Fractal Cosmology in an Open Universe

M. Joyce 1,2,3, P. W. Anderson 4, M. Montuori 1,3, L. Pietronero 1,3, F. Sylos Labini 5,3

1Dipartimento di Fisica, Università di Roma “La Sapienza”, I-00185 Roma, Italy
2INFN, Sezione di Roma I, I-00185 Roma, Italy
3INFM Sezione Roma I, I-00185 Roma, Italy
4Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, USA.
5Dépt. de Physique Théorique, Université de Genève, CH-1211 Genève, Switzerland

Abstract.

The clustering of galaxies is well characterized by fractal properties, with the presence of an eventual cross-over to homogeneity still a matter of considerable debate. In this letter we discuss the cosmological implications of a fractal distribution of matter, with a possible cross-over to homogeneity at an undetermined scale R_{homo}. Contrary to what is generally assumed, we show that, even when $R_{\text{homo}} \rightarrow \infty$, this possibility can be treated consistently within the framework of the expanding universe solutions of Friedmann. The fractal is a perturbation to an open cosmology in which the leading homogeneous component is the cosmic background radiation (CBR). This cosmology, inspired by the observed galaxy distributions, provides a simple explanation for the recent data which indicate the absence of deceleration in the expansion ($q_0 \approx 0$). Correspondingly the ‘age problem’ is also resolved. Further we show that the model can be extended back from the curvature dominated arbitrarily deep into the radiation dominated era, and we discuss qualitatively the modifications to the physics of the anisotropy of the CBR, nucleosynthesis and structure formation.

One of the most extraordinary findings of the last two decades in observational cosmology has been the existence of a network of voids and structures in the distribution of galaxies in space. The enormous scales of these structures were completely unsuspected in earlier extensive observations of galaxy distributions, in which only angular coordinates were measured, obscuring the richness subsequently revealed in the third coordinate. These findings have become increasingly difficult to reconcile with standard cosmological theories, in which the approach to homogeneity at large scales is a central element [1]. Observationally, however, not

\footnote{(*) Current Address: LPT, Université Paris-XI, Bâtiment 211, F-91405 Orsay Cedex, France

Typeset using EURO-L\TeX}
only the scale at which the matter distribution approaches an average density, but the very existence of such a scale, remains the subject of intense debate [2]-[6]. At small scales it is well established that the distribution of galaxies is fractal, and the debate can be phrased in terms of the deviation from this behaviour towards homogeneity. Some consensus has been achieved about the optimal statistical methods to use in the analysis of three dimensional data, with disagreement remaining on details of the treatment of some data sets [5, 6]. The case for homogeneity still rests primarily on indirect observational evidence, such as the angular data. Independently of the data, however, resistance to the fractal picture is certainly to a considerable degree due to the conviction that it is incompatible with the framework of the standard theories (see e.g. [7]), and in particular with the high degree of isotropy of the microwave background radiation [8, 9]. In this respect one should note that in standard models the origin of radiation and baryonic matter is completely separate, with the latter being created in a dynamical process (‘baryogenesis’) completely distinct from the origin of the primordial radiation bath. The isotropy of the latter is therefore not fundamentally tied to the distribution of the matter, and the only real constraint is how much any such distribution actually perturbs the radiation. In this Letter we do not discuss the details of the evidence for or against homogeneity, but rather consider the grounds for these theoretical biases against the possible continuation of a fractal distribution to arbitrarily large scales. Our central result is that a fractal distribution for matter, even when there is no upper cut-off to homogeneity, can in fact be treated in the framework of an expanding universe Friedmann cosmology.

