result that can be identified as a Fermi-Dirac distribution of particles associated with a temperature

\[T_o = \frac{\omega}{2\pi K_B} \quad (4.65) \]
and, consequently, the temperature detected in the accelerated frame is\(^{16}\)

\[T = (g_{00})^{-1/2} T_o \quad (4.66) \]
that in the asymptotic limit as \(T \to +\infty \) takes the form

\[T = \frac{\omega e^{-\omega X}}{4\pi K_B}, \]
showing that the temperature is proportional to the asymptotic value of the acceleration.

V. DISCUSSION OF THE RESULTS

In the present paper we have separated variables and solved the Klein-Gordon and Dirac equations in the curvilinear coordinates (1.1) when a constant magnetic field (2.2) is present. The algebraic method of separation\(^7,18\)–\(^20\) has been applied to reduce Dirac-Pauli equation to a system of coupled ordinary differential equations. Using the obtained exact solutions we calculated the density of scalar and spin 1/2 particles detected by an accelerated observer associated with system of coordinates (1.1) when a constant magnetic field in the direction of acceleration is present. The identification of positive and negative frequency modes was carried out comparing the relativistic solutions with the quasi-classical Hamilton-Jacobi solutions (2.6) and (2.8). The results obtained in Sec III and IV indicate that the magnetic field does not modify the thermal character of spectrum. The temperature associated with the thermal bath is not modified by \(B \). This result has a classical counterpart: Since \(B \) is colinear to the motion, it does not accelerate the particle and no radiation is caused by it. The presence of a non minimal coupling in Eq. (4.1) does not affect the density (4.64). The proportionality between temperature and accelerations remains valid even if uniform accelerations are reached asymptotically. The role of the anomalous magnetic moment in the energy spectrum density will be discussed in a forthcoming publication.

ACKNOWLEDGMENTS

We thank Dr. Juan Rivero for helpful discussions.
REFERENCES

4. A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko Vacuum Quantum effects in strong fields (Energoatomizdat, Moscow, 1988)
9. U. Percoco and V. M. Villalba Class. Quantum Grav. 9 307 (1992)
13. M. Abramowitz and I. Stegun Handbook of Mathematical Functions (Dover, New York, 1974)
14. N. N. Lebedev Special Functions and their applications (New York: Dover, 1972)
FIG. 1. The accelerated coordinates with $\omega = 1$. The solid lines correspond to the spacelike $T=$constant Cauchy surfaces. The dashed lines correspond to the timelike curves $X=$constant.