Diffraction: A New Approach

Konstantin Goulianos†‡

† The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
e-mail: dino@physics.rockefeller.edu

Abstract. A phenomenological model of hard diffraction is presented, in which
the structure of the Pomeron is derived from the structure of the parent hadron.
Predictions for diffractive deep inelastic scattering are compared with data.

The inclusive and diffractive deep inelastic scattering (DIS) cross sections are
proportional to the corresponding F_2 structure functions of the proton,

\[
\text{Inclusive DIS } \frac{d^2\sigma}{dxdQ^2} \propto F_2^h(x,Q^2) \\
\text{Diffractive DIS } \frac{d^3\sigma}{d\xi dxdQ^2} \propto F_2^D(\xi,x,Q^2)
\]

where the superscripts h and $D(3)$ indicate, respectively, a hard structure function (at
scale Q^2) and a 3-variable diffractive structure function (integrated over t). The latter
depends not only on the hard scale Q^2, but also on the soft scale, $\langle M_T \rangle \sim 1 \text{ GeV}$, which
is the relevant scale for the formation of the diffractive rapidity gap.

The only marker of the rapidity gap is the variable ξ. We therefore postulate that
the rapidity gap probability is proportional to the soft parton density at ξ and write the
DDIS (diffractive DIS) cross section as

\[
\frac{d^3\sigma}{d\xi d\beta dQ^2} \propto \frac{1}{\beta} \left[F_2^h(\beta\xi,Q^2) \times \frac{F_2^s(\xi)}{\xi} \otimes \xi-\text{norm} \right]
\]

The term in the brackets represents the DDIS structure function $F_2^{D(3)}(\xi,\beta,Q^2)$.

‡ To appear in Proceedings of “UK Phenomenology Workshop on Collider Physics, Durham, UK, 19-24
September 1999,” to be published in Journal of Physics G: Nuclear and Particle Physics. This paper
is an expanded excerpt from hep-ph/9911210, which will appear in Proceedings of “XXIX International
Symposium on Multiparticle Dynamics, 9-13 August 1999, Brown University, Providence, RI 02912,
USA”, to be published by World Scientific Publishing Company.
In the next step, we seek guidance from the scaling behavior of the soft single-diffractive (sd) differential cross section [1, 2],

$$\frac{d\sigma_{sd}}{dM^2} \propto \frac{1}{(M^2)^{1+\epsilon}} \quad \text{(no s-dependence!)}$$

which in terms of ξ takes the form

$$\frac{d\sigma_{sd}}{d\xi} \propto \frac{1}{s^{2\epsilon}} \frac{1}{\xi^{1+2\epsilon}} \times (s')^\epsilon$$

gap probability

where $s' \equiv M^2$ is the s-value of the diffractive sub-system. Noting that ξ is related to the associated rapidity gap by $\Delta Y = \ln \frac{1}{\xi}$, and that the integral $\int_{s_0/s}^{1} \frac{1}{s^{2\epsilon}} \frac{1}{\xi^{1+2\epsilon}} \, d\xi$ is equal to a constant, the above equation may be viewed as representing the product of the total cross section at the sub-system energy multiplied by a normalized rapidity gap probability. In analogy with this experimentally established behavior, we factorize $F_D^{D(3)}(\xi, \beta, Q^2)$ into $F^h_{2}(\beta, Q^2)$, the sub-energy DIS cross section, times a normalized gap probability:

$$F_D^{D(3)}(\xi, \beta, Q^2) = P_{\text{gap}}(\xi, \beta, Q^2) \times F^h_{2}(\beta, Q^2)$$

The gap probability is therefore given by:

$$P_{\text{gap}}(\xi, \beta, Q^2) = F^h_{2}(\beta\xi, Q^2) \times \frac{F^s_{2}(\xi)}{\xi} \times N(s, \beta, Q^2)$$

The normalization factor, $N(s, \beta, Q^2)$, is obtained from the following equation, using $\xi_{\text{min}} = Q^2/s$,

$$N^{-1}(s, \beta, Q^2) = \frac{1}{f_q} \int_{\xi_{\text{min}}}^{1} F^h_{2}(\beta\xi, Q^2) \times \frac{F^s_{2}(\xi)}{\xi} \, d\xi$$

where f_q is the quark fraction of the hard structure and is used here since only quarks participate in DIS.

At small x (≤ 0.1), the structure functions F^h_{2} and F^s_{2} are represented well by the power law expressions [3] $F^h_{2}(x, Q^2) = A^h / x^{\lambda_h(Q^2)}$ and $F^s_{2}(\xi) = A^s / \xi^{\lambda_s}$. Using these forms we obtain

$$N^{-1}(s, \beta, Q^2) = \frac{1}{f_q} \left[\frac{A^h}{\beta^{\lambda_h}} \frac{A^s}{\lambda_h + \lambda_s} \left(\frac{\beta s}{Q^2} \right)^{\lambda_h + \lambda_s} \right]$$

$$F_D^{D(3)}(\xi, \beta, Q^2) = \frac{1}{\xi^{1+\lambda_h+\lambda_s}} \times f_q(\lambda_h + \lambda_s) \left(\frac{Q^2}{\beta s} \right)^{\lambda_h + \lambda_s} \times \frac{A^h}{\beta^{\lambda_h}}$$

