Quasirotational Motions
and Stability Problem in Dynamics
of String Hadron Models

G. S. Sharov
Tver State University, Sadovoy per., 35, 170002, Tver, Russia

For the relativistic string with massive ends (the meson model) and four various string baryon models (\(q\)-\(qq\), \(q\)-\(q\)-\(q\), \(\Delta\) and \(Y\)) we consider the classical quasirotational motions, which are small disturbances of the planar uniform rotations of these systems. For the string meson model the two types of these solutions are obtained. They describe oscillatory motions in the form of stationary waves in the rotational plane and in the orthogonal direction. This approach and the suggested method of determining an arbitrary motion of the system on the base of initial data let us solve the stability problem for the rotational motions for all mentioned string configurations.

It is shown that the classic rotational motions are stable for the string meson model (or its analog q-\(qq\)) and for the \(\Delta\) baryon configuration, but they are unstable for the string baryon models \(Y\) and \(q\)-\(q\)-\(q\). For the latter two systems any small asymmetric disturbances grow with growing time. The motion of the \(q\)-\(q\)-\(q\) configuration become more complicated and quasiperiodic but quarks do not merge. In the case of \(Y\) model the evolution of disturbances results in falling a quark into the junction. These features of the classic behavior are important for describing the hadron states on the Regge trajectories and for choosing and developing the most adequate QCD-based string hadron models.

INTRODUCTION

The string hadron models [1–9] use the striking analogy between the QCD confinement mechanism at large interquark distances and the relativistic string with linearly growing energy connecting two material points. Such a string with massive ends may be regarded as the meson string model [2,3].

String models of the baryon were suggested in the following four variants (Fig. 1) differing from each other in the topology of spatial junction of three massive points (quarks) by relativistic strings: (a) the quark-diquark model q-\(qq\) [4] (on the classic level it coincides with the meson model [2]); (b) the linear configuration q-\(q\)-\(q\) [5]; (c) the “three-string” model or \(Y\)-configuration [6,7] and (d) the “triangle” model or \(\Delta\)-configuration [8,9].

The problem of choosing the most adequate string baryon model among the four mentioned ones has not been solved yet. Investigation of this problem from the point of view of the QCD limit at large distances has not been completed. In particular, the QCD-motivated baryon Wilson loop operator approach gives some arguments in favour of the \(Y\)-configuration [10] or the “triangle” model [11]. Leaving the Wilson loop analysis outside this paper we concentrate on the classical dynamics of these configurations.

For all mentioned string hadron models the classical solutions describing the rotational motion (planar uniform rotations of the system) are known and widely used for modeling the orbitally excited hadron states on the main Regge trajectories [4,12–14]. The rotational motion of the meson model or the baryon configuration q-\(qq\) is a rotation of the rectilinear string segment [2,4]. For the model q-\(q\)-\(q\) the motion is the same but with the middle quark at the rotational center. The form of rotating three-string configuration is three rectilinear string segments joined in a plane at the angles 120° [6,7]. For the model “triangle” this form is the rotating closed curve consisting of segments of a hypocycloid [8,9].

In this paper we consider the motions of all these systems which are close to rotational ones. They are interesting due to the following two reasons: (a) we are to search the motions describing the hadron states, which are usually interpreted as higher radially excited states in the potential models [14], in other words, we are to describe the daughter Regge trajectories; (b) the important problem of stability of rotational motions has not been solved yet for
all mentioned string models. For the meson string model the quasirotational motions of slightly curved string with massive ends were searched in Ref. [15]. But some simplifying assumptions in these papers oblige us in Sect. I to verify the solutions [15] numerically and to suggest another approach for obtaining the quasirotational solutions in the form of stationary waves and solving the stability problem. In the following Sects. II, III and IV the stability problem for the string baryon configurations $\Delta, q-q-q$ and \bar{Y} (Fig. 1) is tested with using the suggested method of solving the initial-boundary value problem for these systems.

I. STRING WITH MASSIVE ENDS

The relativistic string with the tension γ and the masses m_1, m_2 at the ends (the meson or q-qq baryon model) is described by the action [2,3,13]

$$S = -\gamma \int_{\Omega} \sqrt{-g} d\tau d\sigma - \sum_{i=1}^{N} m_i \int \sqrt{\dot{x}_i^2(\tau)} d\tau,$$

written here in the general form with N material points for all mentioned hadron models. For the string with massive ends $N = 2$, $X^\mu(\tau, \sigma)$ are coordinates of a string point in D-dimensional Minkowski space $R^{1,D-1}$ with signature $+, -, -, \ldots, g = X^2X^2 - (\dot{X}, X)^2$, $(a, b) = a\mu b_\nu$ is the (pseudo)scalar product, $X^\mu = \partial_\tau X^\mu$, $X^\mu = \partial_\sigma X^\mu$, $\Omega = \{(\tau, \sigma) : t_1 < \tau < t_2, \sigma_1(\tau) < \sigma < \sigma_2(\tau)\}$, $\sigma_i(\tau)$ are inner coordinates of the quark world lines, their coordinates in $R^{1,D-1}$ are $x_i^\mu(\tau) = X^\mu(\tau, \sigma_i(\tau))$, $\dot{x}_i^\mu = \frac{d}{d\tau}x_i^\mu(\tau)$; the speed of light $c = 1$. The first summand in Eq. (1) is proportional to the world surface area and may be rewritten in the equivalent form [3,15].

The equations of motion

$$\frac{\partial}{\partial \tau} \frac{\partial\sqrt{-g}}{\partial X^\mu} + \frac{\partial}{\partial \sigma} \frac{\partial\sqrt{-g}}{\partial X^\mu} = 0,$$

and the boundary conditions for the quark trajectories

$$\frac{d}{d\tau} \dot{x}_i^\mu - \frac{(-1)^i \gamma}{m_i} \left[\frac{\partial\sqrt{-g}}{\partial X^\mu} - \sigma_i'(\tau) \frac{\partial\sqrt{-g}}{\partial X^\mu} \right]_{\sigma = \sigma_i} = 0 \tag{3}$$

are deduced from action (1) [3].

The exact solution of Eq. (2) satisfying conditions (3) and describing the rotational motion of the rectilinear string is well known [2-4] and may be represented as

$$X^0 \equiv t = bt, \quad X^1 + iX^2 = \omega^{-1} \sin(\omega b \sigma) \cdot e^{i\omega t} \tag{4}$$

Here ω is the angular velocity, $\sigma \in [\sigma_1, \sigma_2]$, $\sigma_1 = \text{const}$, $\sigma_1 \leq 0 < \sigma_2$; the substitution $\tilde{\sigma} = \sin(\omega b \sigma)$ can be made.

The authors of Refs. [15] search motions of this system close to the rotational one (4) in the form

$$X^0 = t, \quad X^1 + iX^2 = \sigma \tilde{R}(t) \cdot e^{i[\tilde{\omega} t + \tilde{\phi}(t) + f(\sigma)]}, \tag{5}$$

where $\tilde{\phi}(t), f(\sigma), \tilde{R}(t)$ are assumed to be small. After substituting this formula into Eq. (2) and dropping the second order terms they obtain the expression for $f(\sigma)$

$$f(\sigma) = \Phi(t) \omega^{-1} \tilde{R}^{-1}(t) \left[f_1(\sigma, v_\perp) - f_1(1, v_\perp) \right], \tag{6}$$

where $f_1(\sigma, v_\perp) = (\frac{1}{2}v_\perp A + \sigma^{-1} \sqrt{1 - \sigma^2 v_\perp^2}) A$, $A = \arcsin \sigma v_\perp$, $v_\perp = \omega \tilde{R}(t), \sigma_1 \leq 0 \leq \sigma \leq 1 = \sigma_2$, the first heavy quark with $m_1 \to \infty$ is at rest.

Deducing Eq. (6) the authors of Refs. [15] ignore that (a) the obtained function $f(\sigma)$ (6) depends on t essentially [one may assume the dependencies $\tilde{R}(t), v_\perp(t)$ weak but this can not be valid for the multiplier $\Phi(t)$] so all previous calculations appear to be wrong; (b) expression (5), (6) does not satisfy the boundary condition (3) for the moving quark. The dependencies $\phi(t), f, \tilde{R}(t) - \langle \tilde{R} \rangle$ on time should also be analyzed. In particular, the following important question remains without answer: do these disturbances grow with growing time, in other words, is the rotational motion (4) stable?

*We use the term “quark” for brevity, here and below quarks, antiquarks and diquarks are material points on the classic level.

