Positronium-Hydrogen-Atom Scattering in a Five-State Model

Sadhan K. Adhikari and P. K. Biswas

Instituto de Física Teórica, Universidade Estadual Paulista 01.405-900 São Paulo, São Paulo, Brazil
(November 24, 1999)

The scattering of ortho-positronium (Ps) by hydrogen atoms has been investigated in a five-state coupled-channel model allowing for Ps(1s)H(2s,2p) and Ps(2s,2p)H(1s) excitations using a recently proposed electron-exchange model potential. The higher \((n \geq 3)\) excitations and ionization of the Ps atom are calculated using the first Born approximation. Calculations are reported of scattering length, phase shifts, elastic, Ps- and H-excitation, and total cross sections. Remarkable correlations are observed between the S-wave Ps-H binding energy and the singlet scattering length, effective range, and resonance energy obtained in various model calculations. These correlations suggest that if a Ps-H dynamical model yields the correct result for one of these four observables, it is expected to lead to the correct result for the other three. The present model, which is constructed so as to reproduce the Ps-H resonance at \(4.01\) eV, automatically yields a Ps-H bound state at \(-1.05\) eV which compares well with the accurate value of \(-1.067\) eV. The model leads to a singlet scattering length of \(3.72a_0\) and effective range of \(1.67a_0\), whereas the correlations suggest the precise values of \(3.50a_0\) and \(1.65a_0\) for these observables, respectively.

PACS Number(s): 34.10.+x, 36.10.Dr

I. INTRODUCTION

Recently, there have been several experimental and theoretical investigations of ortho positronium (Ps) atom scattering from different neutral atomic and molecular targets. Experiments have primarily measured total Ps-atom scattering cross sections from various targets \([1–3]\). In addition to total cross sections, the theoretical studies have also predicted partial cross sections and phase shifts for Ps-H \([4–9]\), Ps-He \([8,10–12]\), and Ps-H2 \([13,14]\) systems. Ps scattering by neutral targets is of special interest, as the direct amplitudes for elastic and even-parity state transitions are zero \([15]\) due to the internal charge and mass symmetry of Ps. Hence the electron-exchange interaction is the dominating factor at low energies in any Ps-impact scattering with neutral targets apart from the effect of polarization and van der Waals forces \([10,16]\). Ps scattering makes it possible to study the effect of exchange in an environment characteristically different from that of the electron-atom systems \([15]\). Among all Ps-atom systems, the positronium-hydrogen (Ps-H) system is the simplest and is of fundamental interest. The Ps-H scattering has most of the complications of a many-body problem, but few-body techniques can be employed for its solution.

A general feature of the measured total cross section in Ref. \([1]\) for Ps scattered by He, Ar, and H2 is a peak near \(20 – 25\) eV and a decreasing trend below this energy. Recent measurements near 1 eV \([2]\) are consistent with this trend. However, because of the large error bars on the measurement in Ref. \([1]\) at the lowest energy \(10\) eV) and due to inadequate data in this energy region, it is not clear from experiment whether the total cross section has a minimum near the Ps excitation threshold or not. The recent three-Ps-state studies of Refs. \([9,12,14]\) suggest the existence of a minimum near the Ps\((2s)\) threshold. This feature of the cross section is able to reconcile the two different experimental findings and is also noticed in the unpublished theoretical work of Peach \([17]\). The R-matrix calculation \([7,8]\) for H and He, in which 22 coupled pseudo states are included, does not show this trend; whereas the static-exchange (one-state) cross sections \([10]\) for He are too large to match the measurement near the Ps\((2s)\) threshold \([12]\). In this respect, the model-potential studies of Refs. \([9,12,14]\) are unique in reproducing the experimental trend of Ps-impact scattering by H, He, and H2. Unphysically large low-energy cross sections of previous cross sections are expected to be a consequence of the nonorthogonality arising from antisymmetrization and the very reactive nature of Ps scattering \([9,12,14]\).

