Extending the Frontiers—Reconciling Accelerator and Cosmic Ray p-p Cross Sections

M. M. Block *
Department of Physics and Astronomy,
Northwestern University, Evanston, IL 60208

F. Halzen †
Department of Physics,
University of Wisconsin, Madison, WI 53706

T. Stanev ‡
Bartol Research Institute, University of Delaware, Newark, DE 19716

Abstract

We simultaneously fit a QCD-inspired parameterization of all accelerator data on forward proton-proton and antiproton-proton scattering amplitudes, together with cosmic ray data (using Glauber theory), to predict proton-air and proton-proton cross sections at energies near $\sqrt{s} \approx 30$ TeV. The p-air cosmic ray measurements provide a strong constraint on the inclusive particle production cross section, as well as greatly reducing the errors on the fit parameters—in turn, greatly reducing the errors in the high energy proton-proton and proton-air cross section predictions.

*Work partially supported by Department of Energy contract DA-AC02-76-ER02289 Task B.
†Work partially supported by Department of Energy Grant No. DE-FG02-95ER40896 and the University of Wisconsin Research Committee with funds granted by the Wisconsin Alumni Research Foundation.
‡Work partially supported by the U.S. Department of Energy under Grant No. DE-FG02-91ER40626.
The energy range of cosmic ray experiments covers not only the energy of the Large Hadron Collider (LHC), but extends beyond it. Cosmic ray experiments can measure the penetration in the atmosphere of these very high energy protons—however, extracting proton-proton cross sections from cosmic ray observations is far from straightforward [1]. By a variety of experimental techniques, cosmic ray experiments map the atmospheric depth at which cosmic ray initiated showers develop. The measured quantity is the shower attenuation length \(\Lambda_m\), which is not only sensitive to the interaction length of the protons in the atmosphere \(\Lambda_{p-\text{air}}\), with

\[
\Lambda_m = k\Lambda_{p-\text{air}} = k\frac{14.5m_p}{\sigma_{p-\text{air}}^{\text{inel}}}, \tag{1}
\]

but also depends critically on the inelasticity, which determines the rate at which the energy of the primary proton is dissipated into electromagnetic shower energy observed in the experiment. The latter effect is taken into account in Eq. (1) by the parameter \(k\); \(m_p\) is the proton mass and \(\sigma_{p-\text{air}}^{\text{inel}}\) the inelastic proton-air cross section. The departure of \(k\) from unity depends on the inclusive particle production cross section in nucleon and meson interactions on the light nuclear target of the atmosphere and its energy dependence.

The extraction of the \(pp\) cross section from the cosmic ray data is a two stage process. First, one calculates the \(p\)-air total cross section from the inelastic cross section inferred in Eq. (1), where

\[
\sigma_{p-\text{air}}^{\text{inel}} = \sigma_{p-\text{air}} - \sigma_{p-\text{air}}^{\text{el}} \tag{2}
\]

Next, the Glauber method [2] the necessary steps are calculating \(d\sigma_{p-\text{air}}^{\text{el}}/dt\), the \(pp\) differential elastic cross section

\[
B = \left[\frac{d}{dt} \left(\ln \frac{d\sigma_{p-\text{air}}^{\text{el}}}{dt} \right) \right]_{t=0}
\]

In Eq. (2) the cross section \(B\) is the quasi-elastic cross section, \(\sigma_{p-\text{air}}\). We show in Fig. 1 plots of elastic and inelastic proton-air cross sections, of 440, 490, 540, 590 and 640 mb—the central value is the published Fly’s Eye value, and the others are \(\pm 1\sigma\) and \(\pm 2\sigma\). The dashed curve is a plot of our QCD-inspired fit of \(B\) against \(\sigma_{pp}\). The dot is our fitted value for \(\sqrt{s} = 30\) TeV, the Fly’s Eye energy.

Figure 1: The \(B\) dependence of the \(pp\) total cross section \(\sigma_{pp}\). The five curves are lines of constant \(\sigma_{p-\text{air}}^{\text{inel}}\), of 440, 490, 540, 590 and 640 mb—the central value is the published Fly’s Eye value, and the others are \(\pm 1\sigma\) and \(\pm 2\sigma\). The dashed curve is a plot of our QCD-inspired fit of \(B\) against \(\sigma_{pp}\). The dot is our fitted value for \(\sqrt{s} = 30\) TeV, the Fly’s Eye energy.

summarizes the reduction procedure from the measured quantity \(\Lambda_m\) (of Eq. 1) to \(\sigma_{pp}[1]\). Also plotted in Fig. 1 is a curve (dashed) of \(B\) vs. \(\sigma_{pp}\) which will be discussed later. Two significant drawbacks of this extraction method are that one needs:

1. a model of proton-air interactions to complete the loop between the measured attenuation length \(\Lambda_m\) and the cross section \(\sigma_{p-\text{air}}^{\text{inel}}\), i.e., the value of \(k\) in Eq. (1).