2
In our opinion, the better way of searching quasirotational motions and solving the stability problem includes the choice of the coordinates τ, σ on the world surface (that can always be made [3]), in which the orthonormality conditions
\[X^2 + X'^2 = 0, \quad (\dot{X}, X') = 0, \] (7)
are satisfied. Under restrictions (7) the equations of motion (2) become linear
\[\ddot{X} + X'' = 0, \] (8)
and the boundary conditions (3) take the simplest form
\[m_i \frac{d}{d\tau} U_i^\mu (\tau) + (-1)^i \gamma X'^\mu (\tau, \sigma_i) = 0, \quad i = 1, 2, \] (9)
where $U_i^\mu (\tau) = \dot{x}_i^\mu (\tau)/\sqrt{\dot{x}_i^2}$ is the unit $R^{1,D-1}$-velocity vector of i-th quark.

In Eqs. (9) the functions $\sigma_i (\tau)$ are chosen in the form $\sigma_i (\tau) = \text{const}$. One can always fix them, in particular, as
\[\sigma_1 = 0, \quad \sigma_2 = \pi \] (10)
with the help of the reparametrizations [3]
\[\tilde{\tau} \pm \tilde{\sigma} = f_\pm (\tau \pm \sigma) \] (11)
(f_\pm are arbitrary smooth monotone functions), which keep invariance of Eqs. (7) and (8).

Using the general solution of Eq. (8)
\[X'^\mu (\tau, \sigma) = \frac{1}{2} [\Psi_+^\mu (\tau + \sigma) + \Psi_-^\mu (\tau - \sigma)], \] (12)
we can reduce the problem in a natural way to solving ordinary differential equations. In particular, this approach is fruitful for considering the initial-boundary value problem (IBVP) for the string with massive ends [16]. This problem implies obtaining the motion of the string on the base of two given initial conditions: an initial position of the system in Minkowski space and initial velocities of string points. In other words, we are to determine the solution of Eq. (8) $X'^\mu (\tau, \sigma)$ satisfying the orthonormality (7), boundary (9) and initial conditions.

An initial position of the string can be given as the parametric curve in Minkowski space
\[x^\mu = \rho^\mu (\lambda), \quad \lambda \in [\lambda_1, \lambda_2], \quad \rho^2 < 0. \] (13)
Initial velocity of a string point is a time-like vector on this curve $v^\mu (\lambda)$, $\lambda \in [\lambda_1, \lambda_2]$, $v^\mu (\lambda)$ may be multiplied by an arbitrary scalar function $\chi (\lambda) > 0$.

To solve the problem we set parametrically the initial curve on the world sheet
\[\tau = \tilde{\tau} (\lambda), \quad \sigma = \tilde{\sigma} (\lambda), \quad \lambda \in [\lambda_1, \lambda_2], \] (14)
and use the following general form for the initial position of the string [16]:
\[X'^\mu (\tilde{\tau} (\lambda), \tilde{\sigma} (\lambda)) = \rho^\mu (\lambda), \quad \lambda \in [\lambda_1, \lambda_2]. \] (15)
Here $|\tilde{\tau}'| < \tilde{\sigma}'$, $\tilde{\tau} (\lambda_1) = \tilde{\sigma} (\lambda_1) = 0$, $\tilde{\sigma} (\lambda_2) = \pi$. There is the freedom in choosing the functions $\tilde{\tau} (\lambda), \tilde{\sigma} (\lambda)$ [16,17] connected with the invariance of Eqs. (7), (8), (9) and (10) with respect to the substitutions (11) where
\[f_+ (\xi) = f (\xi), \quad f_+ (\xi + 2\pi) = f (\xi) + 2\pi \] (16)
and $f' (\xi) > 0$.

Using the formulas [16]
\[\frac{d}{d\lambda} \Psi_\pm^\mu (\tilde{\tau} (\lambda) \pm \tilde{\sigma} (\lambda)) = \left[1 \pm \frac{\langle v, \rho' \rangle}{\Delta} \right] \rho^\mu \pm \frac{\rho^2}{\Delta} v^\mu, \] (17)
where $\Delta (\lambda) = \sqrt{(v, \rho')^2 - v^2 \rho'^2}$, we can determine from the initial data the function Ψ_+^μ in the initial segment $[0, \tilde{\tau} (\lambda_2) + \pi]$ and the function Ψ_-^μ in the segment $[\tilde{\tau} (\lambda_2) - \pi, 0]$. The constants of integration are fixed from the initial condition (15).

The functions Ψ_\pm^μ are to be continued beyond the initial segments with the help of boundary conditions (9) which may be reduced to the equations [16,17].
\[U_s^\mu(\tau) = \gamma m_1^{-1}[\delta^\mu - U_s^\mu(\tau)U_{1\nu}(\tau)] \Psi_s^{\mu}(\tau), \]
\[U_{s2}^\nu(\tau) = \gamma m_2^{-1}[\delta^\nu - U_{s2}^\nu(\tau)U_{2\nu}(\tau)] \Psi_{s2}^{\nu}(\tau - \pi), \]
\[\Psi_s^\nu(\tau) = \Psi_s^{\mu}(\tau) - 2m_1\gamma^{-1}U_s^\mu(\tau), \]
\[\Psi_{s2}^{\nu}(\tau + \pi) = \Psi_s^{\nu}(\tau - \pi) - 2m_2\gamma^{-1}U_{s2}^\nu(\tau). \]

where \(\delta^\nu = \begin{cases} 1, & \mu = \nu \\ 0, & \mu \neq \nu \end{cases} \). Solving the systems of Eqs. (18), (19) with the initial conditions

\[U_s^\mu(\tau_i) = \nu(\lambda_i)/\sqrt{\nu^2(\lambda_i)}, \quad i = 1, 2, \]

we obtain the velocities \(U_s^\mu(\tau) \) on the base of the functions \(\Psi_s^\mu(\tau) \) known from Eqs. (17) in the initial segments. Simultaneously we continue (with no limit) the functions \(\Psi_s^\mu \) outside these segments with the help of Eqs. (20), (21) and determine the world surface (12).

The above described procedure of solving the IBVP for the string with the fixed end (the infinitely heavy quark with \(m_1 \to \infty \) is at rest) and \(m_2 = 1, \gamma = 1 \) is illustrated with Fig. 2. This is a typical example of a slightly disturbed motion close to the rotational one (4). In the case \(m_1 \to \infty \) Eqs. (18), (20) are to be substituted for the equations [16] \(U_s^\mu(\tau) = U_s^\mu = \text{const} \) (the infinite mass moves at a constant velocity) and

\[\Psi_s^\mu(\tau) = [2U_s^\mu U_{1\nu} - \delta^\mu] \Psi_s^\nu(\tau), \quad m_1 \to \infty. \]

Eq. (19) with initial condition (22), \(i = 2 \) was solved numerically.

FIG. 2. The curved string motion of type (5), (6).

For the motion in Fig. 2 the initial distance between the quarks is \(R(0) = 1 \), the initial string shape (the curve 1 in Figs. 2a and c) is determined by Eq. (6) with the amplitude multiplier \(\beta_0 = \tilde{\phi}(0)\omega^{-3}R^{-1}(0) = 1 \). The initial velocities of string points correspond to rotating in \(xy \)-plane at the angular velocity \(\vec{\omega} = \{0;0;\omega\} \), \(\omega = 1/\sqrt{2} \):

\[v^\mu(\lambda) = \{1; i(\lambda)\}, \quad i(\lambda) = [\vec{\omega} \times \vec{\rho}(\lambda)] \]

The initial speed of the moving end \(|i(\lambda_2)| = v_\perp = \omega R(0) = 1/\sqrt{2} \) satisfies the relation

\[v_\perp^2 + \omega v_\perp m_1/\gamma = 1 \]

(\(i = 2 \)), that is valid for the rotational motion (4) [4,13]

In Figs. 2a, b the positions of the string in \(xy \)-plane (sections \(t = \text{const} \) of the world surface) are shown. They are numbered in order of increasing \(t \) with the step in time \(\Delta t = 0.2 \) and these numbers are near the position of the moving quark marked by the small circle. The first turn of the string is shown in Fig. 2a and the fourth one (after the missed time interval) is represented in Fig. 2b. We can see that main features of the motion are kept: the string rotates and its shape (slightly deviating from straightness) changes quasiperiodically.