In this paper we present a theoretical study of ortho-Ps-H scattering employing a five-state model allowing for excitation of both Ps and H atoms using the model exchange potential mentioned above. The following states are included in the calculation: Ps(1s)H(1s), Ps(2s)H(1s), Ps(2p)H(1s), Ps(1s)H(2s), and Ps(1s)H(2p) and such a model should be considered adequate at low energies. The cross sections for higher discrete and continuum excitations of the Ps atom are calculated in the framework of Born approximation. These Born cross sections are added to the above five-state cross sections to predict the total cross section.

Although, the parametrization of the model exchange potential of Ref. \([12]\), which is obtained using a physical argument, is satisfactory, it is not unique and leaves an option for the parameters to be varied to tune to some precise data at low energies. In the absence of experimental Ps-H cross sections we tune this parameter to reproduce the energy of the singlet S-wave resonance. Ho has provided the most precise estimate of S-wave resonance energy, which is \(4.01\) eV (width \(0.075\) eV) \([18]\). Frolov
and Smith have made the most accurate estimate of the S-wave bound state, which is 1.067 eV [19]. We varied the parameter of our model to fit the Ps-H resonance energy at 4.01 eV and found that the same model without any further adjustment also produced a Ps-H bound state at −1.05 eV. No previous scattering model has been able to produce these two features of the Ps-H system simultaneously and so precisely. Similar to those obtained in the three-nucleon system [20,21], we find remarkable correlation between the S-wave Ps-H binding energy and the singlet scattering length, effective range, and resonance energy obtained in various model calculations. These correlations suggest that if a model yields the correct result for one of these observables it should also yield the correct result for the other three. The present model leads to reasonably accurate energies for the Ps-H bound state and resonance and because of the above correlation the singlet scattering length and effective range are also expected to be fairly accurate.

We describe the calculational scheme, model exchange potential and numerical results in Sec. II and a summary of our findings in Sec. III.

II. MODEL POSITRONIUM-HYDROGEN CALCULATION

A. Calculational Scheme

The total antisymmetrized wave function for the Ps-H system allowing excitation of both Ps and H is given by

\[\Psi^\pm(r_1,r_2,x) \equiv \frac{1}{\sqrt{2}} \left(\phi_\mu(r_2)\chi_\nu(t_1)F_\mu\nu(s_1) \right) \]

\[\pm \phi_\mu(r_1)\chi_\nu(t_2)F_\mu\nu(s_2), \]

where \(s_j = (x + r_j)/2 \) and \(t_j = (x - r_j), \) \(j = 1,2, \) with \(x \) the positron coordinate and \(r_j \) are the coordinates of the two electrons. \(\phi_\mu(\chi_\nu) \) is the bound-state wave function of H (Ps) in quantum state \(\mu (\nu), \) and \(F_\mu\nu \) is the continuum orbital of Ps with respect to H. The Schrödinger equation for this wave function when projected on the final H and Ps states \(\phi_\mu \) and \(\chi_\nu, \) respectively, leads to the following Lippmann-Schwinger scattering integral equation in momentum space

\[f^{\pm}_{\mu'\nu',\mu\nu}(k',k) = \frac{1}{2\pi^2} \int \frac{d^3k'}{2E} \frac{B^{\pm}_{\mu'\nu',\mu\nu}(k',k')}{2} f^{\pm}_{\mu'\nu',\mu\nu}(k',k) \]

\[- \sum_{\mu''} \frac{1}{2\pi^2} \int \frac{d^3k''}{2E} \frac{g^{\pm}_{\mu'\nu',\mu''\nu}(k',k'')}{2} f^{\pm}_{\mu''\nu',\mu\nu}(k'',k) \]

\[+ \sum_{\mu''} \int \frac{d^3k''}{2E} g^{\pm}_{\mu''\nu,\mu\nu}(k',k'') \phi_\mu(r) \phi_\nu(t) dt, \]

where the singlet and triplet “Born” amplitudes, \(B^{\pm}, \) are given by \(B^{\pm}_{\mu'\nu',\mu\nu}(kr,kr) = g^{\pm}_{\mu'\nu',\mu\nu}(kr,kr) \pm g^{\pm}_{\mu'\nu',\mu\nu}(kr,kr), \) where \(g^D \) and \(g^S \) represent the direct and exchange Born amplitudes and the \(f^{\pm} \) are the singlet and triplet scattering amplitudes, respectively. The energies of the intermediate Ps and H states are \(\epsilon_\nu \) and \(\epsilon_{\nu'} \) and \(E \) is the total energy of the system. The differential cross section is defined by

