Variational Analysis for a Generalized Spiked Harmonic Oscillator

Richard L. Hall

Department of Mathematics and Statistics, Concordia University,
1455 de Maisonneuve Boulevard West, Montréal,
Québec, Canada H3G 1M8.

Nasser Saad

Department of Mathematics and Statistics,
Notre-Dame University (Louaize),
Zouk Mesbeh, Lebanon.

Abstract

A variational analysis is presented for the generalized spiked harmonic oscillator Hamiltonian operator \(-\frac{d^2}{dx^2} + Bx^2 + \frac{A}{x^2} + \frac{\lambda}{x^\alpha}\), where \(\alpha\) is a real positive parameter. The formalism makes use of a basis provided by exact solutions of Schrödinger's equation for the Gol'dman and Krivchenkov Hamiltonian, and the corresponding matrix elements that were previously found. For all the discrete eigenvalues the method provides bounds which improve as the dimension \(D\) of the basis set is increased. Extension to the \(N\)-dimensional case in arbitrary angular-momentum subspaces is also presented. By minimizing over the free parameter \(A\), we are able to reduce substantially the number of basis functions needed for a given accuracy.

PACS 03.65.Ge
I. Introduction

Since the fascinating work of Harrell [1] on the ground-state energy of the singular Hamiltonian $H \equiv H_0 + \lambda V = -d^2/dx^2 + x^2 + \lambda/x^\alpha$, $x \in [0, \infty]$, $\alpha > 0$, known as the spiked harmonic oscillator Hamiltonian, the volume of research in this field has grown rapidly. This is not only because of the important applications of singular Hamiltonians to a wide variety of problems in chemical, nuclear and particle physics, but also because of its intrinsically interesting properties from the point of view of mathematical physics [2-5]. Most of these work [6-15], however, has focused on studying the spiked harmonic oscillator Hamiltonian in one spatial dimension since the interesting Klauder phenomenon [2-5] associated with H does not occur in higher dimensions. Klauder [2-5] has shown that, for sufficiently singular potentials, V cannot be turned off smoothly in the Hamiltonian H to restore the free Hamiltonian H_0. Aguilera-Navarro et al [6] employed variational and perturbative schemes to solve the spiked harmonic oscillator problem for the ground state energy. In their variational analysis of the Hamiltonian H, Aguilera-Navarro et al employed the basis set of harmonic oscillator eigenfunctions normalized in the interval $[0, \infty]$, i.e. the set of Hermite functions generated by the non-singular harmonic-oscillator potential x^2.

Recently, we have obtained closed-form expressions [16] for the singular-potential integrals $\langle m|x^{-\alpha}|n \rangle$ using the Gol’dman and Krivchenkov eigenfunctions [17] for the singular Hamiltonian

$$H_0 = -\frac{d^2}{dx^2} + Bx^2 + \frac{A}{x^\alpha}, \quad B > 0, A \geq 0. \tag{1.1}$$

We present a variational analysis of the generalized spiked harmonic oscillator Hamiltonian

$$H \equiv H_0 + \lambda V = -\frac{d^2}{dx^2} + Bx^2 + \frac{A}{x^\alpha} + \frac{\lambda}{x^\alpha}, \quad \alpha > 0, \tag{1.2}$$

where λ and α are positive parameters. To evaluate the matrix elements of $x^{-\alpha}$, Hall et al [16] used the basis set constructed with the normalized solutions of Schrödinger’s equation $H_0\psi = E\psi$, i.e.

$$\psi_n(x) \equiv |n\rangle = C_n x^{\frac{1}{2}(1+\sqrt{1+4\lambda})} e^{-\frac{1}{2} \sqrt{n+4A} x^2} \frac{\Gamma(n+1+\frac{1}{2} \sqrt{1+4\lambda})}{\sqrt{n!} \Gamma(1+\frac{1}{2} \sqrt{1+4\lambda})} \frac{1}{\sqrt{1+4\lambda}};$$

$$C_n^2 = \frac{2B^{\frac{1}{2}+\frac{1}{2} \sqrt{1+4\lambda}} \Gamma(n+1+\frac{1}{2} \sqrt{1+4\lambda})}{n! \Gamma(1+\frac{1}{2} \sqrt{1+4\lambda})^2}, \quad n = 0, 1, 2, \ldots, \tag{1.3}$$

where $1F_1$ is the confluent hypergeometric function [18]

$$1F_1(a, b; z) = \sum_k \frac{(a)_k z^k}{(b)_k k!}, \quad (a)_k = a(a+1)\ldots(a+k-1) = \frac{\Gamma(a+k)}{\Gamma(a)},$$

