COMPTON DRAGGED GAMMA–RAY BURSTS ASSOCIATED WITH SUPERNOVAE

DAVIDE LAZZATI1, GABRIELE GHISELLINI
Osservatorio Astronomico di Brera, Via Bianchi 46, I–23807 Merate (Le), Italy

ANNALISA CELOTTI
Scuola Internazionale Superiore di Studi Avanzati, via Beirut 2/4, I–34014 Trieste, Italy

AND

MARTIN J. REES
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, U.K.

ABSTRACT

It is proposed that the gamma–ray photons that characterize the prompt emission of Gamma–Ray Bursts are produced through the Compton drag process, caused by the interaction of a relativistic fireball with a very dense soft photon bath. If gamma–ray bursts are indeed associated with Supernovae, then the exploding star can provide enough soft photons for radiative drag to be effective. This model accounts for the basic properties of gamma–ray bursts, i.e. the overall energetics, the peak frequency of the spectrum and the fast variability, with an efficiency which can exceed 50%. In this scenario there is no need for particle acceleration in relativistic collisionless shocks. Furthermore, though Poynting flux may be important in accelerating the outflow, no magnetic field is required in the gamma–ray production. The drag also naturally limits the relativistic expansion of the fireball to $\Gamma \lesssim 10$.

Subject headings: gamma rays: bursts — supernovae: general — radiation mechanisms: non–thermal

1. INTRODUCTION

The discovery of multiwavelength afterglows (Costa et al. 1997; Frail et al. 1997; Van Paradijs et al. 1997) after the launch of the Italian–Dutch satellite BeppoSAX has largely increased our knowledge of the gamma–ray burst (GRB) phenomenon. In particular we now believe that the longer wavelength radiation that follows a burst is due to the deceleration of a relativistic fireball in the interstellar medium surrounding the burst location (Wijers et al. 1997, see also Piran 1999). The time decay of the light curves is in very good agreement with the simple fireball model, while spectral (Galama et al. 1998) and polarimetric measurements (Covino et al. 1999, Wijers et al. 1999) support the view that the main radiative mechanism is synchrotron.

In the leading scenario for GRBs and afterglows, the gamma–ray event is produced by internal shocks in a hyper–relativistic inhomogeneous wind (Rees & Mészáros 1994) while - as mentioned - the afterglow is produced as the fireball drives a shock wave in the external interstellar medium (Mészáros & Rees 1997). Even if there is a large consensus that both gamma–rays and afterglow photons are produced by the synchrotron process, recently some doubts have been cast on the synchrotron interpretation for the burst itself (Liang 1997; Ghisellini & Celotti 1998; Ghisellini, Celotti & Lazzati 1999).

The nature of the progenitor is still a matter of active debate, as the sudden release of a huge amount of energy in a compact region generating a fireball does not keep trace of the way this energy has been produced. For this reason, the study of the interactions of the fireball with the surrounding medium seems to be the most powerful mean to unveil the GRB progenitor. At least two models are in competition: the merging of a binary system composed of two compact objects (Eichler et al. 1989) and the Hypernova–Collapsar model (Woosley 1993, Paczyński 1998), i.e. the core collapse of a very massive star to form a black hole.

After the discovery and the multiwavelength observations of many afterglows, circumstantial evidence has accumulated for GRB exploding in dense regions, associated to supernova–like phenomena. In fact, (a) host galaxies have been detected in many cases (Sahu et al. 1997; see Wheeler 1999 for a review), and some of them show starburst activity (Djorgovski et al. 1998, Hogg & Fruchter 1999); (b) large hydrogen column densities have sometimes been detected in X–ray afterglows (Owens et al. 1998); (c) non–detections of several X–ray afterglows in the optical band can be due to dust absorption (Paczyński 1998); (d) a possible iron line feature has been detected in the X–ray afterglow of GRB 970508 (Piro et al. 1999, Lazzati et al. 1999) and (e) the rapid decay with time of several afterglow can be explained by the presence of a pre–explosion wind from a very massive star (Chevalier & Li 1999). More recently, the possible presence of supernova (SN) emission in the late afterglows light curves of GRB 970228 (Galama et al. 1999, Reichert 1999) and GRB 980326 (Bloom et al. 1999) has added support in favor of the association of GRBs with the final evolutionary stages of massive stars.