\[\frac{d\sigma}{d\Omega} = \frac{k'}{4k} |f^{\pm}_{\mu'\nu',\mu\nu}(k',k)|^2, \]

and the quenching cross section that describes conversion from ortho- to para-positronium is defined by

\[\frac{d\sigma}{d\Omega} \text{ quen} = \frac{k'}{16k} |f^{\pm}_{\mu'\nu',\mu\nu}(k',k) - f^{-}_{\mu'\nu',\mu\nu}(k',k)|^2. \]

B. Model Exchange Potential

The derivation of the model exchange potential has been adequately described recently and here we quote the principal results [12]. The Ps-H model exchange potential is given by [22]

\[g^{E}_{\mu'\nu',\mu\nu}(kr,kr) = \frac{4(-1)^{l+l'}}{D} \int \phi_\mu^*(r) \exp(iQ.r)\phi_\mu(r)dr \]

\[\times \int \chi_\nu^*(t) \exp(iQ.t/2)\chi_\nu(t) dt, \]

with

\[D = k^2_f/4 + \alpha^2_\mu + \beta^2_\nu, \]

where \(l' \) and \(l' \) are the angular momenta of the initial and final Ps states, the initial and final Ps momenta are \(k_1 \) and \(k_2, \) \(Q = k_1 - k_2, \) \(\alpha^2_\mu = 2 \) and \(\alpha^2_\nu = 2, \) and \(\beta^2_\mu \) and \(\beta^2_\nu \) are the binding energies of the initial and final states of H and Ps in atomic units (au), respectively. The factor \((-1)^{l+l'} \) provides the correct sign of the exchange potential given by formal antisymmetrization. In previous works [9,12,14] only the \(l = 0 \) component of this model potential was given. The model exchange potential given by Eqs. (2.5) and (2.6) is not time-reversal symmetric. A time-reversal symmetric form has also been suggested in which Eq. (2.6) is replaced by [12]:

\[D = k^2_f/4 + \alpha^2_\mu + \alpha^2_\nu, \]

which leaves the elastic Born results unchanged.

C. Numerical Results

After a partial-wave projection, the singlet (+) and triplet (−) scattering equations (2.2) are solved by the method of matrix inversion. The maximum number of
Contribution of higher partial waves to cross sections is included by using the Born terms.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{fig1}
\caption{S-wave elastic scattering phase shifts for singlet and triplet states at different Ps energies: present five-state (full line), present two-state (dotted line), present static exchange (dashed-double-dotted line) Hara and Fraser (dashed line, Ref. [5]), Sinha et al. (dashed-dotted line, Ref. [6]).}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{fig2}
\caption{The singlet scattering length versus binding energy of different models: open triangles (Ref. [7]), open circles (calculated from phase shifts of Ref. [6]), solid triangle (from Ref. [4]), star (as calculated in Ref. [4] from phase shifts of [5]), solid circle (five-state calculation with \(C = 1 \) and 0.784 in Eq. (2.8)), full line (straight line fit).}
\end{figure}

In our latest calculations [12] we find that the symmetric form provides better results and therefore here we present results of Ps-H scattering using a five-state model and Eqs. (2.5) and (2.7) that includes the following states: Ps(1s)H(1s), Ps(2s)H(1s), Ps(2p)H(1s), Ps(1s)H(2s), and Ps(1s)H(2p). The truncated model that includes the first three of these states will be referred to as the three-Ps-state, or simply, the three-state, model, and the three-H-state model includes the first, fourth and fifth of this set. The model that includes the first \(n \) states of this set will be termed the \(n \)-state model. The Born terms for the simultaneous excitation of both H and Ps atoms are found to be small and will not be considered here in the coupled-channel scheme. Higher excitations and ionization of Ps are conveniently treated in the Born approximation including exchange and higher excitations and ionization of H are excluded. We calculate the elastic Ps(1s)H(1s) cross section and inelastic excitation cross sections to Ps(2s)H(1s), Ps(2p)H(1s), Ps(1s)H(2s), and Ps(1s)H(2p) states. We also calculate cross sections for the discrete excitation of the 3s, 3p, 3d, 4p, 4d, 4f, 5p, 5d, 5f, 6p states and also for ionization of Ps in the first Born approximation, keeping the target frozen to its initial ground state using exchange given by Eqs. (2.5) and (2.7).