A fractal [10, 11] is a self-similar and intrinsically fluctuating distribution of points at all scales, which appears to preclude the description of its gravitational dynamics in the framework of the Friedmann-Robertson-Walker (FRW) solutions to general relativity [1]. The problem is often stated as being due to the incompatibility of a fractal with the Cosmological Principle, where this principle is identified with the requirement that the matter distribution be isotropic and homogeneous[7]. This identification is in fact very misleading for a non-analytic structure like a fractal, in which all points are equivalent statistically, satisfying what has been called a Conditional Cosmological Principle [10, 11, 12]. The obstacle to applying the FRW solutions has in fact solely to do with the lack of homogeneity. One of the properties of a fractal of dimension \(D\), however, is that the average density of points in a radius \(r\) about any occupied point decreases as \(r^{D-3}\), so that asymptotically the mass density goes to zero [10, 11]. An approximation which therefore may describe the large scale dynamics of the universe in the case that the matter has such a distribution continuing to all scales is given by neglecting the distribution of matter at leading order, relative to the small but homogeneous component coming from the cosmic microwave background. We will now show that is indeed a good perturbation scheme, and calculate the physical scale characterizing its validity.

Consider first the standard FRW model with contributions from matter and radiation, for which the expansion rate is

\[
H^2(t) = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}(\rho_{\text{rad}} + \rho_{\text{mat}}) - k/a^2
\]

(1)

where \(a(t)\) is the scale factor for the expansion, and \(\rho_{\text{rad}} \propto 1/a^4\) is the radiation density, and \(\rho_{\text{mat}} \propto 1/a^3\) the (homogenous) matter density. The constant \(k = -H_0^2a_0^2(1 - \Omega_r - \Omega_m)\), where \(H_0\) (\(a_0\)) is the expansion rate (scale factor) today and \(\Omega_r\) (\(\Omega_m\)) is the ratio of the radiation (matter) energy density today to the ‘critical’ density \(\rho_c = \frac{3}{16\pi G}H_0^2\). The sign of \(k\) determines whether the universe is closed \((k > 0)\) or open \((k < 0)\), with \(k = 0\) corresponding to a ‘critical’ spatially flat universe. Given the temperature of the CBR [8], we have\(^{(1)}\) \(\Omega_r h^2 \approx 2.3 \times 10^{-5}\)

\(^{(1)}\) We will neglect here, for simplicity, the minor modifications due to massless or low mass
(where h is the Hubble constant in units of 100Mpc/km/s, with a typical measured value of $h \approx 0.65$ [13, 14]). If we make the simple and natural assumption that galaxies trace the mass distribution the value of Ω_m depends directly on the determination of the scale of the cross-over to homogeneity. If the observed fractal distribution continues to a scale R_{homo}, above which it turns over to homogeneity, one has

$$\Omega_m = \Omega_{10} \left(\frac{10}{R_{\text{homo}}} \right)^{3-D}$$

where Ω_{10} is the average density of matter (relative to critical) in a sphere of radius $10\, \text{Mpc}/h$ about a galaxy, D is the fractal dimension, and R_{homo} is measured in Mpc/h. For R_{homo} sufficiently large that $\Omega_m < \sqrt{\Omega_r}$, the ρ_m term in (1) is always sub-dominant, and there is no matter dominated era. For simplicity we now consider the limit in which $R_{\text{homo}} \to \infty$. Solving for the scale factor we then have

$$a(t) = a_o(2H_o\Omega_r^{1/2}t)^{2} \left(1 + \frac{1 - \Omega_r}{2\Omega_r}H_o t \right)^{1/2}$$

which shows how the early time radiation dominated behaviour ($a \propto t^{1/2}$) changes to the linear law $a \propto t$ at $t \approx 2H_o^{-1}\sqrt{\Omega_r}$ (red-shift $z \sim 1/\sqrt{\Omega_r}$ where $1 + z = a_o/a$). We now discuss how in each of these two phases (dominated respectively by the radiation and curvature) the fractal can be treated as a perturbation to this solution. When we make numerical evaluations below we will use data from galaxy catalogues in [4], which give $D \approx 2$ and $\Omega_{10} = 0.007$. The latter assumes a mass to luminosity ratio of $10h$, in solar units, (that estimated for a typical spiral galaxy [15]). Note that since $\sqrt{\Omega_r} = 0.005h$ this value requires $R_{\text{homo}} > 10\, \text{Mpc}/h$ for a direct transition from radiation to curvature domination. If instead we take the global mass to luminosity ratio to be that estimated in clusters ($\approx 300h$ [16]) we require $R_{\text{homo}} > 250\, \text{Mpc}/h$.