2. a simultaneous relation between \(B\) and \(\sigma_{pp}\) at very high energies—well above the region currently accessed by accelerators.

A proposal to minimize the impact of theory on these needs is the topic of this note.

We have constructed a QCD-inspired parameterization of the forward proton-proton and proton-antiproton scattering amplitudes [3] which is analytic, unitary and fits all accelerator data[4] of \(\sigma_{\text{tot}}\), \(B\) and \(\rho\), the ratio of the real-to-imaginary part of the forward scattering amplitude; see Fig. 2. In addition, the high energy cosmic ray data of Fly’s Eye [5] and AGASSA [6] experiments are also simultaneously used, i.e., \(k\) from Eq. (1) is also a fitted quantity—we refer to this fit as a global fit [7]. We emphasize that in the global fit, all 4 quantities, \(\sigma_{\text{tot}}, B, \rho\) and \(k\), are simultaneously fitted. Because our parameterization is both unitary and analytic, its high energy predictions are effectively model-independent, if you require that the proton is asymptotically a black disk. Using vector meson dominance and the additive quark models, we find further
support for our QCD fit—it accommodates a wealth of data on photon-proton and photon-photon interactions without the introduction of new parameters[8]. In particular, it also simultaneously fits \(\sigma_{pp} \) and \(B \), forcing a relationship between the two. Specifically, the \(B \) vs. \(\sigma_{pp} \) prediction of our fit completes the relation needed (using the Glauber model) between \(\sigma_{pp} \) and \(\sigma^{inel}_{p-air} \). The percentage error in the prediction of \(\sigma_{pp} \) at \(\sqrt{s} = 30 \) TeV is \(\approx 1.2\% \), due to the statistical error in the fitting parameters (see references [3, 8]). A major difference between the present result, in which we simultaneously fit the cosmic ray and accelerator data, and our earlier result[7], in which only accelerator data are used, is a significant reduction (about a factor of 2.5) in the errors of \(\sigma_{pp} \) at \(\sqrt{s} = 30 \).

In Fig. 3, we have plotted the values of \(\sigma_{pp} \) vs. \(\sigma^{inel}_{p-air} \) that are deduced from the intersections of our \(B-\sigma_{pp} \) curve with the \(\sigma^{inel}_{p-air} \) curves of Fig. 1. Figure 3 allows the conversion of measured \(\sigma^{inel}_{p-air} \) cross sections to \(\sigma_{pp} \) total cross sections. The percentage error in \(\sigma^{inel}_{p-air} \) is \(\approx 0.8 \% \) near \(\sigma^{inel}_{p-air} = 450 \text{mb} \), due to the errors in \(\sigma_{pp} \) and \(B \) resulting from the errors in the fitting parameters. Again, the global fit gives an error of a factor of about 2.5 smaller than our earlier result[7], a distinct improvement.

When we confront our predictions of the p-air cross sections (\(\sigma^{inel}_{p-air} \)) as a function of energy with published cross section measurements of the Fly’s Eye [5] and AGASA [6] groups, we find that the predictions systematically are about one standard deviation below the published cosmic ray values. It is at this point important to recall Eq. (1) and remind ourselves that the measured experimental quantity is \(\Lambda_m \) and not \(\sigma^{inel}_{p-air} \). We emphasize that the extraction of \(\sigma^{inel}_{p-air} \) from the measurement of \(\Lambda_m \) requires knowledge of the parameter \(k \). The measured depth \(X_{\text{max}} \) at which a shower reaches maximum development in the atmosphere, which is the basis of the cross section measurement in Ref. [5], is a combined measure of the depth of the first interaction, which is determined by the inelastic cross section, and of the subsequent shower development, which has to be corrected for. \(X_{\text{max}} \) increases logarithmically with energy with elongation rate (\(\Delta X_{\text{max}} \) per decade of Lab energy) of 50–60 g/cm² in calculations with QCD-inspired hadronic interaction models. The position of \(X_{\text{max}} \) directly affects the rate of shower attenuation with atmospheric depth, which is the alternative procedure for extracting \(\sigma^{inel}_{p-air} \). The rate of shower development and its fluctuations are the origin of the deviation of \(k \) from unity in Eq. (1). Its predicted values range from 1.5 for a model where the inclusive cross section exhibits Feynman scaling, to 1.1 for models with large scaling violations[1]. The comparison between prediction and experiment is further confused by the fact that the AGASA [6] and Fly’s Eye[5] experiments used different \(k \).