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{fig3}
\caption{S-wave singlet effective range versus binding energy of different models: open triangles (Ref. [7]), solid triangle (from Ref. [4]), solid circle (five-state calculation with \(C = 0.784 \) in Eq. (2.8)), full line (straight line fit).}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{fig4}
\caption{S-wave singlet resonance versus binding energy of different models: open circle (Refs. [19,18]), open triangle (Ref. [7]), solid triangle (from Ref. [4]), solid circle (five-state calculation with \(C = 1 \) and 0.784 in Eq. (2.8)), full line (straight line fit).}
\end{figure}

In previous studies we found that the exact values of the parameters \(\alpha \) and \(\beta \) in Eqs. (2.6) and (2.7) lead to good results for cross sections. However, these parameters in Eqs. (2.6) and (2.7) correspond to some average value of momentum [12] and it was noted that one could conveniently allow these parameters to vary in order to improve the fit with experiment. As there are no experiments in Ps-H scattering, we choose these parameters to fit the known S-wave singlet resonance at 4.01 eV in
result of the theoretical estimate of the energy \[18\]. Interestingly enough, with this value we find the solution of \(k \) calculated by extrapolating the calculated \(C \) of this energy.

The straight-line correlation between these two observables from results of different model calculations implies that a model is shown in Fig. 2 where we plot the singlet scattering length versus binding energy for several calculations. This correlation between S-wave singlet Ps-H binding and effective range, which is shown in Fig. 3. In this figure we plot the effective ranges of Refs. [4,7] and their respective binding energies together with the five-state result. We also observe a correlation between S-wave singlet Ps-H binding and resonance energies, which is shown in Fig. 4. The essentially exact resonance and binding energies [18,19] lie on the line in Fig. 4 obtained by our calculation and those of Refs. [4,7]. The reproduction of the correct value of the singlet Ps-H effective range and resonance energy in addition to the scattering length assures proper variation of the phase shift in our model. The previous calculations [4–7] have possibly not converged well as they do not produce the correct energies of Ps-H bound state and resonance. The five-state model reproduces the positions of the Ps-H bound state and resonance fairly accurately.
and five-state models, which do not provide any correlation, are 1.83a_0, 1.69a_0, and 1.68a_0, respectively.

The model calculation leads to reasonable convergence for cross section and phase shifts at low energies as the number of states is increased. This is illustrated for low-energy cross sections in Table II for different basis sets. Finally, we present the low-energy phase shifts and quenching cross sections of the five-state model in Table III. As in Ref. [7], the quenching cross section has a minimum between 0 and 1 eV and a maximum between 1 and 2 eV. However, the low-energy quenching as well as elastic cross sections are somewhat smaller than those of Ref. [7] and are expected to be more converged.

Table II: Low-energy elastic cross sections in units of πa_0^2 using different basis sets for different k in au, incident positron energy $E = 6.8k^2$ eV.