First consider the curvature dominated phase. The radiation is negligible and, at scales well within the horizon, we can use Newtonian gravity to describe the solution and its perturbations when the self-gravity of the matter is included. The leading solution is simply the free expansion of the fractal, with every point moving radially away from its neighbour at a constant velocity proportional to its distance i.e. $\ddot{r} = H_o r(t_o) = H(t)\dot{r}(t)$. To estimate the deviation from this flow due to the self-gravity of the fractal, we take a point in the flow and integrate the work done against gravity along its trajectory (in the leading order unperturbed flow). If the particle moves from an initial position \vec{R}_o, where it feels a total gravitational acceleration $\vec{F}(\vec{R}_o)$, to a final position $\vec{R} = x\vec{R}_o$, this work done (per unit mass) is simply $W(\vec{R}_o, x) = \vec{F}(\vec{R}_o) \cdot \vec{R}_o (1 - \frac{x}{2})$. The integral is performed along the unperturbed trajectory using the fact that the force on the chosen point simply scales as $1/x^2$. A sufficient condition for the Hubble flow to apply to a good approximation at all subsequent times is simply that $W(\vec{R}_o, x = \infty)$ be much less than the kinetic energy of the particle i.e.

$$\vec{F}(\vec{R}_o) \cdot \vec{R}_o << \frac{1}{2} H_o^2 R_o^2$$

Noting that the force at the origin of the flow was implicitly taken to be zero, we see that the validity of the criterion (4) will be determined in a fractal by the difference between the gravitational force on two occupied points as a function of the distance between them. The gravitational force on a point in a fractal has been studied in [17]. Its behaviour can be understood as the sum of two parts, a local or ‘nearest neighbours’ piece due to the smallest}

neutrinos, which can easily be incorporated in our analysis.
cluster (characterised by the lower cut-off Λ in the fractal) and a component coming from the mass in other clusters. The latter is bounded above by the scalar sum of the forces
\[\langle |\vec{F}| \rangle \leq \lim_{L \to \infty} \int_{\Lambda}^{L} \frac{G \rho_m(r)}{r^2} 4\pi r^2 dr \approx L^{D-2} \] (5)
so that for $D < 2$ it is convergent, while for $D > 2$ it may diverge. If there is a divergence, it is due to the presence of angular fluctuations at large scales, described by the three-point correlation properties of the fractal. For the difference in the force between two points the local contribution will be irrelevant well beyond the scale Λ, while it is easy to see that the ‘far-away’ contribution will now converge as L^{D-3}, and its being non-zero is a result of the absence of perfect spherical symmetry. Noting that as a function of distance R between points this component is bounded above by the same behaviour as the force, we write
\[\langle |\vec{F}(\vec{R})|_{R>\Lambda} \rangle = A_3 \frac{GM(R)}{R^2} \propto R^{D-2} \] (6)
where the pre-factor A_3 contains non-trivial information about the three-point correlation function of the fractal. These convergence properties of the relative force on two points are enough to draw a simple conclusion from the criterion (4): For a fractal in Hubble flow there is always a scale above which its evolution will be well described by continued Hubble flow for all subsequent times.