The evolution of this shape is shown in details in Fig. 2c, where the first 9 curves from Fig. 2a (with the same step \(\Delta t = 0.2 \)) are turned in \(xy \)-plane so that the 2-nd end of each curve lies on the axis of abscissas. In other words the curves in Fig. 2c are the string positions in the frame of reference rotating with the string. One may conclude that the shape (6) of the string is not conserved with growing time. Changing the shape looks like spreading waves along the string (that uniformly rotates). Drawing other curves in this manner we see that the disturbances of the shape do not grow with growing time \(t \). This also concerns of the distance \(R(t) \) between the quarks shown in Fig. 2d. The distance \(R(t) \) vary quasiperiodically near the initial value \(R(0) = 1 \). It is interesting that the period \(T_r \approx 4.75 \) of varying \(R \) does not coincide with the rotational period \(T = 2\pi/\omega \approx 8.886 \) and the period \(T_s \approx 2 \) of changing the string shape. This hierarchy of the periods or frequencies and the graphs in Fig. 2c will be clarified below.

The picture of motion (including the behavior of \(R \) and the string shape) is similar for various values of \(\omega, R(0), m_2 \) connected by Eq. (25), and for various amplitudes \(\beta_0 \) of the disturbance (6). If \(\beta_0 \) is small enough the string motion is visually identical with the pure rotational one. But the disturbance of the string shape does not keep its form. So we may conclude that the expressions (5), (6) from Ref. [15] do not describe a motion of the curved string during an appreciable time interval.

The problem of searching the quasirotational motions of the curved string, for which the string shape behaves like stationary waves is solved in this paper with the more convenient (in comparison with Ref. [15]) analytical approach. This method also confirms analytically the numerical investigation of the stability problem for the rotational motions.
For this purpose we consider the string with the infinitely heavy end \(m_2 \to \infty \) (or with the fixed end in the frame of reference moving at the velocity \(U_2^\mu = \text{const} \)) for the sake of simplicity. It is convenient to use the unit velocity vector of the moving end

\[U_1^\mu(\tau) \equiv U^\mu(\tau), \quad U^2(\tau) = 1 \]

(26)

for describing the string motion because the world surface is totally determined from the given function \(U^\mu(\tau) \) and the value \(\gamma / m_1 \) with using the formulas [17,18]

\[\Psi_{\pm}^\mu(\tau) = m_1 \gamma^{-1}[\sqrt{-U'^2(\tau)}U^\mu(\tau) \pm U'^\mu(\tau)]. \]

(27)

If we substitute the analog of Eq. (23) for the second end

\[\Psi^\mu(\tau) = P_{\nu}^\mu \Psi_{\nu}^\mu(-), \quad P_{\nu}^\mu = 2U_2^\rho U_{2\nu} - \delta_{\nu}^\mu, \quad m_2 \to \infty \]

and Eq. (27) into Eq. (18), we get the relation

\[U^\mu(\tau) = (\delta_{\nu}^\mu - U^\nu U_{\nu}) P_{\kappa}^\mu \left[\sqrt{-U'^2(-)}U^\kappa(-) - U'^\kappa(-) \right]. \]

(28)

Here and below \((-) \equiv (\tau - 2\pi)\), the argument \((\tau)\) may be omitted.

The vector-function \(U^\mu(\tau) \) given in a segment with the length \(2\pi \) (if \(\gamma / m_1, U^\mu \) are also given) contains all information about this motion of the system [18]. Indeed, the system of ordinary differential equations with shifted argument (28) beyond the given initial segment and obtain the world surface with using Eqs. (27) and (12).

For the rotational motion (4) we consider arbitrary small disturbances of this motion or of the vector (29) in the form

\[\bar{U}^\mu(\tau) = \Gamma[e_{0}^\mu + v_0 \epsilon^\mu(\tau)], \quad \Gamma = (1 - v_0^2)^{-1/2}. \]

(29)

Here \(v_0 = v_\perp = \sin \pi \theta \) is the constant speed of this quark; \(\epsilon^\mu = \theta^{-1} \frac{d}{d\tau} \epsilon^\mu(\tau), \epsilon^\mu = e_{0}^\mu \cos \theta + e_{\perp}^\mu \sin \theta \) are unit space-like rotating vectors, \(\theta = \omega \rho = \pi^{-1} \arcsin v_0 = \text{const} \) is the “frequency” with respect to \(\tau \), the ends are renumerated in comparison with Eq. (4). The 2-nd quark in this frame of reference is at rest: \(U_2^\mu = e_0^\mu \).

To study the stability of the rotational motion (4) we consider arbitrary small disturbances of this motion or of the vector (29) in the form

\[U^\mu(\tau) = \bar{U}^\mu(\tau) + u^\mu(\tau). \]

(30)

The disturbance \(u^\mu(\tau) \) is given in the initial segment, for example, \(I = [-2\pi, 0] \); it is to be small \(|u^\mu| \ll 1 \) (we neglect the second order terms) and satisfies the condition

\[\langle \bar{U}(\tau), u(\tau) \rangle = 0, \]

(31)

resulting from Eq. (26) for both \(U^\mu \) and \(\bar{U}^\mu \).

Substituting expressions (30), (29) into Eq. (28) we obtain the equation describing the evolution of \(u^\mu \)

\[u'^\mu + Qu^\mu + \bar{U}^\mu(\bar{U}'_\nu u) = (\delta_{\nu}^\mu - U^\nu \bar{U}_{\nu}) P_{\kappa}^\mu \left[Qu_{\kappa}^\nu - u_{\kappa}^\nu \right] \]

\[+ Q^{-1} \left[(1 + 2v_0^2) \bar{U}^\mu - P_{\nu}^\mu \bar{U}_{\nu} \right] (\bar{U}'(\bar{U}, u')) \]

(32)

where

\[Q = \sqrt{-U'^2} = \Gamma v_0 = \frac{v_0 \arcsin v_0}{\pi \sqrt{1 - v_0^2}} = \text{const}. \]

Projecting the disturbance \(u^\mu \) onto the basic vectors \(e_0^\mu, e_{\perp}^\mu(\tau), \epsilon^\mu(\tau), e_3^\mu \) we denote its three independent components in the following manner:

\[u_0(\tau) = (e_0, u), \quad u_{\perp}(\tau) = (e, u), \quad u_3(\tau) = (e_3, u). \]

The fourth component is expressed due to Eq. (31): \(\langle \epsilon, u \rangle = -v_0^{-1}u_0 \). Considering corresponding projections one can transform the system (32) into the following one:

\[u_0' + Qu_0 - \Gamma Qu_e = u_{0(-)} - Qu_{0(-)} - \Gamma Qu_{3(-)}, \]

(33)

\[u_{\perp}' + Qu_{\perp} + \theta v_0^{-1}u_0 = u_{\perp(-)} + Qu_{\perp(-)} + F(u_0(-)), \]

(34)

\[u_3' + Qu_3 = u_{3(-)} - Qu_{3(-)}, \]

(35)
where $F(u_{0(-)}) = \theta(v_0^{-1} + 2v_0) u_{0(-)} - 2\sqrt{1 - v_0^2} u_{0(-)}'$.

Eq. (35) for z-axial disturbances is independent on others and may be easily solved: if $u_z(\tau)$ is given in the initial segment $I = [-2\pi, 0]$, the continuation of this function for $\tau > 0$ is [here $\Delta u_z = u_z(0) - u_z(-2\pi)$]:

$$u_z(\tau) = u_z(-) + e^{iQ\tau} \left[\Delta u_z - 2Q \int_{0}^{\tau} e^{iQ\tau} u_z(-) d\tau \right].$$

(36)

The pure harmonic solutions (36) $u_z(\tau) = e^{i\theta \tau}$ exist if the “frequency” θ satisfies the relation

$$\frac{\partial}{Q} = \cot \pi \theta,$$

resulting from substitution $u_z = e^{i\theta \tau}$ into Eq. (35). The transcendental Eq. (37) has the countable set of roots θ_n, $n - 1 < \theta_n < n$, the minimal positive root $\theta_1 = \theta = \pi^{-1} \arcsin v_0$. These pure harmonic z-disturbances corresponding to various θ_n result in the following correction to the motion (4) [due to Eqs. (27), (12) there is only z or e_3^μ component of the correction]:

$$X^3(\tau, \sigma) = B \sin \theta_n \sigma \cos(\theta_n \tau + \varphi_0).$$

(38)

Here the string ends have been again renumerated so $\sigma = 0$ corresponds to the fixed end as in Eq. (4). The amplitude B is to be small in comparison with ω^{-1}.