<table>
<thead>
<tr>
<th>k</th>
<th>1-state</th>
<th>2-state</th>
<th>3-state</th>
<th>4-state</th>
<th>5-state</th>
<th>3-H-state</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>26.39</td>
<td>24.78</td>
<td>23.35</td>
<td>23.35</td>
<td>22.36</td>
<td>24.10</td>
</tr>
<tr>
<td>0.1</td>
<td>24.81</td>
<td>23.44</td>
<td>22.04</td>
<td>22.04</td>
<td>21.18</td>
<td>22.89</td>
</tr>
<tr>
<td>0.2</td>
<td>21.24</td>
<td>20.35</td>
<td>19.02</td>
<td>19.00</td>
<td>18.43</td>
<td>19.89</td>
</tr>
<tr>
<td>0.3</td>
<td>17.60</td>
<td>17.13</td>
<td>15.83</td>
<td>15.83</td>
<td>15.51</td>
<td>16.79</td>
</tr>
<tr>
<td>0.4</td>
<td>14.82</td>
<td>14.62</td>
<td>13.34</td>
<td>13.34</td>
<td>13.18</td>
<td>14.42</td>
</tr>
<tr>
<td>0.5</td>
<td>12.76</td>
<td>12.72</td>
<td>11.44</td>
<td>11.43</td>
<td>11.35</td>
<td>12.58</td>
</tr>
<tr>
<td>0.6</td>
<td>11.01</td>
<td>11.05</td>
<td>9.72</td>
<td>9.72</td>
<td>9.68</td>
<td>10.89</td>
</tr>
<tr>
<td>0.7</td>
<td>9.42</td>
<td>9.55</td>
<td>8.14</td>
<td>8.14</td>
<td>8.10</td>
<td>9.27</td>
</tr>
<tr>
<td>0.8</td>
<td>8.02</td>
<td>7.69</td>
<td>6.20</td>
<td>6.19</td>
<td>6.19</td>
<td>7.82</td>
</tr>
</tbody>
</table>

In Fig. 5 we plot the Ps(1s)H(1s), Ps(2s)H(1s), Ps(2p)H(1s), Ps(1s)H(2s), and Ps(1s)H(2p) cross sections for the five-state calculation, and the Born cross sections for $n \geq 3$ Ps-excitations and Ps-ionization. These cross sections are also exhibited in Table IV. The total cross section is plotted in Fig. 6 where we compare our results with those of the 22-pseudo-state R-matrix and three-state CCA calculations of Refs. [6,7]. In the absence of experimental results on Ps-H scattering, we compare the total cross section with the total Ps-H$_2$ cross section data (●) reduced by a factor of two [2]. This should provide a fair comparison except at very low energies. The experimental trend, which clearly demonstrates a broad maximum in the total cross section for all the Ps-impact scattering problems around 20 eV [1] and possibly a minimum near the Ps(2s) excitation threshold [12], is correctly reproduced in our calculation. The Ps-ionization cross section is largely responsible for producing this trend in Ps-H scattering and also in Ps-He and Ps-H$_2$ scattering [12,14]. The 22-pseudo-state calculations of Refs. [7,8] do not have this trend even after including Ps-ionization and H-excitation and ionization cross sections. The Ps-H cross sections of Ref. [6] shown in Fig. 5 do not include higher excitations and ionizations of Ps and H; but the trend of their result suggests that it may agree with the experimental trend of a maximum if these cross sections are included. However, at low energies our cross sections are much smaller than those of Refs. [6,7].
Table III: Low-energy phase shifts in radians and ortho-Ps(1s) to para-Ps(1s) conversion cross sections in units of πa_0^2 for the five-state model for different k in au. The entries for $k = 0$ correspond to the scattering lengths in units of a_0, incident positron energy $E = 6.86^2$ eV.