Although in these models the available energy is larger than in the case of compact binary mergers, the very small efficiency of internal shocks (see, e.g., Spada, Panaitescu & Mészáros 1999) seems to be inconsistent with the fact that more energy can be released during the burst proper than...
the afterglow (Paczynski 1999, see also Kumar & Piran 1999).

In this letter we show that if GRBs are associated with supernovae, Compton drag (or bulk Compton) inside the relativistic wind can produce both the expected energetics and the peak energy of the spectrum of a classical long duration GRB. In this new scenario the efficiency is not limited by internal shock interactions, and the successful modeling of afterglows with external shocks is left unaffected.

Although the Compton drag effect has been already invoked as the main radiation process in GRB by some authors (Shemi 1994, Zdziarski et al. 1993), these attempts lack to identify a clear natural source for the required dense soft photon field. However, the growing evidence of association of GRB explosions with star–forming regions and supernovae opens new perspectives for this scenario.

2. COMPTON DRAG IN A RELATIVISTIC WIND

We consider a relativistic (\(\Gamma \gg 1\)) wind of plasma propagating in a bath of photons with typical energy \(\epsilon_{\text{seed}}\). A fraction \(\sim \min(1, \Gamma^2)\) of the photons are scattered by the inverse Compton (IC) effect to energies \(\epsilon \sim \Gamma^2 \epsilon_{\text{seed}}\), where \(\tau_{\text{TP}}\) is the Thomson opacity of the wind. Due to relativistic aberration, the scattered photons propagate in a narrow cone forming an angle \(1/\Gamma\) with the velocity vector of wind propagation.

By this process, a net amount of energy \(E_{\text{CD}}\) is converted from kinetic energy of the wind to a radiation field propagating in the direction of the wind itself, where \(E_{\text{CD}} \sim \min(1, \Gamma^2) V u_{\text{rad}} (\Gamma^2 - 1)\). \(V\) is volume filled by the soft photon field of energy density \(u_{\text{rad}}\) swept up by the wind (see, e.g., Rybicki & Lightman 1979).

Let us assume that the GRB fireball, instead of being made by a number of individual shells (see e.g. Lazzati et al. 1999), is an unsteady (both in velocity and density) relativistic wind, expanding from a central point. After an initial acceleration phase, the density of the outflowing wind decreases with radius as \(n(r) \propto r^{-2}\), giving a scattering probability \(\sim \min[1, (r/r_0)^{-2}\]

If such a wind flows in a radiation field with energy density \(u_{\text{rad}}(r)\), the total energy transferred to the photons when the fireball has reached a distance \(R\) is given by:

\[
E_{\text{CD}}(R) = 4\pi \Gamma^2 \int_0^{r_0} u_{\text{rad}}(r) r^2 dr + 4\pi \Gamma^2 \int_{r_0}^R u_{\text{rad}}(r) (r/r_0)^{-2} r^2 dr.
\]

(1)

where for simplicity we assume that a constant \(\Gamma\) has been reached (see also Section 3). The transparency radius \(r_0\) depends on the baryon loading of the fireball, which is parameterized by \(\eta_b \equiv E/(Mc^2)\), where \(E/M\) is the ratio between the total energy and the rest mass of the fireball. Then \(r_0\) is given by:

\[
r_0 = 5.9 \times 10^{13} \epsilon_{52}^{-1/2} \eta_{(b,2)}^{-1/2} \text{ cm}.
\]

(2)

\(^2\)All the calculations are made in spherical symmetry. In case of beaming, all the quoted numbers should be considered as equivalent isotropic values.