We now apply this to the Universe, and estimate the physical scale today R_o up to which the unperturbed ‘no matter’ Hubble flow can be maintained right through the curvature dominated era. Given that this era begins at a redshift $z = 200h$, we require
\[F(R)R|_{z=200h} \approx (200h)F(R_o)R_o < \frac{1}{2} H_o^2 R_o^3 \rightarrow R_o > 20\Omega_{10}(200h) A_3 \] (7)
What is observed is Hubble flow with deviations (peculiar velocities) only at ‘cluster’ scales \approxMpc. Taking our estimate for Ω_{10} we thus require $A_3 \lesssim 1/20h$. A fractal with a very weak three point correlation is one which has a very isotropic angular projection, so if the Universe is indeed a fractal a small value of A_3 would be expected. It is simple also to derive an expression for the peculiar velocity (small compared to the Hubble flow velocity v_H) which implies a simple linear relation, just as in standard perturbed homogeneous cosmology [18], between the local force and the velocity perturbation ($\Delta \vec{u}/v_H(\vec{R}) \propto (\vec{F}(\vec{R})/R$). This relation, for which there is apparently observational support, is usually used to determine an unknown constant (the ‘bias’ factor) [18]. In the present framework it can in principal be used to extract information about the total mass density and the constant A_3, which in turn can be related to angular data (and ultimately measured directly in forth-coming red-shift surveys).

Here we have assumed that the fractal extends to arbitrarily large scales. For a finite R_{homo} the analysis can be easily modified, by breaking the integrals at the appropriate scale. The part from scales greater than R_{homo} will give a contribution which can be reabsorbed within the Hubble flow, while the perturbation will maintain the same scaling at smaller scales. The central point which we emphasize is that the scale R_o is only indirectly related in this case to the homogeneity scale, and remains finite as $R_{homo} \to \infty$.

We have thus seen that an open FRW universe is always a good approximation beyond some finite scale if matter is distributed as a simple fractal up to an arbitrarily large scale. In particular such an open model - because it is dominated by the kinetic energy of the Hubble flow - can explain naturally how large structures can co-exist with almost perfect Hubble flow. We further note a few other of its striking features: (i) Since the Universe is to a good approximation in completely free expansion at large scales with $a(t) \propto t$, we have deceleration
parameter \(q_0 \approx 0 \). This is a good fit to recent supernovae observations [20]. Rather than being due to the effect of an unknown ‘anti-gravitational’ component which mysteriously cancels the decelerating effect of the matter on the expansion [19], the effect is due to the decay towards zero of the matter density on such scales. (ii) The expansion age of the Universe is

\[
t_\alpha = H_\alpha^{-1} \approx 10h^{-1} \approx 15 \text{ billion years},
\]

larger by 50% than in the standard matter dominated case. This value is comfortably consistent with the estimated age of globular clusters (the oldest known astrophysical objects) 11.5 ± 1.3 billion years [21]. (iii) The size of the horizon today is \(R_H(t_\alpha) \approx -\frac{1}{2}eH_\alpha^{-1}\ln \Omega_r \approx 20,000 \text{ Mpc}/h \), a factor of about three larger than in the standard case.

So far we have considered the model only in the curvature dominated era i.e. back to red-shift \(z \approx 200h \). For this last point above however we have extrapolated the model back to the radiation dominated era, assuming that the effect of the matter distribution can also be consistently treated as a correction in this epoch to the FRW solution without matter. We now justify this assumption, and then discuss some of its consequences for a specific cosmology of this type. For the former we simply treat the fractal as a set of perturbations to the energy density in a manner analogous to the way such perturbations may be treated in the standard framework. There the criterion one would use to apply the uniform Hubble flow to describe the growth of the horizon is simply that such perturbations be small at the horizon scale i.e. \(\frac{\delta \rho}{\rho} \mid _{\text{hor}} \) be small (where \(\rho \) is the homogeneous energy density i.e. that in the radiation). In a fractal the perturbations are non-analytic and \(\delta \rho \) has no meaning as defined in the standard case. We can however write down the mean mass (or energy) at the scale of horizon about an occupied point. Taking this as the appropriate \(\delta \rho _{\text{hor}} \) is clearly the right adapted criterion, as the fractal is simply made of voids and structures, and voids clearly will not perturb the flow.