Expression (38) describes oscillating string in the form of orthogonal (with respect to the rotational plane) stationary waves with $n - 1$ nodes in the interval $0 < \sigma < \pi$. Note that the moving quark is not in a node, it oscillates along z-axis at the frequency $\omega_n = \omega \theta_n / \theta$. The shape $F = B \sin \theta_n \sigma$ of the z-oscillation (38) is not pure sinusoidal with respect to the distance $s = \omega^{-1} \delta = \omega^{-1} \sin \theta \sigma$ from the center to a point “σ”:

$$F(s) = B \sin(\theta_n \theta^{-1} \arcsin \omega s), \quad 0 \leq s \leq v_0 / \omega.$$

(39)

If $n = 1$ this dependence is linear. In this trivial case the motion is pure rotational (4) with a small tilt of the rotational plane. But the motions (38) with excited higher harmonics $n = 2, 3, \ldots$ are non-trivial.

Eq. (35), its harmonic solutions, the “frequencies” θ_n as roots of Eq. (37) were investigated in Refs. [17,19] where the motions of the meson string with linearizable boundary conditions (9) were studied and classified. Those solutions (in $3 + 1$-dimensional Minkowski space) with θ_n, $n \geq 2$ described the exotic motions of the $n - 1$ times folded rectilinear string with $n - 1$ points moving at the speed of light. But in Eq. (38) these higher harmonics became apparent as (much more physical) excitations of the rotating string.

It was shown in Ref. [19] that any smooth function $u(\tau)$ in a segment I with the length 2π may be expanded in the series

$$u(\tau) = \sum_{n = -\infty}^{\infty} u_n \exp(i \theta_n \tau), \quad \tau \in I = [\tau_0, \tau_0 + 2\pi].$$

(40)

So if we expand any given disturbance $u_z(\tau)$ in the initial segment I, we obtain the solution (36) of Eq. (35) in the form (40) for all $\tau \in R$. If the initial function $u_z(\tau)$ satisfies Eq. (35) at the ends of I, $u_z(\tau) \in C^2(I)$, this series converges absolutely in I, hence its sum (40) is a limited function for all $\tau \in R$. This is the proof of stability of the rotational motions (4) for the string with fixed end with respect to the z-oscillations.

In Fig. 2 we observe another type of oscillations. These planar disturbances are described by Eqs. (33), (34). Their solutions in the form $u_0 = \beta_0 e^{i\theta \tau}, u_c = \beta_1 e^{i\theta \tau}$ exist only if the “frequency” θ satisfies the equation

$$\Theta^2 - Q^2(1 + v_0^2) = 2Q \Theta \cot \pi \Theta.$$

(41)

The roots of Eq. (41) $\Theta_n \in (n - 1, n)$, $n \geq 1$ behave like the roots θ_n of Eq. (37) but $\Theta_n > \theta_n$. The disturbances (30) $u^\mu = \beta^\mu \exp(i \Theta_n \sigma)$ correspond to the following small ($B \ll \omega^{-1}$) harmonic planar oscillations or planar stationary waves:

$$X^\mu = c_0^\mu t + c^\mu(\tau) \left[\omega^{-1} \sin \theta \sigma + B f_\sigma(\sigma) \cos \Theta_n \tau \right]
+ B \left[c_0^\mu f_0(\sigma) + c^\mu(\tau) f_\sigma(\sigma) \right] \sin \Theta_n \tau,$$

$$f_0 = 2(\theta^2 - \Theta_n^2) \cos \Theta_n \sigma, \quad B = \frac{m_i \beta_0}{2 \gamma(\Theta_n^2 - \theta^2) \sin \pi \Theta_n},$$

$$f_\sigma = (\Theta_n + \theta)^2 \sin(\Theta_n - \theta) \sigma - (\Theta_n - \theta)^2 \sin(\Theta_n + \theta) \sigma,$$

$$f_\tau = (\Theta_n + \theta)^2 \sin(\theta - \Theta_n) \sigma - (\Theta_n - \theta)^2 \sin(\Theta_n + \theta) \sigma.$$

The shape of these stationary waves in the co-rotating frame of reference (where the axes x and y are directed along e^μ and θ^μ) is approximately described by the function $B \left[f_\sigma(\sigma) - f_0(\sigma) \sin \theta \sigma \right]$ if the deflection is maximal. These
shapes $F = F_n(s)$ for $n = 1, 2, 3, 4$ are shown in Fig. 2e with indicated numbers n. For each n this curved string oscillates at the frequency $\omega_n = \omega \Theta_n / \theta$, it has $n - 1$ nodes in $(0, \pi)$ (which are not strictly fixed because f_0 and f_r are non-zero) and the moving quark is not in a node, especially for the main mode with $n = 1$. The latter feature [similar to the motion (38)] radically differs from that in expression (6) [15] where the disturbance in this endpoint is forcibly nullified. Note that Eq. (42) describes both the deflection of this endpoint $B^\mu f_\gamma(x) \sin \Theta_n \tau$ and its radial motion $B^\mu f_\gamma(x) \cos \Theta_n \tau$.

Any smooth disturbance $u(\tau)$ may be expanded in the series similar to Eq. (40) with the roots Θ_n of Eq. (41) [19]. So any quasirotational motion of this string, in particular, the motion in Fig. 2 is the superposition of the stationary waves (42) and (for nonplanar motions) (38). This fact let us conclude, that the rotational motions (4) for the considered model are stable, and explain the above mentioned problem with the “hierarchy of the periods” for the example in Fig. 2. Now, when we expand this solution in the combination of expressions (42), it becomes obvious that the radial period T_R (Fig. 2e) corresponds to the main “frequency” $\Theta_1 \approx 0.463$ with the background of higher harmonics, whereas the “shape” period T_s is connected mainly with the following “frequency” $\Theta_2 \approx 1.149$, because the string shape for the mode Θ_1 is more close to rectilinear one (Fig. 2c) and it is “not observable” in Fig. 2c. Remind that $T_R \Theta_1 = T_s \Theta_2 = T \theta$ where T is the rotational period and $\theta = 0.25$.

The obtained results are generalized for the string with both finite masses $0 \leq m_1, m_2 < \infty$ at the ends. For this purpose we are to substitute the disturbed expression (30) into Eqs. (18)–(21), (27) and deduce the equations generalizing Eqs. (32). The search of their oscillatory solutions $u^3 = B_2 \exp(\imath \varphi \tau)$, $u^4 = B^4 \exp(\imath \Theta \tau)$ results in the following generalizations of Eqs. (37) and (41):

\[
(\vartheta - Q_1 Q_2 / \theta) / (Q_1 + Q_2) = \cot \pi \vartheta,
\]
\[
\Phi_1(\Theta) \Phi_2(\Theta) - 4Q_1 Q_2 \Theta^2

2\Theta [Q_1 \phi_2(\Theta) + Q_2 \phi_1(\Theta)] = \cot \pi \Theta,
\]

where $Q_1 = \theta v_i / \sqrt{1 - v_i^2}$, v_i are the constant speeds of the ends for Eq. (4), $\Phi_n(\Theta) = \Theta^2 - Q_n^2 (1 + v_i^{-2})$. Corresponding disturbances of the rotational motion (4) are the stationary waves behaving similar to Eqs. (38), (42). In particular, in Eq. (38) one should substitute $\sin \theta_n \sigma$ for $\cos(\theta_n \sigma + \phi_n)$. In this case the endpoints also oscillate at satisfying Eqs. (43), (44) “frequencies” θ_n or Θ_n.

All roots of Eqs. (43), (44) are real numbers. Hence, amplitudes of these harmonics are not increasing (and not decreasing) and the quasirotational motions constructed as combinations of these harmonics are stable (but they are not asymptotically stable). Note that the minimal positive root of both Eqs. (43) and (44) equals $\theta = \omega b$. In both cases the corresponding solutions are trivial: they describe a small tilt of the rotational plane or a small shift of the rotational center in this plane.

The obtained oscillatory motions may be simulated numerically when we solve the IBVP with the initial data corresponding to the excitation only one mode. Such an example for the string with the masses $m_1 = 2$, $m_2 = 1$ at the ends and $\gamma = 1$, $\Delta t = 0.1$ is represented in Fig. 3: the first 20 positions of the string are in Fig. 3a and the following ones after 3 turns of the system are in Fig. 3b. The first quark is marked by the point. Here the initial position is close to the rectilinear segment with the lengths of its two parts $R_1 \approx 0.179$, $R_2 = 0.3$ connected with $\omega \approx 1.6$ by Eq. (25) where $\nu_1 = \nu_3 = \omega R_1$. The corresponding value $\theta \approx 0.252$ is the first positive root of Eq. (43). These roots may be seen in Fig. 3c, where the l.h.s. of Eq. (43) is shown as dash line, its analog for Eq. (44) is the blue full line and the graph of $\cot \pi \Theta$ is the red line.