Hall et al found, for $\alpha < 2\gamma$, that the matrix elements $\langle m|x^{-\alpha}|n \rangle$ are given by

$$\langle m|x^{-\alpha}|n \rangle = (-1)^{n+m} B^{\alpha/4} \frac{\Gamma(n+m) \Gamma(\gamma+n)}{\Gamma(\gamma+n) n!} \left[\frac{\Gamma(\gamma+\frac{1}{2})}{\Gamma(\gamma+\frac{1}{2})} \right] \sum_{k=0}^m (-1)^k \frac{m}{k} \frac{\Gamma(k+\gamma-\frac{1}{2}) \Gamma(\frac{1}{2}-k+n)}{\Gamma(k+\gamma) \Gamma(\frac{1}{2}-k)}, \quad \gamma = 1 + \frac{1}{2} \sqrt{1+4\lambda}, \tag{1.4}$$
in which each element has a factor which is a polynomial of degree $m + n$ in α. Of particular interest are the matrix elements $<0|x^{-\alpha}|n>$, which can be obtained from Eq.(1.4), and read as follows:

$$<0|x^{-\alpha}|n> = (-1)^n B^{\alpha/4} \sqrt{\frac{\Gamma(\gamma)}{n! \Gamma(\gamma + n)}} \frac{\Gamma(\gamma - \frac{n}{2}) \Gamma(\frac{\gamma}{2} + n)}{\Gamma(\gamma) \Gamma(\frac{\gamma}{2})}, \ n = 0, 1, 2, \ldots$$ (1.5)

The special case where $A = 0$ and $B = 1$ allows us to recover the matrix elements provided by Aguilera-Navarro et al [6] for the operator $x^{-\alpha}$ in the harmonic-oscillator representation, supplemented by the Dirichlet boundary condition $\psi(0) = 0$. Indeed, substituting $A = 0$ and $B = 1$, and using the identities

$$\frac{\Gamma(n + \frac{3}{2})}{\Gamma(\frac{3}{2})} = \frac{(2n + 1)!}{2^{2n}n!}, \quad \frac{\Gamma(z + n)}{\Gamma(z)} = (z + n - 1)(z + n - 2)\ldots(z + 1)z,$$

after some algebraic simplification, we can easily show that Eq.(1.4) reduces to Eq.(12) and Eq.(13), for $m = 0$, of Ref.[6]. All these expressions are valid for $\alpha < 3$.

The purpose of this paper is to employ the variational method, with the matrix elements (1.4), to solve the generalized singular Schrödinger equation

$$\left[-\frac{d^2}{dx^2} + Bx^2 + \frac{A}{x^2} + \frac{\lambda}{x^\alpha}\right]\psi = E\psi, \ 0 \leq x < \infty.$$ (1.6)

The present work is a generalization of the variational approach of Aguilera-Navarro et al [6] that used harmonic-oscillator functions and was restricted to ground state level ($B = 1, A = 0$).

The paper is organized as follows. In Sec. II, we outline the variational method used to study (1.6), and we also extend the scope to cover the N-dimension case. Some numerical results, and comparisons with the results of Aguilera-Navarro et al, are presented in Sec. III. In Sec. IV it is shown that a further optimization over the free parameter A reduces substantially the number of basis functions needed to compute the eigenvalues to a given accuracy.