We therefore decided to let \(k \) be a free parameter and to make a global fit to the accelerator and cosmic-ray data, as emphasized earlier. This neglects the possibility that \(k \) may show a weak energy dependence. In calculations with QCD-inspired hadronic interaction models, we find that \(k \) is \(\approx 1.349 \pm 0.045 \), as found in our global fit, using the common value of \(k = 1.349 \).
excellent fit, with good agreement between AGASA and Fly’s Eye. In order to extract the cross sections’ energy dependence from the cosmic ray data, the experimenters of course assigned energy values to their cross sections. Since the cosmic ray spectra vary so rapidly with energy, we must allow for systematic errors in k due to possible energy misassignments. At the quoted experimental energy resolutions, \(\Delta \log_{10}(E_{\text{lab}}(\text{ev})) = 0.12 \) for AGASSA\(^6\) and \(\Delta \log_{10}(E_{\text{lab}}(\text{ev})) = 0.4 \) for Fly’s Eye\(^5\), where \(E_{\text{lab}} \) is in electron volts, we find from the curve in Fig. 4 that \(\Delta k/k = 0.0084 \) for AGASSA\(^6\) and \(\Delta k/k = 0.0279 \) for Fly’s Eye\(^5\). We estimate conservatively that experimental energy resolution introduces a systematic error in \(k \) such that \(\Delta k_{\text{systematic}} = \sqrt{(\Delta k_{\text{AGASSA}}^2 + \Delta k_{\text{FLYSEYE}}^2)/2} = 0.028 \). Thus, we write our final result as \(k = 1.349 \pm 0.045 \pm 0.028 \), where the first error is statistical and the last error is systematic.

Recently, Pryke\(^9\) has published a comparative study of high statistics simulated air showers for proton primaries, using four combinations of the MOCCA\(^{10}\) and CORSIKA\(^{11}\) program frameworks, and SIBYLL\(^{12}\) and QGSjet\(^{13}\) high energy hadronic interaction models. He finds \(k = 1.30 \pm 0.04 \) and \(k = 1.32 \pm 0.03 \) for the CORSIKA-QGSjet and MOCCA-Internal models, respectively, which are in excellent agreement with our measured result, \(k = 1.349 \pm 0.045 \pm 0.028 \).

Further, Pryke\(^9\) obtains \(k = 1.15 \pm 0.03 \) and \(k = 1.16 \pm 0.03 \) for the CORSIKA-SIBYLL and MOCCA-SIBYLL models, respectively, whereas the SYBILL\(^1\) group finds \(k = 1.2 \), which is not very different from the Pryke value. However, the SYBILL-based models, with \(k = 1.15 \pm 1.20 \), are significantly different from our measurement of \(k = 1.349 \pm 0.045 \pm 0.028 \). At first glance, this appears somewhat strange, since our model for forward scattering amplitudes and SIBYLL share the same underlying physics. The increase of the total cross section with energy to a black disk of soft partons is the shadow of increased particle production which is modeled in SYBILL by the production of (mini)-jets in QCD. The difference between the \(k \) values of \(1.15 \pm 1.20 \) and \(1.349 \pm 0.045 \pm 0.028 \) results from the very rapid rise of the \(pp \) cross section in SIBYLL at the highest energies. This is an artifact of the fixed cutoff in transverse momentum used to compute the mini-jet production cross section, and is not a natural consequence of the physics in the model. There are ways to remedy this.

In conclusion, the overall agreement between the accelerator and the cosmic ray \(pp \) cross sections with our QCD-inspired fit, as shown in Fig. 5, is striking. We find that the accelerator and cosmic ray \(pp \) cross sections are readily reconcilable using a value of \(k = 1.349 \pm 0.045 \pm 0.028 \), which is both model independent and energy independent—this determination of \(k \) severely constrains any model of high energy hadronic interactions. We predict high energy \(\sigma_{pp} \) and \(\sigma_{\text{air}}^{\text{inel}} \) cross sections that are accurate to \(\approx 1.2\% \) and \(0.8\% \), respectively, at \(\sqrt{s} = 30 \text{ TeV} \).

At the LHC (\(\sqrt{s} = 14 \text{ TeV} \)), we predict \(\sigma_{\text{tot}} = 107.9 \pm 1.2 \text{ mb} \) for the total cross section, \(B = 19.59 \pm 0.11 \text{ (GeV/c)}^2 \) for the nuclear slope and \(\rho = 0.117 \pm 0.001 \), where the quoted errors are due to the statistical errors of the fitting parameters.

In the near term, we look forward to the possibility of repeating this analysis with the higher statistics of the HiRes\(^{14}\) cosmic ray experiment that is currently in progress and the Auger\(^{15}\) Observatory.

References

[7] In an earlier communication, the accelerator data alone were fitted. Using the parameters from that fit, we then made a separate fit of the cosmic ray data to the value of \(k \); see M. M. Block et al., e-Print Archive: hep-ph/9908222, Phys. Rev. Lett. 83, 4926, 1999. In this work, we make a simultaneous fit of the accelerator and the cosmic ray data, a much more complicated and very lengthy numerical analysis—but also a much superior physical analysis, resulting in greatly reduced errors in our predictions of high energy values of \(\sigma_{pp} \) and \(\sigma_{p-\text{air}}^{\text{inel}} \).