The initial string position (the curve 1 in Fig. 3a) is the rectilinear segment but the initial velocities are disturbed in comparison with Eq. (24): $\bar{\nu} = [\vec{c} \times \vec{v}] + \delta \nu (\lambda)$. The disturbance $\delta \nu$ corresponds to the form of the second planar oscillatory harmonic connected with the root $\Theta_2 \approx 1.1277$ of Eq. (44). The shapes of these harmonics for $\Theta_1 \approx 0.4458$, Θ_2, $\Theta_3 \approx 2.0669$, $\Theta_4 \approx 3.045$ with indicated numbers are shown in Fig. 3d. Fig. 3e illustrates the shapes of the curved string with the step $\Delta t = 0.05$ in the co-rotating (at the frequency ω) frame of reference, the initial shape is the rectilinear red dash line. In Fig. 3f the deflection $\delta(t)$ of the string shape from rectilinear one (measured in the middle of the string) is shown and also the distance $R(t)$ between the quarks (the red dash line).

Arbitrary slightly disturbed rotational motions may also be obtained as solutions of the IBVP with certain initial data. Numerical experiments show their stability and that they are always superpositions of the above described stationary waves.

The stability problem for the rotational motions for the string baryon models $q-q-q$, Y and Δ (Fig. 1) is more complicated one in comparison with that for the meson string model. We shall consider all string baryon configurations in turn starting from the model “triangle” [8,9].

FIG. 3. The disturbed rotational motion of the string with $m_1 = 2$, $m_2 = 1$.

7
This configuration may be regarded as a closed relativistic string with the tension γ carrying three pointlike masses m_1, m_2, m_3 [8,9]. In action (1) for the “triangle” model $N = 3$ and the domain Ω is divided by the quark trajectories into three domains: $\Omega = \Omega_0 \cup \Omega_1 \cup \Omega_2$, $\Omega_0 = \{(\tau, \sigma) : \sigma_1(\tau) < \sigma < \sigma_{i+1} (\tau)\}$ (Fig. 4). The equations $\sigma = \sigma_0(\tau)$ and $\sigma = \sigma_3(\tau)$ determine the trajectory of the same (third) quark. It is connected with the fact that string is closed (so the world surface is tube-like) and may be written in the following general form [8]:

$$X^\mu(\tau, \sigma_0(\tau)) = X^\mu(\tau^*, \sigma_3(\tau^*)).$$

(45)

The parameters τ and τ^* in these two parametrizations of just the same line are not equal in general.

The equations of string motion and the boundary conditions at three quark trajectories result from action (1) [8,9]. Derivatives of X^μ can have discontinuities on the lines $\sigma = \sigma_i(\tau)$ (except for tangential). However, by choosing coordinates τ, σ the induced metric on all the world surface may be made continuous and conformally flat [8], i.e. satisfying the orthonormality conditions (7). Under these conditions the equations of motion for all Ω_i take the form (8) and the boundary conditions are [8,9]

$$m_1 \frac{d}{d\tau} U_i^\mu(\tau) - \gamma \left[X'^\mu + \sigma'_i(\tau) \dot{X}^\mu \right]_{\sigma = \sigma_i + 0} + \gamma \left[X'^\mu + \sigma'_i(\tau) \dot{X}^\mu \right]_{\sigma = \sigma_i - 0} = 0,$$

(46)

where the same notation U_i^μ for the unit velocity vector of i-th quark is used. In accordance with Eq. (45) for the 3-rd quark one should put $\sigma = \sigma_0(\tau)$ in the second term of Eq. (46) and replace τ by τ^* in the last term.

At this stage we have five undetermined functions in this model: $\tau^*(\tau)$ in the closure condition (45) and four trajectories $\sigma_i(\tau)$, $i = 0, 1, 2, 3$. Using the invariance of Eqs. (7), (8), (46) with respect to the reparametrizations (11) we fix two of these functions as follows (Fig. 4):

$$\sigma_0(\tau) = 0, \quad \tau^*(\tau) = \tau.$$

(47)

The remaining three functions will be calculated with solving the IBVP.

The first Eq. (47) may be obtained by the substitution (11) with the required f_+ and $f_-(\eta) = \eta$. At the second step one can get the equality $\tau^* = \tau$ by repeating the procedure (11) with the function $f_+ = f_- \equiv f$ that satisfies the condition

$$2f(\tau) = f(\tau^*(\tau) + \sigma_3(\tau)) + f(\tau^*(\tau) - \sigma_3(\tau)).$$

The constraint $\tau^*(\tau) = \tau$ (that is the closure of any coordinate line $\tau = \text{const}$ on the world surface) was not fulfilled in Refs. [8,9].

![FIG. 4. The domain Ω for the model Δ.](image)

Because of discontinuities of X'^μ at $\sigma = \sigma_i(\tau)$ the general solutions of Eq. (8) in three domains Ω_i are described by three different functions ($i = 0, 1, 2$)

$$X^\mu(\tau, \sigma) = \frac{1}{2} \left[\Psi^\mu_{i+}(\tau + \sigma) + \Psi^\mu_{i-}(\tau - \sigma) \right], \quad (\tau, \sigma) \in \Omega_i.$$

(48)

Nevertheless, the function X^μ (with the tangential derivatives) is continuous in Ω.

The initial-boundary value problem (IBVP) for the “triangle” string configuration is stated similarly to that for the meson model in Sect. I. The procedure of its solving is briefly described below. One can find the details in e-print [20].

An initial position of the string can be given as the curve (13) in Minkowski space but for the Δ-model $\lambda \in [\lambda_0, \lambda_3]$ and this curve is closed: $\rho^\mu(\lambda_0) = \rho^\mu(\lambda_3)$. The function $\rho^\mu(\lambda)$ is piecewise smooth, ρ^μ may have discontinuities at the quark positions $\lambda = \lambda_1, \lambda_2.$
Initial velocities on the initial curve can be given as a time-like vector \(v^\mu(\lambda), \lambda \in [\lambda_0, \lambda_1] \), \(v^\mu(\lambda) \) may be multiplied by an arbitrary scalar function \(\phi(\lambda) > 0 \). The condition \(v^\mu(\lambda_0) = v^\mu(\lambda_1) \cdot \) const is fulfilled.

To solve the problem we use the parametrization (14), (15), \(\lambda \in [\lambda_0, \lambda_1] \) of the initial curve on the world surface (Fig. 4) and the formulas (17) for determining the functions \(\Psi^\mu_{\pm} \) from the initial data in the finite segments

\[
\Psi^\mu_{\pm} (\xi), \quad \xi \in [\tau(\lambda_i) + \sigma(\lambda_i), \tau(\lambda_{i+1}) + \sigma(\lambda_{i+1})],
\]

\[
\Psi^\mu_{-} (\xi), \quad \xi \in [\tau(\lambda_{i+1}) - \sigma(\lambda_{i+1}), \tau(\lambda_i) - \sigma(\lambda_i)],
\]

that lets us find the solution of the problem in the form (48) in the zones \(D_1 \) shown in Fig. 4. In these zones bounded by the initial curve and the characteristic lines \(\tau - \sigma \leq \tau(\lambda_i) - \sigma(\lambda_i), \tau + \sigma \leq \tau(\lambda_{i+1}) + \sigma(\lambda_{i+1}) \) the solution depends only on initial data without influence of the boundaries. In others parts of the domains \(\Omega_i \) the solution is obtained with the help of the boundary conditions (46) which may be reduced to the form [20]

\[
U^\mu_i = \gamma m_i^{-1} [\delta^\mu_\nu - U^\mu_i(\tau) U^\nu_\nu(\tau)] \cdot \frac{d}{d\tau}[\Psi^\nu_{+}(\tau + \sigma_i) + \Psi^\nu_{-(i-1)}(\tau - \sigma_i)].
\]

(50)

For \(i = 3 \) in Eq. (50) one should replace \(\Psi^\mu_{+}(\tau + \sigma_3) \) by \(\Psi^\mu_{0+}(\tau) \) in accordance with Eqs. (45) and (47).