II. The variational method

The first step in the variational method is to select a suitable complete set of basis functions that is adapted to the problem at hand. In the variational analysis of the ground state energy of the singular potential $V(x) = x^2 + \lambda x^{-\alpha}$, known in the literature as the spiked harmonic oscillator potential, Aguilera-Navarro et al employed a basis set of harmonic oscillator eigenfunctions normalized on the interval $[0, \infty]$ and vanishing at $x = 0$, i.e. the set of odd Hermite functions generated by the non-singular harmonic-oscillator potential x^2. A more effective basis set for the variational analysis of such singular problems is the set of normalized wavefunctions (1.3) because the singular characteristics of the potential are naturally built into the wavefunctions.
Let $\psi(x)$ be a ‘trial function’ for Hamiltonian H given by (1.2), and let us suppose that $\psi(x)$ can be expanded in terms of the basis set $\psi_n(x)$ defined by (1.3). Thus we have
\[
\psi(x) = \sum_{n=0}^{D-1} a_n \psi_n(x). \tag{2.1}
\]
The problem now is to minimize the eigenenergies of (1.2), with respect to the variational parameters a_n, $n = 0, 1, \ldots, D-1$, in the finite dimensional subspace H_D spanned by the D functions $\psi_0, \psi_1, \ldots, \psi_{D-1}$. This variational problem is equivalent to diagonalizing the Hamiltonian (1.2) in the subspace H_D. By increasing the dimension D, we can always improve the results. Thus, we have to evaluate the matrix elements of the Hamiltonian (1.2) in the basis (1.3). They can be separated into two contributions
\[
H_{mn} = <m|H|n> = <m|H_0|n> + \lambda <m|x^{-\alpha}|n>, \quad m, n = 0, 1, 2, \ldots, D-1. \tag{2.2}
\]
Since H_0 is diagonal in the chosen basis, the first term on the right hand side of (2.2) is the exact solutions of the Gol’dman and Krivchenkov Hamiltonian, that is
\[
<m|H_0|n> = \sqrt{B} (2n + 2 + \sqrt{1+4A}) \delta_{mn}, \quad m, n = 0, 1, 2, \ldots, D-1, \tag{2.3}
\]
where δ_{mn} is the kronecker delta that equal to 1 if $m = n$ and 0 if $m \neq m$. The second term is given by the matrix elements (1.4). Explicit expressions for the first fifteen matrix elements of $x^{-\alpha}$ are given here in the Appendix.

In order to extended the scope of this analysis to the N-dimensional Schrödinger Equation (1.8), we observe first that the A term has the dimensions of kinetic energy, such as the term that appears in higher-dimensional systems. We may therefore replace A in Eq.(2.2) with
\[
A \rightarrow A + (l + \frac{1}{2}(N-1))(l + \frac{1}{2}(N-3)), \quad N \geq 2, \tag{2.4}
\]
where the unperturbed energy levels (2.3) becomes in this case
\[
<m|H_0|n> = 2\sqrt{B} \left(2n + 1 + \sqrt{A + (l + \frac{N}{2} - 1)^2}\right) \delta_{mn}, \quad N \geq 2. \tag{2.5}
\]
Thus, Eq.(2.2) becomes
\[
H_{mn} = 2\sqrt{B} \left(2n + 1 + \sqrt{A + (l + \frac{N}{2} - 1)^2}\right) \delta_{mn} + \lambda <m|x^{-\alpha}|n>, \quad m, n = 0, 1, 2, \ldots, D-1, \tag{2.6}
\]
where the matrix elements $<m|x^{-\alpha}|n>$ becomes
\[
<m|x^{-\alpha}|n> = (-1)^{n+m} B^{\frac{3}{4}} \sqrt{\frac{\Gamma(m + 1 + \sqrt{A + (l + N/2 - 1)^2})}{n! m!}} \frac{\Gamma(n + 1 + \sqrt{A + (l + N/2 - 1)^2})}{\Gamma(l + k + \sqrt{A + (l + N/2 - 1)^2})} \prod_{k=0}^{m} \frac{\Gamma(k - \frac{\alpha}{2} + 1 + \sqrt{A + (l + N/2 - 1)^2}) \Gamma(\frac{\alpha}{2} - k + n)}{\Gamma(k + l + \sqrt{A + (l + N/2 - 1)^2}) \Gamma(\frac{\alpha}{2} - k)}, \quad N \geq 2. \tag{2.7}
\]
We have omitted the case \(N = 1 \) because this curious singular problem in one dimension has features [19–21] that are not in harmony with our main purpose.