We thus require that the fractal obey

\[
\delta_H(z) = \left| \frac{\rho_{\text{mat}}}{\rho_{\text{rad}}}(z) - 1 \right| \approx \frac{\Omega_{10}}{1+z} \left(\frac{10}{R_H(z)} \right)^{3-D} \lesssim 1 \tag{8}
\]

where for \(\rho_{\text{mat}} \) we have taken the mass inside the (comoving) horizon \(R_H(z) \) at red-shift \(z \). In the radiation dominated era (for \(z > 1/\sqrt{\Omega_r} \)) we have \(R_H(z) \approx \frac{eH_\alpha^{-1}}{z \sqrt{\Omega_r}} \). At \(z = 10^3 \) this gives \(R_H \approx 600 \text{ Mpc} \) so that, for a fractal with \(D = 2 \), we have at this red-shift \(\delta_H \approx \Omega_{10} \). In order that the fractal matter be indeed a small correction at this red-shift we require, approximately, \(\Omega_{10} < 1 \), which holds comfortbly even if there is much more dark matter than we assumed in obtaining our estimate \(\Omega_{10} \approx 0.01 \). We can thus continue to use the FRW solution back to an arbitrary red-shift for a fractal distribution of matter extending to the corresponding scales, provided that the condition (8) holds.

To make a link with central observations in cosmology such as the microwave background and nucleosynthesis, we need to specify a precise model. In the spirit of this letter we now consider here a radical (but very simple) possibility for a cosmology which makes use of the results we have presented: We consider a universe which at very early times (deep in the radiation dominated era) is a radiation bath at a given temperature with superimposed fractal perturbations in baryon number up to the arbitrarily large scale \(R_{\text{homo}} \) and down to some scale \(\Lambda \) (see below). Note that positing a very different distribution for matter and radiation does not represent a loss of simplicity in comparison to standard models, which generically envisage the (almost) homogeneously distributed matter as coming from a dynamical process (‘baryogenesis’) completely distinct from the origin of the primordial radiation bath. Instead of fixing the initial condition on a homogeneous baryon to photon ratio \(n_B/n_\gamma \sim 10^{-9} \), with some independent superimposed spectrum of analytical fluctuations, we specify our fractal in baryon number from the properties observed in the distribution of visible matter at large scales today. This is the appropriate normalization given that these perturbations are simply frozen.
at all but very small scales in the curvature dominated era. In particular we take $D = 2$ and the normalization of the mass given by Ω_{10}. Interestingly, stated in terms of the parameter δ_H above, these values correspond to the special case that δ_H is constant, and of order one. Below the lower cut-off scale Λ we take the distribution to be smoothed, with the corresponding density $\Omega_{10}(10/\Lambda)$ (where Λ is the comoving scale given in units of Mpc/h). A natural lower bound for this scale is that characterizing the baryon diffusion (up to the corresponding time), which will smooth any inhomogeneity at smaller scales.

The fluctuations in the temperature of the microwave background depend on the ‘intrinsic’ fluctuations imprinted at time of decoupling of the photons, plus the fluctuations induced in their propagation from their last scattering. We consider here only the former as they are typically the dominant effect for perturbations which are essentially frozen on the scales we are interested in. Relative to the standard critical or near critical mass universe there are two main features to note here. First, photon decoupling will be modified greatly: While in the standard case there is a global baryon density which determines the time/temperature of decoupling, here the relevant baryon density varies enormously - for a photon in a void it is zero, while for one in a structure it is the local density of baryons associated with the lower cut-off scale Λ, a density which can be several orders of magnitude greater than in the standard case (if we take Λ as small as the baryon diffusion distance). However, since the decoupling temperature is only logarithmically sensitive to this parameter, the decoupling of photons in structures will still occur around redshift $z \sim 10^3$. On the other hand, if the scale R_{homo} is so large that there are voids of the order of the horizon scale at this time (at $z = 10^3$ we found $R_H \approx 600$ Mpc), most photons will decouple at the much earlier time of electron-positron annihilation since after this time they find themselves in a neutral environment. Thus the ‘thickness’ of the surface of last scattering will be very much greater than in the standard case, essentially consisting of two stages of ‘void decoupling’ (at a redshift of $\sim 10^9$) and ‘structure decoupling’ at redshifts comparable to the standard one.