Integrating systems (50) with the initial conditions (22), \(i = 1, 2, 3 \) we can determine unknown vector functions \(U^\mu_i(\tau) \) for \(\tau \in [\tau(\lambda_i), \tau^*_i] \) with the help of the functions \(\Psi^\mu_{\pm} \) known in the segments (49) from the initial data. Here \(\tau^*_i \) are (minimal) ordinates of the points in which the trajectories \(\sigma = \sigma_i(\tau) \) cross the characteristic lines \(\tau \pm \sigma = \) const (Fig. 4). However we can continue this procedure for \(\tau > \tau^*_i \) if for every value of \(\tau \) [after calculating \(U^\mu_i \) from Eq. (50)] we determine \(\Psi^\mu_{\pm} \) outside segments (49) from the equations \((i = 1, 2) \)

\[
\Psi^\mu_{i-1} (\tau + \sigma_i) = \Psi^\mu_{i+}(\tau + \sigma_i) - \frac{m_i U^\mu_i(\tau)}{\gamma} + C^+_i,
\]

\[
\Psi^\mu_{i-} (\tau - \sigma_i) = \Psi^\mu_{i+}(\tau - \sigma_i) - \frac{m_i U^\mu_i(\tau)}{\gamma} + C^-_i.
\]

(51)

They are obtained from Eqs. (46), (48) and from continuity of \(X^\mu \) [20]. The similar relations for \(i = 3 \) are

\[
\Psi^\mu_{i+} (\tau + \sigma_3) = \Psi^\mu_{0+}(\tau) - m_3 \gamma^{-1} U^\mu_3(\tau) + C^+_3,
\]

\[
\Psi^\mu_{i-} (\tau - \sigma_3) = \Psi^\mu_2(\tau - \sigma_3) - m_3 \gamma^{-1} U^\mu_3(\tau) + C^-_3.
\]

The constants of integration \(C^\pm_3 \) are fixed from Eq. (15).

For solving the system (50) we are to determine the functions \(\sigma_i(\tau) \) for \(\tau > \tau(\lambda_i) \). Multiplying \(U^\mu_i(\tau) \) by \(\frac{d}{d\tau} \Psi^\mu_{\pm}(\tau \pm \sigma_i) \) we obtain the equalities

\[
(1 - \sigma_i')(U_i, \Psi^\nu_{i-1} - \tau - \sigma_i)) = (1 + \sigma_i')(U_i, \Psi^\nu_{i+} + \tau + \sigma_i))
\]

which let us express \(\sigma_i' \) in the following way (separately for \(i = 1, 2 \) and \(i = 3 \)):

\[
\frac{d\sigma}{d\tau} = \frac{(U_i, [\Psi^\nu_{i-1} - \tau - \sigma_i])}{(U_i, [\Psi^\nu_{i-1} - \tau - \sigma_i] + \Psi^\nu_{i+} + \tau + \sigma_i))}
\]

(52)

Here \(U^\mu_i \equiv U^\mu_i(\tau) \).

Eqs. (50) – (52) allow us to continue the functions \(\Psi^\mu_{\pm} \) unambiguously beyond the segments (49). This algorithm solves (numerically in general) the considered IBVP with arbitrary initial conditions \(\rho^\mu(\lambda), v^\mu(\lambda) \).

For the model “triangle” the exact solutions of Eqs. (8), (7), (45), (46) describing rotational motions of the system (with hypocycloidal segments of the strings between the quarks) are obtained in Refs. [8,9]. World surfaces with the parametrization \(\sigma_i(\tau) = \sigma_i = \) const and the form of closure condition (45) \(\tau^* - \tau = T = \) const may be represented as follows (\(X^1 \equiv x, X^2 \equiv y \)):

\[
X^0 = \tau - \alpha \sigma, \quad X^1 + iX^2 = w(\sigma) e^{i\omega \tau}.
\]

(53)

Here \(w(\sigma) = A_i \cos \omega \sigma + B_i \sin \omega \sigma, \sigma \in [\sigma_i, \sigma_i+1]; \alpha = T/(\sigma_3 - \sigma_0) = \) const, \(\omega \) is the angular frequency of this rotation. Real \((\sigma_i, T, \omega, m_i/\gamma) \) and complex \((A_i, B_i) \) constants are connected by certain relations [8,9,14]. There are many
The simple motions (53) may be obtained by solving the IBVP with corresponding initial data. To research the stability of these motions we consider here the disturbed initial conditions \(\rho^i(\lambda) \) and \(\psi^i(\lambda) \). With an illustrative view in Fig. 5 the example of such a motion (close to the simple state (53)) of the “triangle” configuration is represented. Here the initial string position is the rectilinear equilateral triangle with the base \(a = 0.5 \) and the altitude \(h = 0.33 \) in the \(xy \)-plain (position 1 in Fig. 5a). The initial velocities \(\psi^i(\lambda) \) in the form (24) correspond to the uniform rotation of the system at the frequency \(\Omega = \{0; 0; \omega\} \), \(\omega = 2 \) about the origin of coordinates. The quarks with masses \(m_1 = 1 \), \(m_2 = 1.5 \), \(m_3 = 1.2 \), \(\gamma = 1 \) are placed at the corners of the triangle.

The results of computing are represented as projections of the world surface level lines \(t = X^0(\tau, \sigma) = \text{const onto} \) the \(xy \) plane as in Figs. 2, 3 and numbered with the time step \(\Delta t = 0.15 \). The values \(\rho^i(\lambda) \) and \(\psi^i(\lambda) \) are close to those which give the exact hypocycloidal solution (53) for this system (with the same \(m_i \), \(\gamma \) and \(\omega = 2 \)) describing the uniform rotation of the system with the string shape that is x-marked in Fig. 5a. The positions of the third quark with \(m_3 = 1.2 \) are marked by circles.

The further evolution of the system after one turn of the triangle is represented in Fig. 5b (one can find the omitted phases of this motion in Ref. [20]). In Fig. 5c the dependence of three mutual distances \(R_{ij} \) between the three quarks on time \(t \) is shown, in particular, \(R_{12}(t) \) is denoted by the full line. In Fig. 5d the deflection \(\delta(t) \) from rectilinearity of the string segment with \(R_{13}(t) \) is shown. We see that when the system rotates the distances between the quarks and the configuration of the string segments fluctuate near the values corresponding to the motion (53) (x-marks in Fig. 5a).

This situation is typical for slightly disturbed rotational motions of the string baryon model “triangle”. Numerous tests (with various values \(m_i \), the energy, \(\rho^i(\lambda) \), \(\psi^i(\lambda) \) and various types of disturbances [20]) show that the simple rotational motions (53) are stable. That is small disturbances of the motions (initial conditions) do not grow with growing time.

Emphasize that the simple motions (53) are stable with respect to transforming into the “quark-diquark” states of the \(\Delta \) string configuration [9] with merging two quarks into the diquark. It is shown in Ref. [20] that such a transformation may be obtained only through very strong disturbances of the initial conditions, for example, by essential reducing one of the sides of the initial triangle. However, in this case the two nearest quarks do not merge but revolve with respect to each other.

When one of the quark masses \(m_i \) is larger than the sum of two others the shape of the triangle configuration for the simple rotational motion (53) tends to a rectilinear segment with the position of the heaviest mass at the rotational center when the energy of the system decreases [9]. In other words the \(\Delta \) configuration tends to the \(q-q-q \) one. But the motion of the “triangle” model remains stable unlike that of the \(q-q-q \) model described in the next section.

III. LINEAR STRING CONFIGURATION

The dynamics of the linear \(\langle q-q-q \rangle \) string baryon model is described by action (1) where \(N = 3 \) and the domain \(\Omega \) is divided by the middle quark trajectory into two parts \(\Omega_1 \) and \(\Omega_2 \): \(\Omega_i = \{(\tau, \sigma) : \sigma_1(\tau) < \sigma < \sigma_{i+1}(\tau)\} \), \(\sigma_1(\tau) < \sigma_2(\tau) < \sigma_3(\tau) \) [5]. The equations of string motion under conditions (7) may be reduced to the same form (8). The boundary conditions at the ends \(\sigma = \sigma_1 \) and \(\sigma = \sigma_3 \) look like Eqs. (9) but for the middle quark they take the form (46), \(i = 2 \). At this line the derivatives of \(X^\mu \) are not continuous in general.