To recover the results of Aguilera-Navarro et al, we substitute \(A = 0 \), \(B = 1 \), \(N = 3 \), and \(l = 0 \) in Eq. (2.6). In other words, we obtain a general variational expression (2.2) that treats the solution of Schrödinger’s equations (1.8), and also the work of Aguilera-Navarro et al in a single formulation.

III. Some numerical results

From Eqs. (2.2), (2.3), and (1.4) and the results given in the Appendix, it can be readily seen that the first variational approximation (subspace of dimension 1) to the ground state eigenvalues of the Hamiltonian (1.2) is

\[
E_0 = H_{00} = \langle 0 | H | 0 \rangle = 2 \sqrt{B} \gamma + \lambda B^{\frac{3}{2}} \frac{\Gamma(\gamma - \frac{a}{2})}{\Gamma(\gamma)} , \quad \gamma = 1 + \frac{1}{2} \sqrt{1 + 4A} . \tag{3.1}
\]

For the case \(A = 0 \) and \(B = 1 \), \(E_0 \) reduces to

\[
E_{(0)} = 3 + \lambda \frac{\Gamma(\frac{3 - a}{2})}{\Gamma(\frac{3}{2})} , \tag{3.2}
\]

which coincides with the ground state energy expression for the spiked harmonic oscillator obtained by Aguilera-Navarro et al, i.e. Eq. (5.1) in Ref. [6].

When \(D = 2 \) the diagonalization can also be performed analytically, by means of the secular equation, and we obtain

\[
E_\pm = \frac{1}{2} \left[4 \sqrt{B} (1 + \gamma) + \frac{\lambda}{4} B^{\frac{3}{2}} (a^2 - 2a + 8\gamma) \frac{\Gamma(\gamma - \frac{a}{2})}{\Gamma(\gamma + 1)} \pm \sqrt{16B + 2\lambda B^{\frac{3}{2}} a (a - 2) \frac{\Gamma(\gamma - \frac{a}{2})}{\Gamma(\gamma + 1)} + \frac{\lambda^2}{16} B^{\frac{3}{2}} a^2 ((a - 2)^2 + 16\gamma) \frac{\Gamma(\gamma - \frac{a}{2})^2}{\Gamma(\gamma + 1)^2} \right] , \tag{3.3}
\]

where \(E_0 = E_- \) and \(E_1 = E_+ \). Again, if we put \(A = 0 \), \(B = 1 \), and \(a = 5/2 \) we obtain

\[
E_\pm = \frac{1}{2} \left[10 + \frac{53}{24} \lambda \frac{\Gamma(\frac{3 - a}{2})}{\Gamma(\frac{3}{2})} \pm \sqrt{16 + \frac{5}{2} \lambda \frac{\Gamma(\frac{3 - a}{2})}{\Gamma(\frac{3}{2})} + \frac{2425}{576} \lambda^2 \frac{\Gamma(\frac{3 - a}{2})^2}{\Gamma(\frac{3}{2})^2} \right] , \tag{3.4}
\]

which coincides with Eq. (5.2) in Ref. [6].

For higher values of the variational space dimension \(D \) we have to use a numerical diagonalization procedure such as that of Jacobi [22] to find the eigenvalues of the matrix \(\mathcal{H} \) given by

\[
\mathcal{H} = \begin{pmatrix}
H_{00} & H_{01} & \ldots & H_{0D-1} \\
H_{10} & H_{11} & \ldots & H_{1D-1} \\
\vdots & \vdots & \ddots & \vdots \\
H_{D-10} & H_{D-11} & \ldots & H_{D-1D-1}
\end{pmatrix} . \tag{3.5}
\]