The other main difference relative to the standard case is that, because of the extremely low background density in the model, the effect of the hyperbolic geometry is much greater. In particular, at high red-shift ($z \sqrt{\Omega_r} \gg 1$), the angle θ subtended by a scale of given physical size λ_0 is $\theta \approx \lambda_0 / H_0^{-1} \sqrt{\Omega_r}$ which means that the physical scale corresponding to 1° on the sky is 10^4Mpc i.e. of the order of the horizon scale today, and a factor of about 100 larger than in the standard case. Considering the possibility that the fractal extends to such enormous scales, we can make a naive estimate of the amplitude of fluctuations on the microwave sky: Adapting the Sachs-Wolfe formula as derived for the standard case of analytical fluctuations, the maximum amplitude of temperature variation between two photons subtending some angle should be estimated by the energy density fluctuation represented by a structure at the corresponding physical scale. At 10° on the sky we then have

$$\frac{\delta T}{T}_{10^\circ} \sim \frac{1}{3} \frac{\delta \rho}{\rho} (\lambda_{10}, z_d) = \frac{1}{3} \frac{\rho_B(\lambda_{10})}{\rho_{radn}(z_d)} = \frac{1}{3} \frac{\Omega_B(\lambda_0)}{\Omega_r} \frac{\Omega_{10}}{z_d}(9)$$

where z_d is the decoupling red-shift. Thus, the largest effect will come from the photons which decouple last, for which this maximum amplitude will be $\sim 10^{-5}$, which is comparable to the average amplitude observed at this scale by COBE [8]. On the other hand, for a modest value of the crossover scale to homogeneity (e.g. $R_{homo} \sim 100 Mpc/h$), the effect of the fractal distribution of matter on the photons at decoupling will only be visible at scales much smaller even than those which will be probed by the Planck satellite mission [22]. A detailed study of the perturbations induced by propagation of photons through an expanding structure of this kind - requiring techniques quite different to the standard ones treating analytical perturbations - will be required to see if it is possible to produce perturbations at the levels
observed by experiment at the angles which have been probed to date.

Finally a few brief comments on nucleosynthesis and structure formation. The cooling rate of the plasma is the same as in the standard case, and the results of nucleosynthesis will depend on the local baryon to entropy ratio, which as discussed above is related to the scale Λ. If this scale is larger or comparable to the horizon scale at nucleosynthesis the amount of helium produced will not differ much from the standard case - it is essentially independent of the baryon to entropy ratio - while the residual densities of deuterium etc. will be lower. For a smaller (i.e. sub-horizon) Λ the effect of inhomogeneities will be important, but a reliable calculation for the effect becomes very difficult to perform. It is unlikely however to modify the tendency for lower values of the ‘trace’ elements, since this arises due to the fact that the elements are synthesized in denser regions compared to the standard case. If, on the other hand, the fractal (up to a finite sub-horizon R_{homo}) is formed after nucleosynthesis, the appropriate value for the local density would be that at R_{homo}. We note that for modest values of this scale ($R_{\text{homo}} \sim 50 – 100\,\text{Mpc}/h$) this would correspond to standard nucleosynthesis if there is ratio of dark to visible baryons comparable to the mass to light ratio inferred in clusters [16]. Clearly some physics quite different to that at work in standard models would be required to make it possible to generate such a structure between nucleosynthesis and the curvature dominated era when (as we have noted) the structure gets frozen in at all but small scales. These and other considerations - in particular a more detailed study of the microwave background fluctuations in these kinds of structures - we will pursue in forthcoming work.

We thank D. Anuit, P. Biermann, P. Di Bari, R. Durrer, P. Ferreira, A. Gabrielli, G. Gibbons, K. Kainulainen, R. Mohayee, G. Parisi, P.J.E. Peebles for useful conversations and comments. This work has been partially supported by the EEC TMR Network “Fractal structures and self-organization” ERBFMRXCT980183 and by the Swiss NSF.

REFERENCES