\(^3\)Here and in the following we adopt the notation \(Q = 10^\epsilon Q_e\), using cgs units

2.1. A simple scenario

We initially consider a scenario which, even if oversimplified, can illustrate the basic features of the Compton drag effect.

Let us assume that the GRB is triggered at a time \(\Delta t\) (of the order of a few hours) after the explosion of a supernova (Woosley et al. 1999; Cheng & Dai 1999). By this time, the supernova ejecta, moving with velocity \(\beta_{\text{SN}}\), have reached a distance \(R_{\text{SN}} = v_{\text{SN}} \Delta t \sim 5.4 \times 10^{13} \beta_{\text{SN},-1} (\Delta t/5 \text{ hr})\) cm. Let us also imagine that the supernova explosion is asymmetric, e.g. with no ejecta in the polar directions. Despite this asymmetry, the ejecta will uniformly fill with radiation the entire volume within \(R_{\text{SN}}\). If \(R_{\text{SN}} < r_0\), the energy extracted by Compton drag is:

\[
E_{\text{CD}} = \frac{4\pi R_{\text{SN}}^3}{3} \Gamma^2 u_{\text{rad}}.
\]

(3)

In the opposite case, \(R_{\text{SN}} > r_0\), we have:

\[
E_{\text{CD}} = \frac{4\pi r_0^3}{3} \Gamma^2 u_{\text{rad}} \left(\frac{R_{\text{SN}}}{r_0} - 2\right).
\]

(4)

According to Woosley et al. (1994), the average supernova luminosity during \(\Delta t\) is of the order of \(L_{\text{SN}} \sim 10^{44} \text{ erg s}^{-1}\), with a black body emission at a temperature \(T_{\text{SN}} \sim 10^5 \text{ K}\). It follows that in this case \(u_{\text{rad}} = a T_{\text{SN}}^4 \sim 7.6 \times 10^4 T_{\text{SN},5}^4 \text{ erg cm}^{-3}\) (consistent with \(R_{\text{SN}}\) assumed above). The efficiency \(\xi\) of Compton drag in extracting the fireball energy is very large; from Eq. 3 we obtain:

\[
\xi \equiv \frac{E_{\text{CD}}}{E} \sim 0.6 E_{52}^{-1} \beta_{\text{SN},-1}^3 \left(\frac{\Delta t}{5 \text{ hours}}\right)^3 T_{\text{SN},5}^4 \Gamma_2^2.
\]

(5)

Note here that a high efficiency can be reached even for \(\Gamma \sim 100\). Note that the drag itself can limit the maximum speed of the expansion – even in a wind with a very small barion loading – as discussed in Sect. 3.

Each seed photon is boosted by \(\sim 2\Gamma^2\) in frequency, yielding a spectrum peaking at \(h\nu \sim 2\Gamma^2 (3kT_{\text{SN}}) \sim 0.5\Gamma_2^2 T_{\text{SN},5}\) MeV.

2.2. A more realistic scenario

The previous scenario requires that the GRB explodes a few hours after a supernova. There is however a plausible alternative, independent of whether the massive (> 30\(M_\odot\)) star (assumed to be the progenitor of the GRB) ends up with a supernova explosion or not, and can produce a gamma–ray burst even if the relativistic flow and the core collapse of the progenitor star are simultaneous or separated by a relatively small time interval (Woosley et al. 1999; MacFadyen, Woosley & Heger 1999).

In fact there is a general consensus (e.g. MacFadyen & Woosley 1999; Khokhlov et al. 1999) that a relativistic wind can flow in a relatively baryon free funnel created by a bow shock following the collapse of the iron core of the star. Even if details of this class of models are still
controversial, the formation of the funnel seems to be a general outcome. Let us estimate its luminosity and more precisely the amount of energy in radiation crossing the funnel walls at a time t_f after its creation. With respect to the total luminosity of the star, assuming it radiates at its Eddington limit $\sim L_{\text{Edd}}$, there would be a reduction by the geometrical factor equal to the ratio of the funnel to star surfaces, which is of the order of the funnel opening angle ϑ. However, immediately after its creation, the funnel luminosity is much larger than ϑL_{Edd}, due to two effects which we discuss in turn.

