whose consideration cannot be avoided in a quantum theory of the universe.

the presence of gauge fields. This might also lead to a better understanding

of the one-loop smeared gauge evaluation of the wave function of the universe in

and complete system. A complete calculation scheme for the wave function of the universe in

interacting-differential terms, after inverting a differential operator in the other

that is equivalent to the Green function method. This means
decoupled, and is here studied with a Green-function method. The results

of the gauge parameter. The resulting set of differential equations for

four-space bounded by two concentric teleparallel planes with arbitrary van-

nterial term is studied for Friedmann–Lemaître theory on a portion of the

in a path-integrated approach to quantum cosmology: the Lorenz gauge–

\textbf{Abstract}

\textbf{Introduction} (Jan 00, 2002)

\textbf{London, UK, England}

\textbf{University College London College, Astronomy Unit, School of Mathematics Sciences, Queen Mary & Westfield College,}

\textbf{Granada, Spain}

\textbf{8026 Granada, Spain}

\textbf{IN2N, Sezione di Napoli, Complesso “L’Ospedale di Monte S. Angelo, Via Città, Edifico N,}

\textbf{Granada, Spain}

\textbf{Lorenz Gauge in Quantum Cosmology}

10/04/00
Over the last decade, much work in one-loop quantum cosmology has been devoted to the analysis of the wave function of the universe in the case of gauge fields on the Euclidean\footnote{CQ.} four-ball, or on a portion of flat Euclidean four-space bounded by two concentric three-spheres of radii τ_- and τ_+. We are here interested in the electromagnetic case, since a proper understanding of this model may already cast new light on quantum cosmology and quantum field theory. The normal and tangential components of the electromagnetic potential are then expanded on a family of concentric three-spheres in the form

\begin{align}
A_0(x, \tau) &= \sum_{n=1}^{\infty} R_n(\tau) Q^{(n)}(x), \tag{1}
\end{align}

\begin{align}
A_k(x, \tau) &= \sum_{n=2}^{\infty} \left[f_n(\tau) S^{(n)}_k(x) + g_n(\tau) P^{(n)}_k(x) \right] \quad \text{for all } k = 1, 2, 3, \tag{2}
\end{align}

where $Q^{(n)}(x), S^{(n)}_k(x), P^{(n)}_k(x)$ are scalar, transverse and longitudinal vector harmonics on S^3, respectively. Gaussian averages over gauge functionals are then performed according to the Faddeev-Popov scheme, so that the part of the full Euclidean action involving the potential A_μ reads $\int \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2\alpha} \left[\Phi(\Lambda) \right]^2 \sqrt{\det g} \ d^4 x,$

where $F_{\mu\nu} \equiv \partial_\mu A_\nu - \partial_\nu A_\mu$ denotes the electromagnetic-field tensor, g is the background four-metric, Φ is an arbitrary gauge-averaging functional defined on the space of connection one-forms, and α is a dimensionless parameter. We are here interested in the Lorenz choice for Φ, i.e.

\begin{align}
\Phi_L \equiv \nabla^\mu A_\mu = A_0 + A_0 \operatorname{Tr} K + \nabla_i A_i, \tag{3}
\end{align}

where K is the extrinsic-curvature tensor of the three-sphere boundary S^3, and ∇^i is the induced connection on S^3. The transverse modes f_n are decoupled, whereas longitudinal and normal modes turn out to obey the coupled eigenvalue equations $\int_M \left[\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2\alpha} \left[\Phi(\Lambda) \right]^2 \right] \sqrt{\det g} \ d^4 x,$

\begin{align}
\hat{A}_n g_n(\tau) + \hat{B}_n R_n(\tau) &= 0, \tag{4}
\end{align}

\begin{align}
\hat{C}_n g_n(\tau) + \hat{D}_n R_n(\tau) &= 0, \tag{5}
\end{align}

where the differential operators resulting from the choice (3) read

\begin{align}
\hat{A}_n &\equiv \frac{d^2}{d\tau^2} + \frac{1}{\tau} \frac{d}{d\tau} - \frac{1}{\alpha} \frac{(n^2 - 1)}{\tau^2} + \lambda_n, \tag{6}
\end{align}

\begin{align}
\hat{B}_n &\equiv (n^2 - 1) \left[\left(\frac{1}{\alpha} - 1 \right) \frac{d}{d\tau} + \left(\frac{3}{\alpha} - 1 \right) \frac{1}{\tau} \right], \tag{7}
\end{align}

\begin{align}
\hat{C}_n &\equiv \frac{d}{d\tau} - \frac{1}{\alpha} \frac{(n^2 - 1)}{\tau}, \tag{8}
\end{align}

\begin{align}
\hat{D}_n &\equiv \frac{d}{d\tau} + \frac{1}{\alpha} \frac{(n^2 - 1)}{\tau}. \tag{9}
\end{align}
\[\hat{C}_n \equiv \left(1 - \frac{1}{\alpha} \right) \frac{1}{\tau} \frac{d}{d\tau} + \frac{2}{\alpha} \frac{1}{\tau^3}, \]
\[\hat{D}_n \equiv \frac{1}{\alpha} \frac{d^2}{d\tau^2} + \frac{3}{\alpha} \frac{1}{\tau^3} - \left(\frac{3}{\alpha} + n^2 - 1 \right) \frac{1}{\tau^2} + \lambda_n, \]
\(\lambda_n \) being the eigenvalues \([1]\). For arbitrary values of \(\alpha \) one cannot decouple Eqs. \((4)\) and \((5)\) and map them into another system involving only differential operators. One can however use with some profit integral equations and Green-kernel methods. For this purpose, we have to impose a suitable set of boundary conditions. Since the tangential components of \(A_\mu \) and the gauge-averaging functional should vanish at the boundary to achieve gauge invariance of the whole set of boundary conditions \([1, 2]\), we have

\[g_n(\tau_+) = g_n(\tau_-) = 0, \]
\[\left[\frac{dR_n}{d\tau} + \frac{3}{\tau} R_n \right]_{\tau = \tau_+} = \left[\frac{dR_n}{d\tau} + \frac{3}{\tau} R_n \right]_{\tau = \tau_-} = 0. \]