§ In hep-ph/9911210, a factor of $\frac{1}{\beta}$ was erroneously included in Eq. (13) of the gap probability; however, this factor is carried over into the normalization factor $N(s, \beta, Q^2)$ through Eqs. (14) and (15) and cancels out in the final result for $F_D^{D(3)}$ in Eq. (16).
Since in DDIS x is always smaller than ξ, the above form of $F_2^{D(3)}$, derived for small x, should be valid for all x when ξ is small; it should also be valid for all $\beta(=x/\xi)$. We therefore expect $F_2^{D(3)}$ to have the following ξ and β dependence at small ξ:

$$F_2^{D(3)}(\xi, \beta, Q^2)|_{\beta, Q^2} \propto \frac{1}{\xi^{1+n}} \quad n = \lambda_h(Q^2) + \lambda_s$$

$$F_2^{D(3)}(\xi, \beta, Q^2)|_{\xi, Q^2} \propto \frac{1}{\beta^m} \quad m = 2\lambda_h(Q^2) + \lambda_s$$

The HERA (non-diffractive) DIS measurements [3] yield $\lambda_s \approx 0.1$, which is in agreement with the value of $\epsilon = \alpha(0) - 1 = 0.104$ [4], where $\alpha(0)$ is the intercept of the Pomeron trajectory at t=0. In the Q^2 range of 10-50 GeV2, where the DDIS data are concentrated, these measurements yield $\lambda_h \approx 0.3$. Using these values we obtain $n = 0.4$ and $m = 0.7$. We therefore expect

Prediction: $F_2^{D(3)} \propto \frac{1}{\xi^{1.4}} \times \frac{1}{\beta^{0.7}}$

We observe the following features:

Factorization
Our prediction exhibits factorization between ξ and β, in agreement with HERA results at small ξ.

ξ-dependence
In the Regge framework, the ξ-dependence of $F_2^{D(3)}$ is expected to have the “Pomeron flux” form of $1/\xi^{1+n}$ with $n = 2\epsilon = 0.2$, independent of Q^2. In the Q^2 range of 10-50 GeV2, the HERA experiments find that n is ≈ 0.4 and has a small Q^2 dependence, in agreement with our prediction of $n = \lambda_h(Q^2) + \lambda_s$.

β-dependence
The predicted form $1/\beta^m$ for $F_2^{D(3)}$ is valid in the region of (fixed) small ξ and high Q^2, where the x-distribution of $F_2(x, Q^2)$ has the form $A^h/x^{\lambda_h(Q^2)}$. As there are no data points at strictly fixed ξ, we have selected the following set of five points at $\xi \approx 0.01$ and $Q^2 = 45$ GeV2 from Ref. [5]:

<table>
<thead>
<tr>
<th>β</th>
<th>x</th>
<th>$\xi = x/\beta$</th>
<th>$\xi \cdot F_2^{D(3)} \pm \text{stat} \pm \text{syst}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.00133</td>
<td>0.0133</td>
<td>0.0384 \pm 0.0066 \pm 0.0030</td>
</tr>
<tr>
<td>0.20</td>
<td>0.00237</td>
<td>0.0118</td>
<td>0.0406 \pm 0.0061 \pm 0.0026</td>
</tr>
<tr>
<td>0.40</td>
<td>0.00421</td>
<td>0.0105</td>
<td>0.0215 \pm 0.0046 \pm 0.0016</td>
</tr>
<tr>
<td>0.65</td>
<td>0.00750</td>
<td>0.0115</td>
<td>0.0240 \pm 0.0054 \pm 0.0026</td>
</tr>
<tr>
<td>0.90</td>
<td>0.00750</td>
<td>0.0083</td>
<td>0.0088 \pm 0.0041 \pm 0.0005</td>
</tr>
</tbody>
</table>
Figure 1 shows the above values of $\xi \cdot F_2^{D(3)}(\beta)$ versus β along with our prediction (solid line). The following parameters were used in the calculation of $F_2^{D(3)}$: $\sqrt{s} = 280$ GeV, $\xi = 0.01$, $Q^2 = 45$ GeV2, $\lambda_s = 0.1$, $\lambda_h = 0.3$, $f_q = 0.4$ [7], and $A_h = 0.2$; the latter was evaluated from $F_2(Q^2 = 50, x = 0.00133) = 1.46$ [6] assuming a $\frac{A_h}{x^{1.3}}$ dependence. The observed agreement between data and prediction, both in shape and normalization, is considered satisfactory, particularly since no free parameters are used in the calculation.

![Graph](image)

Figure 1. Predicted β dependence of $\xi \times F_2^{D(3)}(\xi, \beta, Q^2)$ for $\xi = 0.01$ and $Q^2 = 45$ GeV2 (solid curve) compared with measured values (points) obtained from Ref. [5]

[3] ZEUS Collaboration, *ZEUS Results on the Measurement and Phenomenology of F2 at Low x and Low Q^2* (Fig. 7), contribution to ICHEP98, Vancouver, Canada.