First the walls of the funnel contain an enhanced amount of radiation with respect to the surface layers of the star: the radiation once "trapped" in the interior of the star can escape through the funnel walls, thus enhancing the luminosity inside the funnel for a short time. Photons produced at a distance s from the wall surface cross it at a time $t_f \sim \tau_s s/c = \vartheta \sigma s^2/c$, where σ is the relevant cross section. This compares with the Kelvin time $t_K \sim \vartheta \sigma R^2_f/c$ needed for radiation to reach the star surface, yielding $s/R_s \sim (t_f/t_K)^{1/2}$. After the time t_f, the radiation produced in the layer of width ds crosses the funnel surface carrying the energy $dE = \vartheta \tau_s L_{\text{Edd}} ds/c$, the corresponding luminosity being:

$$L_f \sim \vartheta^2 L_{\text{Edd}} \left(\frac{\tau_s R_s}{c t_f} \right)^{1/2}. \quad (6)$$

For $t_f = 100$ s and a $10 M_\odot$ star with $R_s \sim 10^{13}$ cm ($\tau_s \approx 10^8$), this effect can enhance the funnel luminosity by $\sim 10^4$.

Let us now consider a second plausible enhancing factor. If the funnel has been produced by the propagation of a bow–shock in the star, the matter in front of the advancing front is compressed, with a pressure increase of \mathcal{M}^2, where \mathcal{M} is the Mach number of the shock in the star. This (optically thick) gas then flows along the sides of the funnel and relaxes adiabatically to the pressure of the external matter (its original pressure). The result is that the funnel is surrounded by a sheath (cocoon) with density lower than that of the unshocked stellar material by a factor $\mathcal{M}^{3/2}$ (a polytropic index of 4/3 has been used in the adiabatic cooling). The diffusion of photons through this rarefied gas into the funnel is then even faster, resulting in a further increase of the luminosity by $\mathcal{M}^{3/4} \sim 200$, where $\mathcal{M} = \vartheta R_s/c$. Adopting a sound speed $\beta_c c = 0.1 c$ (MacFadyen & Woosley 1999) and a sound speed $\beta_c c = 10^{-4}$ have been assumed.

By taking into account both effects, the funnel luminosity corresponds to:

$$L_f \sim L_{\text{Edd}} \vartheta^2 \left(\frac{\tau_s R_s}{c t_f} \right)^{1/2} \left(\frac{\beta_d}{\beta_s} \right)^{3/4} \approx 10^{45} \vartheta_0^{-1} \frac{M_*}{10 M_\odot} \text{ erg s}^{-1}, \quad (7)$$

which leads to an energy loss for Compton drag $L_{\text{CD}} \sim \vartheta^2 L_f \sim 10^{49} \vartheta_0^{-1} \Gamma_2^2 (M_*/10 M_\odot)$, to be compared with the observed luminosity ($L_{\text{GRB}} \sim 10^{49} \vartheta_0^{-1} \Gamma_2^2$ erg s$^{-1}$). Here the average luminosity is considered over the entire burst duration: for single pulses, we should take into account an extra factor Γ^2 in Eq. 7 due to the Doppler contraction of the observed time.

The typical radiation temperature associated with this luminosity, assuming a black body spectrum, is enhanced with respect to the temperature of the star surface by $[L_f/(\vartheta L_{\text{Edd}})]^{1/4} \approx (\tau_s R_s)^{1/8} (c t_f)^{-1/8} (\beta_d/\beta_s)^{3/16}$. Adopting the numerical values used above, the enhancement is of the order of 50, corresponding to a funnel temperature $T_f \sim 2 \times 10^{15}$ K (for a surface temperature of the star of ≈ 5000 K). This value is similar to the one estimated in the simplified scenario of the previous subsection and thus leads to similar Compton frequencies.