Using the reparametrizations (11) we fix two (from three) functions \(\sigma_i(\tau) \) in the form similar to (10): \(\sigma_1 = 0 \), \(\sigma_3 = \pi \). The third function \(\sigma_2(\tau) \) is obtained from Eq. (52) with solving IBVP that is described in details in Ref. [5]. The main stages of this procedure are the same as in Sects. I, II: determining the functions \(\Psi_{i\pm}^\mu \), \(i = 1, 2 \) in Eq. (48) with the help of given \(\rho^i(\lambda) \), \(\psi^i(\lambda) \) and Eq. (17) in the initial segments (49). The further continuation of \(\Psi_{i\pm}^\mu \) beyond (49) includes the equations similar to (18)-(21) for the endpoints (here \(i = 3 \) for the second end) and Eqs. (50), (51) for the middle quark.

The rotational motion of the \(q-q-q \) system is described by Eq. (4) but with the middle quark at the center of rotation. The authors of Ref. [4] assumed that motion is unstable with respect to centrifugal moving away of the middle quark and transforming this configuration into the quark-diquark one. The numerical experiments were made in Ref. [5] in accordance with the above scheme of solving the IBVP. They showed that the rotational motion of the \(q-q-q \) system is unstable indeed. Any arbitrarily small disturbances of the initial data result in the complicated motion of the middle quark including its centrifugal moving away but the material points never merge and the configuration never transforms into \(qqq \) one on the classic level.

\(^1\)The so called exotic states [9] contain string points moving at the speed of light.
In the three-string baryon model or Y-configuration [6,7,21,22] three world sheets (swept up by three segments of the relativistic string) are parametrized with three different functions \(X_\mu^i(\tau_i, \sigma)\). It is convenient to use the different notations \(\tau_1, \tau_2, \tau_3\) for the “time-like” parameters [21,23]. But the “space-like” parameters are denoted here by the same symbol \(\sigma\). These three world sheets are joined along the world line of the junction that may be set as \(\sigma = 0\) for all sheets without loss of generality (see below and Ref. [23]).

Under these notations the action of the three-string is close to (1):

\[
S = - \sum_{i=1}^{3} \int d\tau_i \left[\frac{1}{\gamma} \sqrt{-g_i} \, d\sigma + m_i \sqrt{\dot{X}_i^0(\tau_i)} \right].
\]

(54)

This action with different \(\tau_i\) generalizes the similar expressions in Refs. [6,7,21] (where \(m_i = 0\)) and in Ref. [22], where \(m_i \neq 0\) but the class of motions is limited.

There is the additional boundary condition at the junction taking the form

\[
X_\mu^1(\tau, 0) = X_\mu^2(\tau, 0) = X_\mu^3(\tau, 0),
\]

(55)

if the parameters \(\tau_i\) on the three world sheets are connected at this line in the following manner:

\[
\tau_2 = \tau_2(\tau), \quad \tau_3 = \tau_3(\tau), \quad \tau_1 \equiv \tau.
\]

The equations of motion (2) and the boundary conditions for the junction and the quark trajectories are deduced from action (54). Using its invariance one may choose the coordinates in which the orthonormality conditions (7) are satisfied and string equations of motion for all \(X_\mu^i\) take the form (8). The junction condition (55) unlike more rigid condition with \(\tau_1 = \tau_2 = \tau_3\) on the junction line [6,7] let us choose these coordinates independently on each world sheet. After this substitution (new coordinates are also denoted \(\tau_i, \sigma\)) the inner equations of the junction line will be more general \(\sigma = \sigma_0(\tau_i)\) (in comparison with the previous ones \(\sigma = 0\)) and the boundary conditions in the junction and on the quark trajectories \(\sigma = \sigma_i(\tau_i)\) will take the following form:

\[
\sum_{i=1}^{3} \left[X_\mu^i(\tau_i, \sigma_0) + \sigma_0'(\tau_i) \dot{X}_\mu^i(\tau_i, \sigma_0) \right] \tau_i'(\tau) = 0,
\]

(56)

\[
m_i U_\mu^i(\tau_i) + \gamma \left[X_\mu^i + \sigma_i'(\tau_i) \dot{X}_\mu^i \right]_{\sigma=\sigma_i(\tau_i)} = 0.
\]

(57)

Here in Eq. (56) \(\tau_i = \tau_i(\tau), \sigma_0 = \sigma_0(\tau_i(\tau))\).

The reparametrizations similar to (11)

\[
\tilde{\tau}_i \pm \sigma = f_{i\pm}(\tau_i \pm \sigma), \quad i = 1, 2, 3
\]

(58)

(with six arbitrary smooth monotone functions \(f_{i\pm}\)) keep invariance of Eqs. (7), (8), (56), (57). Choosing the functions \(f_{i\pm}\) we can fix the equations of the junction and quark trajectories on each world sheet independently in the form (10)

\[
\sigma_0(\tau_i) = 0, \quad \sigma_i(\tau) = \pi, \quad i = 1, 2, 3,
\]

(59)
One can obtain the first Eq. (59) like that in Eq. (47) and the equalities \(\sigma_i = \pi \) through the substitution (58) with
\(f_{i+} = f_{i-} \), keeping invariance of the equation \(\sigma = 0 \).

In this paper the parametrization satisfies the conditions (59) and (7). But the “time parameters” \(\tau_1, \tau_2 \) and \(\tau_3 \) in Eq. (55) are not equal in general. The possible alternative approach implies introducing the condition \(\tau_2(\tau) = \tau_3(\tau) = \tau \) on the junction line (55) in conjunction with the condition \(\sigma_{0i} = 0 \) (or \(\sigma_{0i} = \text{const} \)). But under these restrictions two of the functions \(\sigma_i(\tau) \) on the junction line are not equal in general. The possible alternative approach implies introducing the condition
\[
\tau_i(\tau) = f_{i-}^{-1}(f_i(\tau)), \quad i = 2, 3.
\]
This is possible only if the functions \(\tau_2(\tau), \tau_3(\tau) \) satisfy conditions (16), which are not fulfilled for an arbitrary motion in general [23].

The proof of these statements in Ref. [23] uses the fact that under restrictions (7) only reparametrizations (58) are allowed. The described method is used here (and with more details in Ref. [23]) for investigating the rotational stability properties: if \(\Psi_{i\pm}(\tau) \) satisfy the conditions (59), as the equalities
\[
\Psi_{i\pm}(\tau) = \Psi_{i\pm}(\tau_0), \quad \tau_0 \text{ (const)},
\]
to obtain the equalities (60), (16), satisfying the relations (59), as conditions (59), as the equalities
\[
\tau_i(\tau) = f_{i-}^{-1}(f_i(\tau)), \quad i = 2, 3.
\]
In this paper the parametrization satisfies the conditions (59) and (7). But the “time parameters” \(\tau_1, \tau_2 \) and \(\tau_3 \) in Eq. (55) are not equal in general. The possible alternative approach implies introducing the condition (59) in conjunction with the condition \(\sigma_{0i} = 0 \) (or \(\sigma_{0i} = \text{const} \)). But under these restrictions two of the functions \(\sigma_i(\tau) \) on the junction line are not equal in general. The possible alternative approach implies introducing the condition
\[
\tau_i(\tau) = f_{i-}^{-1}(f_i(\tau)), \quad i = 2, 3.
\]
This is possible only if the functions \(\tau_2(\tau), \tau_3(\tau) \) satisfy conditions (16), which are not fulfilled for an arbitrary motion in general [23].

For describing an arbitrary motion of the three-string in the suggested approach the unknown functions \(\Psi_{i\pm}(\tau) \) are determined from dynamic equations with solving the IBVP for this system. This approach is similar to the above-described one for other string models. In particular, for the Y configuration we have the general solution (48) where the index \(i \) in \(\Psi_{i\pm} \) numerates the world sheets. Using the given initial position of the three-string in the form of three joined curves in Minkowski space
\[
x^\mu = \rho_i^\mu(\lambda), \quad \lambda \in [0, \lambda_1], \quad \rho_i^\mu(0) = \rho_i^3(0)
\]
and initial velocities \(v_i^\mu(\lambda) \) we obtain the functions \(\Psi_{i\pm} \) in the initial segments \([0, \tau_1(\lambda_1)+\pi]\) and \([\tau_1(\lambda_1)-\pi, 0]\)
correspondingly from Eq. (17).