Table I shows the convergence of these results, when \(a = 2.5 \), for the ground state energy (i.e. \(A = 0, B = 1 \)) of the spiked harmonic oscillator, and selected values of \(\lambda \).
For this special case with $A = 0$ and $\alpha = 5/2$, our results confirm those of Ref.[6] (their Table I), except for minor rounding errors: it appears that the results of Aguilera-Navarro et al have been truncated rather than rounded. It is important to mention here that, although the matrix element $x_{33}^{-\alpha}$, reported in Ref.[6], contains some errors in the coefficients for the exponent α, the results in Table I of Ref.[6] are correct. Indeed, $x_{33}^{-\alpha}$ should read:

$$x_{33}^{-\alpha} = \frac{\Gamma\left(\frac{3-\alpha}{2}\right)}{7! \Gamma\left(\frac{3}{2}\right)} (a^6 - 6a^5 + 106a^4 - 384a^3 + 2080a^2 - 3408a + 5040)$$

instead of

$$x_{33}^{-\alpha} = \frac{\Gamma\left(\frac{3-\alpha}{2}\right)}{7! \Gamma\left(\frac{3}{2}\right)} (a^6 - 6a^5 + 106a^4 - 454a^3 + 1660a^2 - 3968a + 5040)$$

as quoted by Aguilera-Navarro et al [6]. The results quoted in their Table I must therefore have been calculated with the correct formula. We have also corrected in the Appendix here some errors in the coefficients of the general matrix element $x_{33}^{-\alpha}$ presented in Ref. [16].

In Table (II) here we report the upper bounds $E_{nl} = E_{N00}^N$ obtained for the Hamiltonian $H = -\frac{d^2}{dx^2} + x^2 + \frac{10}{x^4}$ in spatial dimensions $N = 2$ to $N = 10$. Now the value of A depends on the angular momentum ℓ and the number of spatial dimension N as determined by Eq.(2.4). As we mentioned above, the method we have discussed in Sec.II provides bounds on all the eigenvalues in a given angular momentum subspace. We present in Table (III) our results for the eigenvalues $E_{nl} = E_{21}^N$ for spatial dimensions $N = 2$ to $N = 10$; the potential and the corresponding wave functions are shown in Fig.(1). For comparison, we have integrated Schrödinger’s equation numerically, with the Hamiltonian given by (1.2), for different values of exponent α. To avoid difficulties caused by the singular character of the potential near the origin, we begin the integrations near the potential minimum and integrate in both directions, away from the starting point. A similar approach has been described by Diaz et al [23].

IV. A further variational refinement

We now introduce another variational adjustment that will substantially reduce the number of the basis elements required to compute the eigenvalues of the Hamiltonian, i.e.

$$H = -\frac{d^2}{dx^2} + \left(l + \frac{1}{2}(N - 1))(l + \frac{1}{2}(N - 3))\right) \frac{x^2}{x^2} + Bx^2 + \lambda x^{-\alpha}.$$

We notice first that the Hamiltonian (4.1) can be written as

$$H = -\frac{d^2}{dx^2} + \left(l + \frac{1}{2}(N - 1))(l + \frac{1}{2}(N - 3))\right) \frac{x^2}{x^2} + Bx^2 + \frac{A}{x^2} + \left(\frac{\lambda x^{-\alpha} - A}{x^2}\right)$$

where A is additional variational parameter, different from zero, to be determined later. In this case Eq.(2.2) becomes

$$H_{mn} = 2\sqrt{B}(2n + 1 + \sqrt{A} + (l + N/2 - 1))\delta_{mn} + \lambda |m|^{-\alpha} |n| - A |m|^{-2} |n|.$$

(4.3)
where \(<m|\sigma|n> \) is given by (2.7) and \(<m|\sigma^2|n> \) is obtained by setting \(\alpha = 2 \) in this formula. Upper bounds to the eigenvalues \(E_{nl}^N \) are again provided by finding the eigenvalues of the matrix \(\mathcal{H} \) given by Eq. (3.5), but with the entries depending on \(A \) according to (4.3).