These boundary conditions tell us how to proceed in order to solve the system of coupled equations \((4)\) and \((5)\). Since we are aiming to invert differential operators, it is clear that we have to consider operators having well defined inverses once such boundary conditions are assigned. Bearing this in mind, and denoting by \(\hat{A}_n^{-1} \) the inverse of \(\hat{A}_n \), Eq. \((4)\) leads to

\[g_n = -\hat{A}_n^{-1} \hat{B}_n R_n, \]
so that Eq. \((5)\) implies

\[R_n = \mathcal{P}_n R_n, \]

having defined

\[\mathcal{P}_n \equiv \hat{D}_n^{-1} \hat{C}_n \hat{A}_n^{-1} \hat{B}_n. \]

On denoting by \(P_n(\tau, y) \) the kernel of \(\mathcal{P}_n \), and by \(G_n(\tau, y) \) the Green kernel of \(\hat{A}_n \), we therefore find (see below for the notation)

\[R_n(\tau) = \int_{\tau_-}^{\tau_+} P_n(\tau, y) R_n(y) dy, \]
\[g_n(\tau) = -\int_{\tau_-}^{\tau_+} G_n(\tau, y)(\hat{B}_n R_n)(y) dy. \]

The general form of the kernels is obtained with the help of standard techniques. For example, \(G_n \) satisfies the differential equation

\[\hat{A}_n G_n(\tau, y) = 0 \quad \forall \tau \neq y, \]
as well as the continuity condition

\[
\lim_{\tau \to y^+} G_n(\tau, y) - \lim_{\tau \to y^-} G_n(\tau, y) = 0, \tag{18}
\]

and the jump condition
\[
\lim_{\tau \to y^+} \frac{\partial}{\partial \tau} G_n(\tau, y) - \lim_{\tau \to y^-} \frac{\partial}{\partial \tau} G_n(\tau, y) = 1. \tag{19}
\]

Moreover, by virtue of (10), \(G_n(\tau, y) \) obeys the boundary conditions
\[
G_n(\tau_-, y) = 0, \tag{20}
\]
\[
G_n(\tau_+, y) = 0. \tag{21}
\]

On defining \(\tau_\preceq \equiv \min(\tau, y) \) and \(\tau_\succeq \equiv \max(\tau, y) \), the general theory of one-dimensional boundary-value problems [3] makes it therefore possible to express the Green kernel \(G_n(\tau, y) \) in the form
\[
G_n(\tau, y) = C \frac{u_1(M\tau_\preceq)u_2(M\tau_\succeq)}{W(u_1, u_2; \xi)}, \tag{22}
\]
where \(C \) is a constant, \(\nu \equiv \sqrt{\frac{M-1}{\alpha}} \), the parameter \(M \) is the square root of \(\lambda_n \), \(u_1 \) and \(u_2 \) are linearly independent solutions of \(A_n u = 0 \) vanishing at \(\tau_- \) and \(\tau_+ \), respectively, and having Wronskian \(W(u_1, u_2; \xi) \). They can be chosen in the form
\[
u_1(\tau) = J_\nu(M\tau), \tag{23}
\]
\[
u_2(\tau) = \tilde{A}J_\nu(M\tau) + \tilde{B}N_\nu(M\tau). \tag{24}
\]

The formula (22) should be inserted into Eq. (16) where \(R_n \) (obtained from (15)) reads, more explicitly,
\[
R_n(\tau) = \int_{\tau_-}^{\tau_+} dy \, \Gamma_n(\tau, y) \int_{\tau_-}^{\tau_+} dz \left(\hat{C}_n G_n(y, z) \right) \left(\hat{B}_n R_n(z) \right), \tag{25}
\]
having denoted by \(\Gamma_n(\tau, y) \) the Green kernel of \(\hat{D}_n \).

We have therefore outlined a complete computational scheme for the evaluation of gauge modes in quantum cosmology when arbitrary values of the gauge parameter \(\alpha \) are considered. Interestingly, integral equations and Green-kernel methods seem to be unavoidable technical steps if the Faddeev–Popov path integral for the wave functional is studied for all \(\alpha \). In other words, even if local boundary conditions are imposed with linear covariant gauges, the contribution to functional determinants resulting from longitudinal and normal modes involves, in general, a non-local analysis, as is clear from the integral formulae (25) and (16).

It now remains to be seen whether the full \(\zeta(0) \) value [1] is independent of \(\alpha \). Although the question remains unsettled, Eqs. (25) and (16) seem to provide new tools for the solution of this longstanding problem in one-loop quantum cosmology. It should also be stressed that gauge-invariant boundary conditions make it necessary to invert operators of Bessel type (see (6) and (9)). In this sense, Bessel functions remain the fundamental tool for a flat-space analysis, even when gauge modes remain coupled.
REFERENCES