3. Properties of the Observed Bursts

If the wind is homogeneous the spectrum of the scattered photons resembles that of the incident photons, i.e. a broad black–body continuum peaked at a temperature $T_{\text{drag}} \sim 2 \Gamma^2 T_f$. While the observed characteristic photon energy would therefore be $\epsilon \sim 0.5 \Gamma^2 T_f (1+z)^{-1}$ MeV, in good agreement with the observed distribution of peak energies of BATSE GRBs (assuming again $\Gamma = 100$, see below), the spectrum would not reproduce the observed smoothly broken power–law shape (Band et al. 1993). The assumptions of a perfectly homogeneous wind and of an isothermal radiation field are however very crude, and one might reasonably expect that different regions of the wind are characterized by different values of Γ and different soft field temperatures. In this case the (time integrated) predicted spectrum would better resemble a multi–color blackbody (see also Shemi 1994).

In addition, the effects described above, which can increase the funnel luminosity over the Eddington limit, take place in non–stationary conditions. At the wind onset, it is likely that the temperature gradient in the walls of the funnel is large, but this is soon erased due to the high luminosity of the walls. This causes both the total flux and the characteristic frequency of the soft photons to decrease, and hence a hard–to–soft trend is expected.

The observed minimum variability time–scale is related to the typical size of the region containing the dense seed photon field, which corresponds to either R_s or R_{SN} depending on which of the two scenarios described above applies. The relevant light crossing time t_{var} divided by the time compression factor Γ is thus

$$t_{\text{var}} \sim \frac{R}{c \Gamma^2} \sim 3 \times 10^{-2} R_{13} \Gamma_2^{-2} \text{ s}. \quad (8)$$

Variability time–scales of order ~ 50 ms are also predicted in the case of a neutrino powered wind, as shown by numerical simulations (MacFadyen & Woosley 1999). Longer time–scales are instead expected if the relativistic wind is smooth and continuous.

Another interesting feature of this scenario is the possibility that the bulk Lorentz factor of the wind is self–consistently limited by the drag itself. This can happen because of the constraints from the pressure and the total available energy. Note that the internal pressure and kinetic luminosity of the fireball are inversely related during the acceleration phase, while the limits are both determined by the external photon field. On one hand, the pressure of the soft photons starts braking the fireball in competition with the pressure of internal photons. The limiting Lorentz factor is hence reached when the internal pressure $p_0 \propto (T_0/\Gamma)^4$ is balanced by the pressure of the external photons as observed in the fireball comoving frame $p' \propto \Gamma^2 P_{\text{SN}} (1 + \tau_\Gamma)^{-1}$, where τ_Γ is the scattering
optical depth of the wind. This gives:

$$\Gamma_{\text{lim}} \sim 2 \times 10^4 T_{\text{SN}, 5}^{-1/2} R_{0, 7}^{1/4} R_{5/8}^{5/8 - 1/8} \eta_{(b, 5)}^{1/8},$$ \hspace{1cm} (9)$$

where R_0 is the radius at which the fireball is released. Equation 9 reduces to $\Gamma_{\text{lim}} \sim 10^4 (T_0, 11 / T_{\text{SN}, 5})^{2/3}$ if the fireball becomes transparent before reaching the coasting phase. With such high Γ the Compton drag would be maximally efficient, causing the fireball to immediately decelerate until its Γ reaches the value given by $L_{\text{CD}} = L_{\text{f}} \Gamma^2$, implying:

$$\Gamma = \left(\frac{L_{\text{kin}}}{L_{\text{f}}} \right)^{1/2} \sim 300 \left(\frac{L_{\text{kin}, 50}}{L_{\text{f}, 45}} \right)^{1/2}. \hspace{1cm} (10)$$

Both these limits are in general smaller than the maximum Γ set by the baryon load only, but still in agreement with values recently inferred from observations and theoretical estimates (Sari & Piran 1999, Liang et al. 1999). In addition, it is likely that the external parts of the relativistic wind, which are in closer connection with the funnel walls, are dragged more efficiently then the central ones, since at the beginning the soft photons coming from the walls can penetrate only a small fraction of the funnel before being up-scattered by relativistic electrons. This may result in a polar structured wind, with higher Lorentz factors along the symmetry axis, gradually decreasing as the polar angle increases.