For example, when the variational space has dimension \(D = 1 \), the lowest eigenvalue of the problem in \(N \)-dimensions labelled by \(l \) is determined by

\[
H_{00} = \sqrt{B}(2\gamma - \frac{A}{\gamma - 1}) + \lambda B^{\alpha/4} \Gamma(\gamma - \frac{\alpha}{2}) \Gamma(\gamma) \Gamma(\gamma - 1),
\]

(4.4)

where \(\gamma = 1 + \frac{1}{\sqrt{A + (l + \frac{N}{2} - 1)^2}} \). For \(N = 3, l = 0 \), the minimum of \(H_{00} \) with respect to \(A \) for \(\alpha = 2 \) occurs at \(A = \lambda \), thus yielding the exact solution of the spiked harmonic oscillator \(E_0 = \sqrt{B}(1 + \sqrt{1 + 4A}) \). In fact, a ‘good’ general estimate for the value of \(A \) is \(A = \lambda \). This rough estimate for \(A \) reduces substantially the number of the basis function needed to compute the eigenvalues; by minimizing over \(A \), we obtain even better upper bounds, as Table (IV) clearly indicates.

V. Conclusion

We have generalized the work of Aguilera-Navarro et al to treat the more general spiked harmonic oscillator problem (1.2). In particular, we have presented a variation method to solve the interesting \(N \)-dimensional spiked harmonic oscillator problem with the \(x^{-\alpha} \) singular term. The present work is limited by the necessary condition \(\alpha < 3 \). Some interesting results for \(\alpha \geq 3 \) may be found, for example, in Refs.[24-26].

We hope that our work will encourage further research into the spectra generated by this interesting class of singular potentials. It is very clear from our results that use of a variational basis which is itself derived from a related soluble singular problem leads to very effective approximation methods for more general problems of this singular type. The presence of the free parameter \(A \) in the class of soluble problems allows a further refinement in the upper energy estimates.

Acknowledgment

Partial financial support of this work under Grant No. GP3438 from the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.
References

Appendix: Some explicit forms of the matrix elements $<m|x^{-\alpha}|n>$

We present the first fifteen matrix elements of $x^{-\alpha}$ that we used to compute the variational eigenvalues in the next sections. Some errors in the coefficients of $x^{-\alpha}$ in Ref.[16] have been corrected. In terms of the parameter $\gamma = 1 + \frac{1}{2}\sqrt{\Gamma+4A}$, the explicit matrix elements, from Eq.(1.4) and Eq.(1.5), are as follows:

$$x_{nm}^{-\alpha} \equiv <m|x^{-\alpha}|n>$$

$$x_{00}^{-\alpha} = B \frac{\alpha}{\Gamma(\gamma)}$$

$$x_{01}^{-\alpha} = -B \frac{\alpha}{\Gamma(\gamma)}$$

$$x_{02}^{-\alpha} = B \frac{\alpha(\alpha+2)}{2\sqrt{2}\Gamma(\gamma+1)}$$

$$x_{03}^{-\alpha} = -B \frac{\alpha(\alpha+3)}{2\sqrt{3}\Gamma(\gamma+2)}$$

$$x_{04}^{-\alpha} = B \frac{\alpha(\alpha+2)(\alpha+4)}{2\Gamma(\gamma+3)}$$

$$x_{11}^{-\alpha} = B \frac{\alpha^2-2\alpha+1}{\Gamma(\gamma+1)}$$

$$x_{12}^{-\alpha} = -B \frac{\alpha^2-2\alpha+1}{\Gamma(\gamma+2)}$$

$$x_{13}^{-\alpha} = B \frac{\alpha^2-2\alpha+1}{\Gamma(\gamma+3)}$$

$$x_{14}^{-\alpha} = -B \frac{\alpha(\alpha+2)(\alpha+4)(\alpha^2-2\alpha+1)}{4\Gamma(\gamma+4)}$$

$$x_{22}^{-\alpha} = B \frac{\alpha^4-4\alpha^3+12\alpha^2-16\alpha+21}{\Gamma(\gamma+2)}$$

$$x_{23}^{-\alpha} = -B \frac{\alpha^4-4\alpha^3+12\alpha^2-16\alpha+21}{\Gamma(\gamma+3)}$$

$$x_{24}^{-\alpha} = B \frac{\alpha^4-4\alpha^3+12\alpha^2-16\alpha+21}{\Gamma(\gamma+4)}$$

$$x_{33}^{-\alpha} = \frac{\alpha^4-6\alpha^3+21\alpha^2+70\alpha+53}{\Gamma(\gamma+3)}$$