The functions \(\Psi_{i\pm} \) are to be continued with using the boundary conditions (55), (56), (57). In particular, the conditions on the quark trajectories (57) are reduced to the form (19), (21), (22):
\[
U_i^{\mu\nu} = \gamma m_i^{-1}[\delta_\mu^\nu - U_i^{\mu\nu}(\tau_i) U_{i\nu}(\tau_i)]\Psi_{i\pm}(\tau_i - \pi),
\]
\[
\Psi^{\mu\nu}_{i\pm}(\tau_i + \pi) = \Psi^{\mu\nu}_{i\pm}(\tau_i - \pi) - 2m_i\gamma^{-1}U^{\mu\nu}_i(\tau_i).
\]
(60)
(61)

Substituting Eq. (48) for \(X_i^\mu \) into the boundary conditions in the junction (55), (56), (59) we express the function \(\Psi^{\mu\nu}_{i\pm}(\tau_i) \) through \(\Psi^{\mu\nu}_{i\pm}(\tau_i) \):
\[
\frac{d}{d\tau} \Psi^{\mu\nu}_{i\pm}(\tau_i) = \sum_{j=1}^{3} T_{ij} \frac{d}{d\tau} \Psi^{\mu\nu}_{j\pm}(\tau_j(\tau)),
\]
where
\[
T_{ij} = \begin{cases}
-1/3, \quad i = j \\
2/3, \quad i \neq j
\end{cases}
\]

Eqs. (62), (61) and (60) let us infinitely continue the functions \(\Psi_{i\pm} \) outside the initial segments if the functions \(\tau_2(\tau) \) and \(\tau_3(\tau) \) are known. They can be found with using the isotropy condition \(\Psi^{\mu\nu}_{i\pm}(\tau_i) = 0 \) [resulting from Eqs. (7)] and the following consequences of Eqs. (55):
\[
[\tau_i(\tau)]^2 (\Psi^{\mu\nu}_{i\pm}(\tau_i), \Psi^{\mu\nu}_{i\pm}(\tau_i)) = (\Psi^{\mu\nu}_{i\pm}(\tau), \Psi^{\mu\nu}_{i\pm}(\tau)).
\]
(62)

Substituting \(\Psi^{\mu\nu}_{i\pm} \) from Eq. (62) into these relations we obtain the formulas for calculating the functions \(\tau_i(\tau) \)
\[
\tau^{\mu\nu}_{i\pm}(\tau) = \frac{(\Psi^{\mu\nu}_{i\pm}, \Psi^{\mu\nu}_{i\pm})}{(\Psi^{\mu\nu}_{i\pm}, \Psi^{\mu\nu}_{i\pm})}, \quad \tau^{\mu\nu}_{i\pm}(\tau) = \frac{(\Psi^{\mu\nu}_{i\pm}, \Psi^{\mu\nu}_{i\pm})}{(\Psi^{\mu\nu}_{i\pm}, \Psi^{\mu\nu}_{i\pm})}.
\]
(63)

Here the functions \(\Psi^{\mu\nu}_{i\pm} \equiv \Psi^{\mu\nu}_{i\pm}(\tau_i) \) are taken from Eqs. (17) and (61) during solving the IBVP.

Eqs. (60) – (63) form the closed system for infinite continuation of \(\Psi_{i\pm} \), or for solving the IBVP in the three-string model. The described method is used here (and with more details in Ref. [23]) for investigating the rotational stability of this configuration. For this purpose we consider the IBVP with disturbed initial conditions \(\rho_i^\mu(\lambda) \) and \(v_i^\mu(\lambda) \).

As was mentioned above the rotational motion of the three-string is uniform rotating of three rectilinear string segments joined in a plane at the angles 120° [6,7]. Their lengths \(R_i \) or the speeds \(v_i = \omega R_i \) are connected with the angular velocity \(\omega \) by the relation (25) or
\[
R_i \omega^2 (R_i + m_i/\gamma) = 1.
\]
(64)
This motion and slightly disturbed motions may be obtained (numerically, in general) by solving the IBVP with appropriate initial position $\rho_i^t(\lambda)$ in the form of three rectilinear segments with lengths R_i and velocities (24) with some disturbances $\delta \rho_i^t(\lambda)$ or $\delta v_i^t(\lambda)$.

The typical example of a quasirotational motion of the three-string with masses $m_1 = 1$, $m_2 = 2$, $m_3 = 3$, $\gamma = 1$ is represented in Fig. 7. Here the positions of the system in xy-plane are numbered in order of increasing t with the step in time $\Delta t = 0.125$ and these numbers are near the position of the first quark marked by the small square. This motion is close to the rotational one: the initial velocities satisfy the relation (24), $\delta v_i^t = 0$, the angular velocity $\omega \approx 1.6$ and the different lengths $R_1 = 0.3$, $R_2 \approx 0.125$ are connected by Eqs. (64). But the assigned value $R_2 = 0.22$ does not satisfy (64) (that gives $R_2 \approx 0.179$) so this difference plays a role of the disturbance for the motion in Fig. 7.

The evolution of this disturbance includes the motion of the junction (Fig. 7a, b) with varying the lengths of the string segments unless one of these lengths becomes equal to zero, i.e. the third quark falls into the junction. So one may conclude that rotational motions of the three-string are unstable. The evolution of the instability is slow at the first stage of the disturbance if it is small, but the middle and final stages are rather similar to the motion in Fig. 7b, c. The dependencies $t_1(\tau)$ for these motions do not satisfy the periodicity conditions (16) in general [23]. This fact does not allow describing these motions in the frameworks of the parametrization [6,7] with $t_1 = t_2 = t_3$. The above-described behavior of slightly disturbed rotational motions takes place also for the massless ($m_i = 0$) three-string model [23].

CONCLUSION

In this paper the classical motions of the various meson and baryon (Fig. 1) string models close to the rotational motions (4) or (53) are investigated. For the meson string model (or the q-qq baryon configuration) it is made both analytically and numerically but in each of these methods we use the orthonormal conditions (7) which let us reduce the problem to solving the systems of ordinary differential equations (18), (19), (28). Using this approach we obtained a set of solutions (38), (42) describing small oscillatory excitations of the rotating string in the form of stationary waves. They are divided into two classes: the orthogonal or z-oscillations (38) and the planar oscillations (42). Each class contains the countable set of solutions with different “frequencies” ϑ_n, Θ_n, which are the roots of Eqs. (37), (41), (43), (44). For these stationary waves the moving quarks are not in a node of oscillation, they also oscillate. This was one of the reasons resulting in the wrong expression (6) in Ref. [15].

The energy M and the angular momentum J of the oscillatory excited motions (38), (42) are close to the values M and J [13] for the pure rotational motions (4) because the disturbances are small. But these states (precisely speaking, their generalizations) in the case of strong disturbances may be used for describing the meson states, which are interpreted as higher radially excited states in the potential models [14]. Note that the planar oscillations (42) include also the radial motions of the string endpoints (a quark trajectory in the co-rotating frame of reference is an ellipse). This especially concerns of the mode with the “frequency” Θ_1 of Eq. (41) or (44).

A search of quasirotational motions in the form similar to (30) for the string baryon model “triangle”, q-qq- and Y encounters essential difficulties connected with non-fixed quark trajectories $\sigma = \sigma_i(\tau)$ in Eq. (46) or the expressions $\tau_i(\tau)$ in Eq. (55) for the three-string configuration. But for each string baryon model the method of solving the initial-boundary value problem with arbitrary initial position and velocities is suggested. Using this approach we numerically simulated various quasirotational motions for all the models and obtained that the simple [9] rotational states of the string model “triangle” are stable (i.e. small disturbances behave like in the meson model) and the rotational motions of the systems q-qq and Y are unstable. In the latter two cases any small asymmetric disturbances grow with growing time. For the model q-qq the middle quark moves away from the center under the centrifugal force but then it quasiperiodically returns without merging with an endpoint. The evolution of the three-string instability includes the complicated motion of the junction and inevitably results in falling one of the quarks into the junction.

These features of the classical behavior of the string baryon models give some advantage for the q-qq and “triangle” systems over the q-qq and Y configurations. But this does not mean final “closing” the latter two models, in particular,
because of the fact, that the majority of orbitally excited baryon states are resonances so their classical stability is the problem of minor importance. So the final choice of the string baryon model is to depend on all aspects of this problem, including QCD-based grounds [10,11] and describing the baryon Regge trajectories [13,14].

The author are grateful to V.P. Petrov for useful collaboration. The work is supported by the RBFR grant 00-02-17359.

FIG. 5. The quasirotational motion of the model Δ.

FIG. 6. Behavior of the q-q-q system (a–d) in comparison with the model Δ (e–g).

FIG. 7. The disturbed motion of the three-string model.