A MEASUREMENT OF Ω FROM THE NORTH AMERICAN TEST FLIGHT OF BOOMERANG

A. Melchiorri1,2,9, P.A.R. Ade3, P. de Bernardis1, J.J. Bock4,5, J. Borill6,7, A. Boscaleri8, B.P. Crill9, G. De Troia1, P. Fares10, P. G. Ferreira11,12, K. Gang1,13, G. de Gasperis2, M. Giacometti1, V.V. Hristov4, A.H. Jaffe6, A.E. Lange8, S. Mast1, P.D. Mauskopf14,15, L. Miglio1,15, C.B. Netterfield15, E. Pascale6, F. Piacentini1, G. Romeo16, J.E. Ruhl10 and N. Vittorio2

1 Dipartimento di Fisica, Universita’ La Sapienza, Roma, Italy
2 Dipartimento di Fisica, Universita’ Tor Vergata, Roma, Italy
3 Queen Mary and Westfield College, London, UK
4 California Institute of Technology, Pasadena, CA, USA
5 Jet Propulsion Laboratory, Pasadena, CA, USA
6 Center for Particle Astrophysics, University of California, Berkeley, CA, USA
7 National Energy Research Scientific Computing Center, LBNL, Berkeley, CA, USA
8 IROE-CNR, Firenze, Italy
9 Dept. de Physique Theorique, Universite de Geneve, Switzerland
10 Dept. of Physics, Univ. of California, Santa Barbara, CA, USA
11 CENTRA, IST, Lisbon, Portugal
12 Theory Division, CERN, Geneva, Switzerland
13 Physique Corpusculaire et Cosmologie, College de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
14 Dept. of Physics and Astronomy, University of Massachusetts, Amherst, MA, USA
15 Depts. of Physics and Astronomy, University of Toronto, Canada
16 Istituto Nazionale di Geofisica, Roma, Italy

ABSTRACT

We use the angular power spectrum of the Cosmic Microwave Background, measured during the North American test flight of the Boomerang experiment, to constrain the geometry of the universe. Within the class of Cold Dark Matter models, we find that the overall fractional energy density of the universe, Ω, is constrained to be $0.85 \leq \Omega \leq 1.25$ at the 68% confidence level. Combined with the COBE measurement and the high redshift supernovae data we obtain new constraints on the fractional matter density and the cosmological constant.

Subject headings: cosmology: Cosmic Microwave Background, anisotropy, measurements, power spectrum

1. INTRODUCTION

The dramatic improvement in the quality of astronomical data in the past few years has presented cosmologists with the possibility of measuring the large scale properties of our universe with unprecedented precision (e.g. Kamionkowski & Kosowsky 1999). The sensitivity of the angular power spectrum of the Cosmic Microwave Background (CMB) to cosmological parameters has lead to analyses of existing datasets with increasing sophistication in an attempt to measure such fundamental quantities as the energy density of the universe and the cosmological constant. This activity has lead to improved methods of Maximum Likelihood Estimation (Bond, Jaffe & Knox 1998, hereafter BJK98, Bartlett et al 1999), attempts at enlarging the range of possible parameters (Lineweaver 1998, Tegmark 1999, Melchiorri et al. 1999), and the incorporation of systematic uncertainties in the experiments (Dodelson & Knox, from now on DK99, Ganga et al. 1997).

Within the class of adiabatic inflationary models there is now strong evidence from the CMB that the universe is flat. The most extensive range of parameters has been considered by Tegmark (1999) where the author found that a flat universe was consistent with CMB data at the 68% confidence level. A more thorough analysis was performed in DK99, incorporating the non-Gaussianity of the likelihood function, possible calibration uncertainties and the most recent data: again, the 68% likelihood contours comfortably encompass the Einstein-de Sitter Universe. All these previous analyses were restricted to the class of open and flat models.