$$x_{34}^{-\alpha} = \frac{\alpha^4-6\alpha^3+21\alpha^2+70\alpha+53}{\Gamma(\gamma+4)}$$

$$x_{44}^{-\alpha} = \frac{\alpha^4-6\alpha^3+21\alpha^2+70\alpha+53}{\Gamma(\gamma+5)}$$
Table (I) The ground-state eigenvalue of Schrödinger’s equation $H\psi = E\psi$, where $A = 0$ and $H = -\frac{d^2}{dx^2} + x^2 + \frac{\lambda}{x^2}$, obtained by diagonalization of the $D \times D$ matrix elements with $D = 1, 2, 10, 20, 30$. The “exact” values E were obtained by direct numerical integration of Schrödinger’s equation.

<table>
<thead>
<tr>
<th>λ</th>
<th>$E^{(1)}$</th>
<th>$E^{(2)}$</th>
<th>$E^{(10)}$</th>
<th>$E^{(20)}$</th>
<th>$E^{(30)}$</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>4094.062</td>
<td>692</td>
<td>324.897</td>
<td>482</td>
<td>44.967</td>
<td>048</td>
</tr>
<tr>
<td>100</td>
<td>412.106</td>
<td>269</td>
<td>36.802</td>
<td>319</td>
<td>17.541</td>
<td>891</td>
</tr>
<tr>
<td>10</td>
<td>43.910</td>
<td>627</td>
<td>7.951</td>
<td>034</td>
<td>7.735</td>
<td>637</td>
</tr>
<tr>
<td>5</td>
<td>23.455</td>
<td>313</td>
<td>6.304</td>
<td>224</td>
<td>6.297</td>
<td>319</td>
</tr>
<tr>
<td>0.5</td>
<td>5.045</td>
<td>531</td>
<td>4.216</td>
<td>200</td>
<td>3.919</td>
<td>692</td>
</tr>
<tr>
<td>0.1</td>
<td>3.409</td>
<td>106</td>
<td>3.366</td>
<td>867</td>
<td>3.316</td>
<td>061</td>
</tr>
<tr>
<td>0.05</td>
<td>3.204</td>
<td>553</td>
<td>3.193</td>
<td>800</td>
<td>3.177</td>
<td>840</td>
</tr>
<tr>
<td>0.01</td>
<td>3.040</td>
<td>911</td>
<td>3.040</td>
<td>476</td>
<td>3.039</td>
<td>702</td>
</tr>
<tr>
<td>0.005</td>
<td>3.020</td>
<td>455</td>
<td>3.020</td>
<td>346</td>
<td>3.020</td>
<td>148</td>
</tr>
<tr>
<td>0.001</td>
<td>3.004</td>
<td>091</td>
<td>3.004</td>
<td>087</td>
<td>3.004</td>
<td>079</td>
</tr>
</tbody>
</table>
Table (II) Upper bounds $E_N^{(N)}$ for $A = 0$ and $H = -\frac{d^2}{dx^2} + x^2 + \frac{10}{x^2\sigma}$ for dimension $N = 2$ to 10, obtained by diagonalization of the $D \times D$ matrix H, $D = 1, 2, 10, 20, 30$. The “exact” values E were obtained by direct numerical integration of Schrödinger’s equation.

<table>
<thead>
<tr>
<th>N</th>
<th>$E^{(1)}$</th>
<th>$E^{(2)}$</th>
<th>$E^{(10)}$</th>
<th>$E^{(20)}$</th>
<th>$E^{(30)}$</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>11.492 447</td>
<td>10.889 178</td>
<td>10.879 092</td>
<td>10.879 078</td>
<td>10.879 077</td>
<td>10.879 077</td>
</tr>
</tbody>
</table>
Table (III) Upper bounds E_{21}^N for $A = 0$ and $H = -\Delta + x^2 + \frac{10}{x^4}$ for dimension $N = 2$ to 10, obtained by diagonalization of the $D \times D$ matrix \mathcal{H} for $D = 30$. The “exact” values E_{21} were obtained by direct numerical integration of Schrödinger’s equation.