4. DISCUSSION

We have discussed a new model for the production of gamma–ray photons during the prompt emission of GRBs: these would be the result of the bulk (inverse) Compton effect of a hyper–relativistic wind propagating in the dense photon field of an on–going supernova explosion. This is the key feature of the model: it can work only if GRBs are indeed associated with the final evolutionary stages of very massive stars, as these provide the large amount of seed photons for the Compton drag to be efficient.

The efficiency of conversion of bulk kinetic energy of the flow into gamma–ray photons is large, solving the observational challenge of gamma–ray emission being more energetic than the afterglow one (Paczynski 1999). Furthermore in this scenario there is no requirement for efficient acceleration in collisionless shocks or the presence/generation of an intense (equipartition) magnetic field, although Poynting flux may still be important in accelerating the outflow (being more efficient than neutrino reconversion into pairs).

We have investigated the main properties of a GRB produced by Compton drag in a relativistic wind in a very general case. A moderately beamed burst ($\theta \lesssim 10^\circ$, Woosley et al. 1999) can be thus produced and, without any fine tuning of the parameters, the basic features of classic GRBs are accounted for.

In particular, the peak energy of the burst emission simply reflects the temperature of the supernova seed photons, up-scattered by the square of the bulk Lorentz factor. The calculation of the actual shape of the observed spectrum is beyond the scope of this work: although the simplest hypothesis predicts a quasi–thermal spectrum, it is easy to imagine an effective multi–temperature distribution which would depend on unconstrained quantities such as the variation of the spectrum of the SN photons with radius and the degree of inhomogeneity of the wind.

Moreover multiple scatterings may in part modify the spectrum by adding extra power to the high energy tail: one interesting possibility in this respect is that a fraction of the burst photons are reflected back by either the supernova or the pre–supernova wind and undergoes a second scattering in the relativistic wind. These photons may thus reach very high energies ($\sim 0.5 \Gamma$ MeV $\sim 50T^{2}_\Gamma$ MeV) and could account for the high frequency emission observed in several bursts.

Although in this scenario there is no requirement for internal shocks to set up, they can of course occur, contributing a small fraction of the observed gamma–ray flux. On the other hand, the wind is expected to escape from the funnel of the star with still highly relativistic motion, so that an external shock can be driven in the interstellar medium and produce an afterglow, similar to the scenario already studied by several authors. It is likely that this afterglow would develop in a non–uniform density medium, due to the presence of the massive star wind occurring before the supernova explosion (Chevalier & Li 1999).

We thank Andy Fabian, Francesco Haardt, Piero Madau and Giorgio Matt for many stimulating discussions. DL thanks the Institute of Astronomy for the kind hospitality during the preparation of this work. The Cariplo Foundation (DL) and Italian MURST (AC) are acknowledged for financial support.

REFERENCES

Costa, E. et al., 1997, Nature, 387, 783
the Big Bang: Supernovae and Gamma Ray Bursts” (astro-
ph/9909048)
Rybicki, G. B. & Lightman, A. P., 1979 Radiative processes in
Astrophysics (New York: Wiley)
6606
(astro-ph/9908097)
the Big Bang: Supernovae and Gamma Ray Bursts” (astro-
ph/9909096)
288, L51
Woosley, S. E., Eastman, R. G., Weaver, T. A. & Pinto, P. A., 1994,
Woosley, S. E., MacFadyen, A. I. & Heger, A., 1999, to appear
in: “The Largest Explosions Since the Big Bang: Supernovae and
Gamma Ray Bursts” (astro-ph/9909034)