In this letter we present further evidence for a flat universe from the CMB. Using the methods for parameter estimation described in BJK98, we perform a search in cosmological parameter space for the allowed range of values for the fractional density of matter, Ω_M, and cosmological constant, Λ, given the recent estimate of the angular power spectrum from the 1997 test flight of the Boomerang experiment (see the companion paper Mauskopf et al. 1999). We obtain our primary constraints from this data set alone and find compelling evidence, within the family of adiabatic inflationary models for a flat universe. In section 2 we briefly describe the Boomerang experiment, the data analysis undertaken and the characteristics of the angular power spectrum obtained. In section 3 we spell out the parameter space we have explored, the method we use and the constraints we obtain on the fractional energy density of the universe, $\Omega = \Omega_M + \Lambda$. Finally in section 4 we discuss our findings and combine it with other cosmological data to obtain a new constraint on the cosmological constant.
2. THE DATA

The data we use here are from a North American test flight of Boomerang (Boomerang/NA), a balloon-borne telescope designed to map CMB anisotropies from a long-duration, balloon-borne (LDB) flight above the Antarctic. A detailed description of the instrument can be found in Masi et al. 1999. A description of the data and observations, with a discussion of calibrations, systematic effects and signal reconstruction can be found in Maukopf et al. 1999. This test flight produced maps of the CMB with more than 200 square degrees of sky coverage at frequencies of 90 and 150 GHz with resolutions of 26 arcmins FWHM and 16.6 arcmins FWHM respectively.

The size of the Boomerang/NA 150 GHz map was estimated in eight bins spanning \(\ell\) from 50 to 400 and one bin at \(\ell = 800\). The bin correlation matrix is diagonalized as in BJK98 resulting in eight orthogonalized (independent) bins. We present the likelihood for each orthogonalized band power in Figure 1, using the offset lognormal ansatz proposed in BJK98. As described in Maukopf et al. 1999 the data show strong evidence for an acoustic peak with an amplitude of \(\sim 70\mu K_{CMB}\) centered at \(\ell \sim 200\).

3. MEASURING CURVATURE

The Boomerang/NA angular power spectrum covers a range of \(\ell\) corresponding to the horizon size at decoupling. The amplitude and shape of the power spectrum is primarily sensitive to the overall curvature of the universe, \(\Omega\) (Doroskevich, Zeldovich, & Sunyaev 1978); other parameters such as the scalar spectral index, \(n_s\), the fractional energy density in baryons, \(\Omega_B\), the cosmological constant, \(\Omega_{\Lambda}\), and the Hubble constant, \(H_0\) \(\equiv 100h\) km sec\(^{-1}\) Mpc, will also affect the height of the peak and therefore some “cosmic confusion” will arise if we attempt independent constraints on each of the parameters (Bond et al 1994). In our analysis we shall restrict ourselves to the family of adiabatic, CDM models. This involves considerable theoretical prejudice in the set of parameters we choose to vary although, as the presence of an acoustic peak at \(\ell \sim 200\) becomes more certain, the assumption that structure was seeded by primordial adiabatic perturbations becomes more compelling (Liddle 1995; however, counterexamples exist, Turok 1997, Durrer & Sakellariadou 1997, Hu 1999).

We should, in principle, consider an 11-dimensional space of parameters; sensible priors due to previous constraints and the spectral coverage of the Boomerang/NA angular power spectrum reduce the space to 6 dimensions. In particular, we assume \(\tau = 0\) (lacking convincing evidence for high redshift reionization), we assume a negligible contribution of gravitational waves (as predicted in the standard scenario), and we discard the weak effect due to massive neutrinos. The remaining parameters to vary are \(\Omega_{CDM}, \Omega_{\Lambda}, h, n_S\) and the amplitude of fluctuations, \(C_{10}\), in units of \(C^{CMB}_{10}\). The combination \(\Omega_B h^2\) is constrained by primordial nucleosynthesis arguments: \(0.013 \leq \Omega_B h^2 \leq 0.025\), while we set \(0.5 \leq h \leq 0.8\). For the spectral index of the primordial scalar fluctuations we make the choice \(0.8 \leq n_S \leq 1.3\) and we let a 20% variation in \(C_{10}\). As our main goal is to obtain constraints in the \((\Omega_M = \Omega_{CDM} + \Omega_B, \Omega_{\Lambda})\) plane, we let these parameters vary in the range \([0.05, 2] \times [0, 1]\). Proceeding as in DK99, we attribute a likelihood to a point on this plane by finding the remaining four, “nuisance”, parameters that maximize it. The reasons for applying this method are twofold. First, if the likelihood were a multivariate Gaussian in all the parameters, maximizing with regards to the nuisance parameters corresponds to marginalizing over them. Second, if we define our 68%, 95% and 99% contours where the likelihood falls to 0.32, 0.05 and 0.01 of its peak value (as would be the case for a two dimensional Multivariate Gaussian), then the constraints we obtain are conservative relative to any other hypersurface we may choose in parameter space in the sense that they rule out a smaller range of parameter space than other usual choices.