<table>
<thead>
<tr>
<th>k (au)</th>
<th>δ_0^0 (rad)</th>
<th>δ_1^0 (rad)</th>
<th>δ_0^1 (rad)</th>
<th>δ_1^1 (rad)</th>
<th>δ_2^2 (rad)</th>
<th>σ_{quen} (πa_0^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>3.72</td>
<td>1.68</td>
<td>-1.67</td>
<td>-4.77</td>
<td>-2.33</td>
<td>-1.45</td>
</tr>
<tr>
<td>0.1</td>
<td>2.78</td>
<td>-1.67</td>
<td>-3.27</td>
<td>-3.70</td>
<td>-1.67</td>
<td>-5.34</td>
</tr>
<tr>
<td>0.2</td>
<td>2.44</td>
<td>-4.74</td>
<td>1.16</td>
<td>-4.76</td>
<td>3.55</td>
<td>-2.63</td>
</tr>
<tr>
<td>0.3</td>
<td>2.14</td>
<td>-6.02</td>
<td>2.39</td>
<td>-9.18</td>
<td>1.22</td>
<td>0.86</td>
</tr>
<tr>
<td>0.4</td>
<td>1.68</td>
<td>-7.06</td>
<td>3.72</td>
<td>-1.42</td>
<td>2.89</td>
<td>-2.02</td>
</tr>
<tr>
<td>0.5</td>
<td>1.52</td>
<td>-7.84</td>
<td>4.78</td>
<td>-1.90</td>
<td>5.52</td>
<td>-3.62</td>
</tr>
<tr>
<td>0.6</td>
<td>1.43</td>
<td>7.37</td>
<td>5.41</td>
<td>-2.28</td>
<td>8.82</td>
<td>-5.52</td>
</tr>
<tr>
<td>0.7</td>
<td>1.38</td>
<td>7.19</td>
<td>5.69</td>
<td>-2.47</td>
<td>1.21</td>
<td>1.07</td>
</tr>
<tr>
<td>0.8</td>
<td>4.12</td>
<td>7.19</td>
<td>5.69</td>
<td>-2.47</td>
<td>1.21</td>
<td>1.07</td>
</tr>
</tbody>
</table>

In this study we find that the H-excitation cross sections are much smaller than the Ps-excitation cross sections and the H-excitation channels have less effect on the convergence of the solution at low energies compared to the Ps-excitation channels. This is consistent with the fact that the polarizability of the H atom is one-eighth of that of the Ps atom. In view of this, the difference between our low-energy results and those of Refs. [6,7] seems to be due to their unconverged nature and not due to the neglect of H states in their model. This is explicit in their estimation for Ps-H binding energies.

Table IV: Ps-H partial cross sections in units of πa_0^2 at different positronium energies

<table>
<thead>
<tr>
<th>E (eV)</th>
<th>Ps(1s)-H(1s)</th>
<th>Ps(2s)-H(1s)</th>
<th>Ps(2p)-H(1s)</th>
<th>Ps(1s)-H(2s)</th>
<th>Ps(1s)-H(2p)</th>
<th>Ps(n ≥ 3)-H(1s)</th>
<th>Ps-ion-H(1s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.08</td>
<td>4.70</td>
<td>1.01</td>
<td>7.92</td>
<td>1.93</td>
<td>9.06</td>
<td>1.08</td>
<td>1.02</td>
</tr>
<tr>
<td>5.5</td>
<td>4.88</td>
<td>1.55</td>
<td>1.40</td>
<td>9.06</td>
<td>1.08</td>
<td>1.02</td>
<td>1.02</td>
</tr>
<tr>
<td>6</td>
<td>4.53</td>
<td>1.52</td>
<td>1.83</td>
<td>8.26</td>
<td>2.86</td>
<td>3.02</td>
<td>2.55</td>
</tr>
<tr>
<td>6.8</td>
<td>4.10</td>
<td>1.34</td>
<td>1.93</td>
<td>7.45</td>
<td>3.35</td>
<td>3.64</td>
<td>3.35</td>
</tr>
<tr>
<td>8</td>
<td>3.59</td>
<td>1.19</td>
<td>1.74</td>
<td>5.16</td>
<td>2.11</td>
<td>3.64</td>
<td>2.11</td>
</tr>
<tr>
<td>10</td>
<td>2.91</td>
<td>1.28</td>
<td>1.45</td>
<td>2.33</td>
<td>2.11</td>
<td>3.64</td>
<td>2.33</td>
</tr>
<tr>
<td>11</td>
<td>2.64</td>
<td>1.17</td>
<td>1.45</td>
<td>1.38</td>
<td>2.33</td>
<td>2.33</td>
<td>2.33</td>
</tr>
<tr>
<td>12</td>
<td>2.34</td>
<td>1.12</td>
<td>1.28</td>
<td>2.86</td>
<td>3.04</td>
<td>2.33</td>
<td>2.33</td>
</tr>
<tr>
<td>15</td>
<td>1.78</td>
<td>9.64</td>
<td>1.07</td>
<td>1.99</td>
<td>3.10</td>
<td>3.64</td>
<td>3.64</td>
</tr>
<tr>
<td>20</td>
<td>1.19</td>
<td>6.91</td>
<td>1.45</td>
<td>1.20</td>
<td>3.79</td>
<td>3.64</td>
<td>3.64</td>
</tr>
<tr>
<td>25</td>
<td>5.17</td>
<td>4.54</td>
<td>5.98</td>
<td>7.48</td>
<td>4.37</td>
<td>3.64</td>
<td>3.64</td>
</tr>
<tr>
<td>30</td>
<td>5.73</td>
<td>4.00</td>
<td>4.68</td>
<td>4.88</td>
<td>9.09</td>
<td>3.64</td>
<td>3.64</td>
</tr>
<tr>
<td>40</td>
<td>3.08</td>
<td>1.47</td>
<td>3.16</td>
<td>4.24</td>
<td>4.52</td>
<td>2.25</td>
<td>2.25</td>
</tr>
<tr>
<td>60</td>
<td>1.17</td>
<td>5.11</td>
<td>1.85</td>
<td>8.71</td>
<td>1.57</td>
<td>1.52</td>
<td>1.52</td>
</tr>
<tr>
<td>80</td>
<td>5.65</td>
<td>2.37</td>
<td>1.28</td>
<td>4.08</td>
<td>7.20</td>
<td>1.13</td>
<td>1.13</td>
</tr>
<tr>
<td>100</td>
<td>3.15</td>
<td>1.29</td>
<td>9.72</td>
<td>2.29</td>
<td>3.87</td>
<td>0.90</td>
<td>0.90</td>
</tr>
</tbody>
</table>