<table>
<thead>
<tr>
<th>N</th>
<th>E_{21}^N</th>
<th>E_{21}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>16.543 648</td>
<td>16.543 629</td>
</tr>
<tr>
<td>3</td>
<td>16.904 446</td>
<td>16.904 445</td>
</tr>
<tr>
<td>4</td>
<td>17.381 709</td>
<td>17.381 708</td>
</tr>
<tr>
<td>5</td>
<td>17.955 446</td>
<td>17.955 444</td>
</tr>
<tr>
<td>6</td>
<td>18.607 070</td>
<td>18.607 067</td>
</tr>
<tr>
<td>7</td>
<td>19.320 693</td>
<td>19.320 691</td>
</tr>
<tr>
<td>8</td>
<td>20.083 407</td>
<td>20.083 406</td>
</tr>
<tr>
<td>9</td>
<td>20.885 022</td>
<td>20.885 021</td>
</tr>
<tr>
<td>10</td>
<td>21.717 608</td>
<td>21.717 608</td>
</tr>
</tbody>
</table>
Table (IV): Eigenvalues of Schrödinger’s equation $H \psi = E \psi$, where $H = -\frac{d^2}{dx^2} + x^2 + \lambda x^2$, obtained by diagonalization of the $n \times n$ matrix H, $n = 1, 2, \ldots, 5$ and minimizing over the parameter λ.

<table>
<thead>
<tr>
<th>λ</th>
<th>$E^{(1)}$</th>
<th>$E^{(2)}$</th>
<th>$E^{(3)}$</th>
<th>$E^{(4)}$</th>
<th>$E^{(5)}$</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>44.959 423</td>
<td>44.955 722</td>
<td>44.955 562</td>
<td>44.955 559</td>
<td>44.955 517</td>
<td>44.955 485</td>
</tr>
<tr>
<td>100</td>
<td>17.546 305</td>
<td>17.542 630</td>
<td>17.542 082</td>
<td>17.542 066</td>
<td>17.542 040</td>
<td>17.541 890</td>
</tr>
<tr>
<td>10</td>
<td>7.408 73</td>
<td>7.736 864</td>
<td>7.735 869</td>
<td>7.735 645</td>
<td>7.735 596</td>
<td>7.735 111</td>
</tr>
<tr>
<td>1</td>
<td>3.325 682</td>
<td>4.321 615</td>
<td>4.320 076</td>
<td>4.319 376</td>
<td>4.318 963</td>
<td>4.317 312</td>
</tr>
<tr>
<td>0.5</td>
<td>3.857 330</td>
<td>3.853 611</td>
<td>3.852 085</td>
<td>3.851 313</td>
<td>3.850 823</td>
<td>3.848 553</td>
</tr>
<tr>
<td>0.1</td>
<td>3.273 542</td>
<td>3.271 566</td>
<td>3.270 632</td>
<td>3.270 082</td>
<td>3.269 700</td>
<td>3.266 871</td>
</tr>
<tr>
<td>0.05</td>
<td>3.157 126</td>
<td>3.155 956</td>
<td>3.155 378</td>
<td>3.155 022</td>
<td>3.154 768</td>
<td>3.152 420</td>
</tr>
<tr>
<td>0.01</td>
<td>3.037 845</td>
<td>3.037 674</td>
<td>3.037 581</td>
<td>3.037 520</td>
<td>3.037 474</td>
<td>3.036 665</td>
</tr>
<tr>
<td>0.005</td>
<td>3.019 610</td>
<td>3.019 553</td>
<td>3.019 522</td>
<td>3.019 500</td>
<td>3.019 484</td>
<td>3.019 086</td>
</tr>
<tr>
<td>0.001</td>
<td>3.004 053</td>
<td>3.004 050</td>
<td>3.004 049</td>
<td>3.004 048</td>
<td>3.004 047</td>
<td>3.004 014</td>
</tr>
</tbody>
</table>
Figure (1) The potential $y = V(r)$, and the nine wave functions corresponding to the eigenvalues $E_{n\ell} = E_{21}$ for spatial dimensions $N = 2$ to 10.