The likelihood function for the estimated band powers is non-Gaussian but one can apply the “radical compression” method proposed by BJK98; the likelihood function is well approximated by an offset lognormal distribution whose parameters can be easily calculated from the output of MADCAP. The theory \(C_{\ell}\)s are generated using CMB-FAST (Seljak & Zaldarriaga 1996) and the recent implementation for closed models CAMB (Lewis, Challinor & Lasenby 1999). We search for the maximum along a 4 dimensional grid of models, using the fact that variations in \(C_{10}\) and \(n_s\) are less CPU time consuming. We searched also for the multidimensional maxima of the likelihood adopting a Downhill Simplex Method (Press et al. 1989), obtaining consistent results.

Fig. 1.— The Likelihood function of each of the eight band powers, \(C_{\ell}\), from the analysis of the 150 GHz map was estimated in eight bins spanning \(\ell\) with seven bins centered between \(\ell = 50\) to \(\ell = 400\) and one bin at \(\ell = 800\). The bin correlation matrix is diagonalized as in BJK98 resulting in eight orthogonalized (independent) bins. We present the likelihood for each orthogonalized band power in Figure 1, using the offset lognormal ansatz proposed in BJK98. As described in Maukopf et al. 1999 the data show strong evidence for an acoustic peak with an amplitude of \(\sim 70\mu K_{CMB}\) centered at \(\ell \sim 200\).
In Figure 2, we plot the likelihood of Ω normalized to 1 at the peak where, again, we have maximized along the $\Omega_M - \Omega_{\Lambda}$ direction. The likelihood shows a sharp peak near $\Omega = 1$ and this result is insensitive to the tradeoff between Ω_M and Ω_{Λ}. (see Figure 3 and explanation in following paragraphs). This is an extreme manifestation of the “cosmic degeneracy” problem (because we are focusing on just the first peak): we are able to obtain robust constraints on Ω without strong constraints on Ω_M and Ω_{Λ} individually.

Within the range of models we are considering, we find that 68% of integrated likelihood corresponds to $0.85 \leq \Omega \leq 1.25$ ($0.65 \leq \Omega \leq 1.45$ at 95%). The best fit is a marginally closed model with $\Omega_{CDM} = 0.26$, $\Omega_B = 0.05$, $\Omega_{\Lambda} = 0.75$, $n_S = 0.95$, $h = 0.70$, $C_{10} = 0.9$. An almost equivalent good fit is given by $\Omega_{CDM} = 0.39$, $\Omega_B = 0.07$, $\Omega_{\Lambda} = 0.65$, $n_S = 0.90$, $h = 0.55$, $C_{10} = 1.0$.

In Figure 3 (top panel) we estimate the likelihood of the data for a 20×20 grid in $(\Omega_M, \Omega_{\Lambda})$ by applying the maximization/marginalization algorithm described above. The effect of marginalizing is, as expected, to expand the contours along the $\Omega =$constant lines but has little effect in the perpendicular direction and we are able to rule out a substantial region of parameter space.

For $\Omega_M \sim 1$ models, the position of the peak is solely dependent on the angular-diameter distance, with a good approximation being $\ell_{\text{peak}} \propto \Omega^{-\frac{1}{2}}$; this approximation breaks down when $\Omega_M \rightarrow 0$ where the early time integrated Sachs-Wolfe effect becomes important and ℓ_{peak} is far more sensitive to Ω (White & Scott 1996). This effect leads to a convergence of contour levels as $\Omega_M \rightarrow 0$ in Figure 3.

4. DISCUSSION

In the previous section we have obtained a constraint on Ω using only the Boomerang/NA data. These new results are consistent with Lineweaver (1998), Tegmark (1999) and DK99. However, the Boomerang/NA data on its own does not constrain the shape and amplitude of the power spectrum at $\ell \leq 25$ and limits our ability to independently determine the parameters n_S, Ω_B, h, Ω_{Λ} and C_{10}. We combine the Boomerang/NA data with the 4-year COBE/DMR angular power spectrum to attempt to break this degeneracy. In Figure 3 (bottom panel) we
plot the likelihood contours, again maximized over the nuis-
ance parameters for the combined BOOMERANG/NA and
COBE data. The inclusion of the COBE data does not
greatly affect the constraints at high Ω_M or the confidence
levels on Ω, but, as expected, it helps to close of the con-
tours at low values of Ω_M. The best fit model changes
to $\Omega_{CDM} = 0.46$, $\Omega_B = 0.05$, $\Omega_{\Lambda} = 0.50$, $n_S = 1.0$,
$h = 0.70$, $C_{10} = 0.94$. We find that for the likelihood to be
greater than 0.32 of its peak value then $\Omega_M > 0.2$, again
similar to the results of DK99.