III. SUMMARY

We have performed a five-state calculation of Ps-H scattering using a recently proposed non-local model exchange potential. The model considers excitation of both Ps and H atoms and yields cross sections for transitions to following final states starting from the initial state Ps(1s)H(1s): Ps(1s)H(1s), Ps(2s)H(1s), Ps(2p)H(1s), Ps(1s)H(2s), and Ps(1s)H(2p). Higher excitations and ionization of the Ps atom are treated by the Born approximation including exchange. The cross sections are in qualitative agreement with experimental trend. Our five-state model yields singlet and triplet scattering lengths of 3.72a_0 and 1.68a_0, and the singlet effective range of 1.67a_0. The calculation reproduces the singlet S-wave Ps-H resonance at 4.01 eV [18] and predicts a Ps-H binding energy of 1.05 eV compared to the accurate binding energy of 1.067 eV [19]. This assures us as to the realistic nature of our model. We observe correlations between the S-wave singlet Ps-H binding energy and singlet scattering length, effective range, and resonance energy obtained in different calculations. These correlations of other observables with binding energy demonstrate the degree of convergence of various model calculations as can be seen in Figs. 2, 3, and 4. Considering precise Ps-H binding energy of 1.067 eV, correlations in Figs. 2 and 3 suggest a singlet scattering length of 3.5a_0 and
an effective range of 1.65a_0. The inclusion of higher-order states in our five-state model are not expected to influence the low-energy results significantly as has been demonstrated in Table II, but their effect could be considerable at medium to high energies. A further detailed calculation including these states will help to understand the dynamics more precisely.

The work is supported in part by the Conselho Nacional de Desenvolvimento - Científico e Tecnológico, Fundação de Amparo à Pesquisa do Estado de São Paulo, and Financiadora de Estudos e Projetos de Brazil.

[17] G. Peach, unpublished, as quoted in Refs. [1].
[22] This is in fact $-2\pi^2$ times the model exchange potential or the exchange Born term.
Figure 1

The figure shows the S-wave elastic phase shift (radian) as a function of energy (eV) for both triplet and singlet states.
Figure 2

Scattering Length (units of a_0) vs. Binding Energy (eV)
Figure 3

Graph showing the relationship between binding energy (eV) and effective range (units of a_0).
Figure 5

Partial Cross Section (units of πa_0^2) vs. Energy (eV)

Y-axis: Partial Cross Section (units of πa_0^2)
X-axis: Energy (eV)
Figure 6

Energy (eV)

Total Cross Section (units of πa_0^2)