One can combine our constraints with those obtained
from the luminosity-distance measurements of high-z
supernovae (Perlmutter et al. 1998, Schmidt et al 1998);
using the 1-σ constraint from Perlmutter et al (1998),
$\Omega_M - 0.64 \Omega_{\Lambda} = -0.2 \pm 0.1$, we find $0.2 \leq \Omega_M \leq 0.45$
and $0.6 \leq \Omega_{\Lambda} \leq 0.85$.

A few comments are in order about the robustness of our
analysis. Firstly we have not truly marginalized over the nuis-
ance parameters. However the constraints we obtain
in this way are, if anything, more conservative. Secondly,
although we are limiting ourselves to standard adiabatic
models, a strong case can be made against the rival the-
ory of topological defects: the presence of a fairly local-
ized rise and fall in the data around ℓ of 200 indicates that
the characteristic broadening due to decoherence of the
either cosmic strings (Contaldi, Hindmarsh & Magueijo
1999) or textures (Pen, Seljak & Turok 1997) is strongly
disfavoured.

Finally we have restricted ourselves to only four ex-
tra nuisance parameters. Again we believe this does not
affect our main result (our constraints on Ω) although
it may affect the low Ω_M constraints when we combine
the BOOMERANG/NA data with COBE; the results from
Tegmark (1998) and DK99 lead us to believe that the ef-
fect will not greatly change our results.

To summarize we have used the angular power spectrum

of the BOOMERANG/NA test flight to constrain the curva-
ture of the universe. Given that we have based our results
on this data set alone, our results are completely inde-
dependent from previous analysis of the CMB. At the time
of submission, this letter is also the first analysis of this
to include closed models in the computation.

We find strong evidence against an open universe: we
find that $0.65 \leq \Omega \leq 1.45$ at the 95% confidence level, sig-
ificantly ruling out the current favourite open inflationary
models for structure formation (Lyth & Stewart 1990, Ra-
Much tighter constraints will soon be placed on these and
others cosmological parameters from future data sets, in-
cluding data obtained during by the Antarctic LDB flight
of BOOMERANG, which mapped over 1200 square degrees
of the sky with 12$'$ angular resolution and higher sensitiv-
ity per pixel than the BOOMERANG/NA.

We acknowledge useful conversations with Dick Bond,
Ruth Durrer, Eric Hivon, Tom Montroy, Dmitriy Poposyan
and Simon Prunet. The BOOMERANG program has been
supported by Programma Nazionale Ricerche in Antar-
tide, Agenzia Spaziale Italiana and University of Rome La
Sapienza in Italy, by NASA grant numbers NAG5-4081
& NAG5-4455 in the USA, and by the NSF Science &
Technology Center for Particle Astrophysics grant num-
ber SA1477-22311NM under AST-9120005, by the NSF
Office of Polar Programs grant number OPP-9729121 and
by PPARC in UK. This research also used resources of
the National Energy Research Scientific Computing Cen-
ter, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-
AC03-76SF00098. Additional computational support for
the data analysis has been provided by CINECA/Bologna.
We also acknowledge using the CMBFAST, CAMB and
RADPack packages.

REFERENCES

ph/9906204
Observations, in “Proceedings of the 3K Cosmology: EC-TMR
Conference”, Rome, Italy edited by L. Maiani, F. Melchiorri, and
N.Vittorio AIP Conference Proceedings, astro-ph/9903204
Borrill, J. 1999, MADCAP: The Microwave Anisotropy Dataset
Computation Analysis Package, in “Proceedings of the Fifth
European SGI/Cray MPP Workshop”, astro-ph/9911389
679.
22, 523.
484, 7
Nucl. Part. Sci., astro-ph/9904108
Masi, S. et al. 1999, BOOMERAng: a scanning telescope for 10
arcminutes resolution CMB maps, in “Proceedings of the 3K
Cosmology : EC-TMR Conference”, Rome, Italy edited by L.
Maiani, F. Melchiorri, and N.Vittorio AIP Conference Proceedings
476.
Perlmutter et al astro-ph/9912153