New vortex solution in $SU(3)$
gauge-Higgs theory

F.A. Schaposnik
Departamento de Fisica, Universidad Nacional de La Plata, C.C. 67, (1900) La Plata,
Argentina
and P. Suranyi
University of Cincinnati, Cincinnati, Ohio 45221-0011, USA
(Received 11 May 2000)

Abstract
Following a brief review of known vortex solutions in $SU(N)$ gauge-adjoint Higgs theories we show the existence of a new “minimal” vortex solution in $SU(3)$ gauge theory with two adjoint Higgs bosons. At a critical coupling the vortex decouples into two abelian vortices, satisfying Bogomol’nyi type, first order, field equations. The exact value of the vortex energy (per unit length) is found in terms of the topological charge that equals to the $N = 2$ supersymmetric charge, at the critical coupling. The critical coupling signals the increase of the underlying supersymmetry.

PACS numbers: 11.27+d, 11.15Kc, 12.38Aw, 11.30Pb

1 Introduction

Classical solutions of nonabelian gauge theories have played an important role in a variety of contexts. [1] Classical solutions in Higgs theories may play an important role in cosmology. [2] They may also be relevant in models of confinement. [3] Different classical objects may affect cosmology, symmetry breaking, etc. in different ways. Therefore, it is of considerable importance to find all classical solutions and investigate their properties.

Vortex solutions are solitons in 2+1 dimensions and are stringlike extended objects in 3+1 dimensions. In 3+1 dimensions they have infinite energy (the energy per unit length is finite) but condensed vortices contribute a finite amount to the free energy per unit volume. Nonabelian vortex configurations were discussed in [4]-[6]; explicit vortex solutions were first found in ref. [7]. The existence of nonabelian vortices is the consequence of nontrivial topological classes in the mapping $S_1 \to SU(N)/Z_N$. The homotopy group of this mapping is Z_N, implying the existence of $N − 1$ distinct stable vortices. As the symmetry, classifying vortices, is the center of the gauge group $SU(N)$, one needs to introduce Higgs fields that break $SU(N)$ symmetry, but not the center Z_N. The smallest representation for the Higgs fields, such that they commute with the center, is the adjoint representation. Therefore, one needs to use one or more adjoint Higgs bosons to break the symmetry. Symmetry breaking induced by a single adjoint Higgs boson is not complete. The adjoint Higgs, when diagonalized, commutes with the ‘diagonal’ generators, the elements of the Cartan subgroup, $|U(1)|^{N−1}$. The
relevant classical objects in such a theory are ’t Hooft-Polyakov monopoles. [8] [9] Thus, at least two adjoint Higgs bosons are needed to break the symmetry down to its center. Vortex solutions found in [7] correspond to SU(N) adjoint Higgs theories with N Higgs bosons. In fact, one would think that a ‘minimal’ solution could be found with only two Higgs bosons. The first Higgs boson breaks the symmetry down to the maximal abelian subgroup and then another Higgs, that is kept non-parallel with the first one, can break all the remaining continuous symmetries. The purpose of this paper is to show that vortex solutions in SU(3) gauge theory with two adjoint Higgs bosons exist and to study the properties of these solutions.

The equations of motion in Abelian [10]-[11] and nonabelian [12] vortex model were shown to reduce to linear, Bogomol’nyi equations at critical values of the coupling constant. This phenomenon was shown to be related to the increase of an underlying supersymmetry of the model. [13]-[14] The equations of motions we obtain for the SU(3) Higgs theory also linearize and decouple at critical couplings. The relationship with increased supersymmetry can also be ascertained as the fields decouple into a couple of abelian vortices at the critical coupling.

In the next section we will briefly review the solutions of field equations for SU(3) theory offered in Ref. [7]. In section 3 we will present our two Higgs model and the ansatz for solving the equations of motion. In section 4 we will discuss the critical coupling, the Bogomol’nyi equations and their relationship to supersymmetry, followed by a concluding section.

2 Vortex solutions in SU(N) gauge theory with N Higgs

As usual in discussing time-independent classical solutions we will consider the Hamiltonian, the negative of the Lagrangian in the absence of time derivative. The Hamiltonian for a cylindrically symmetric solution is of the form

\[H = \int d^2x \left[\frac{1}{4} G_{\mu\nu}^2 + \frac{1}{2} \sum_{A=1}^{N} (D_\mu \Phi^{(A)})^2 + V(\Phi^{(A)}) \right], \] (1)

Here

\[A_\mu = A_\mu^a \epsilon^a, \quad a = 1, 2, \ldots, N^2 - 1 \]
\[D_\mu = \partial_\mu + ie [A_\mu,] \]
\[G_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu + ie [A_\mu, A_\nu] \] (2)

where \(\epsilon^a \) are the SU(N) generators. We are considering N Higgs scalars \(\Phi^{(A)} \) in the adjoint representation and the potential \(V[\Phi] \) chosen so as to ensure complete symmetry breaking.

Vortex solutions to the equations of motion associated with Hamiltonian (1) have been found in [7] by making an ansatz that ensures non-trivial topology and maximum symmetry breaking. Since the scalars are in the adjoint representation, the center \(Z_N \) of SU(N) is the surviving symmetry subgroup. Then, the relevant homotopy group for
classifying topologically inequivalent configurations is non-trivial. \(\pi_1(SU(N)/Z_N) = Z_N \). One then has \(N-1 \) topologically non-trivial inequivalent possible solutions which can be associated with gauge group elements \(U_n \) (\(n = 1, 2, \ldots, N-1 \) labeling the homotopy classes). If we call \(\phi \) the azimuthal angle in a plane perpendicular to the vortex, then \(U_n(\phi) \) should satisfy, when a turn around a closed contour is made,

\[
U_n(\phi + 2\pi) = \exp \left(i \frac{2\pi(n + Nk)}{N} \right) U_n(\phi), \quad n = 1, 2, \ldots, N-1, \quad k \in \mathbb{Z}
\]

Condition (3) can be realized by writing

\[
U_n(\phi) = \text{diag} \left(\exp(i(n + Nk)\frac{\phi}{N}), \ldots, \exp(i(n + Nk)\frac{\phi}{N}), \exp(-i\phi\frac{N-1}{N}(n + Nk)) \right)
\]

Then, one can construct a gauge field configuration \(A^n_{\mu} \) belonging to the \(n \) class so that it satisfies, at infinity,

\[
\lim_{\rho \to \infty} A^n_{\mu} = -\frac{i}{e} U^\dagger_n(\phi) \partial_\phi U_n(\phi) \partial_\mu \phi = \frac{1}{e} M_n \partial_\mu \phi
\]

One has explicitly

\[
M_n = (n + Nk) \text{diag} \left(\frac{1}{N}, \frac{1}{N}, \ldots, \frac{1}{N}, \frac{1 - N}{N} \right)
\]

and hence \(M_n \) can be written in terms of the \((N-1)\) \(SU(N) \) generators \(H_i \) spanning the Cartan subalgebra of \(SU(N) \),

\[
M_n = (n + Nk) \sum_{i=1}^{N-1} m^i H_i
\]

where \(m^i \) are the magnetic weights, as defined in [15].

In view of (5), the natural ansatz for a vortex solution with topological charge \(n \) is

\[
A^n_{\mu} = \frac{1}{e} \partial_\mu \phi M_n a(\rho)
\]

with \(a(\rho) \) such that \(G_{\mu\nu} \to 0 \) as \(\rho \to \infty \), fast enough to ensure the finiteness of the energy.

The finiteness of energy also requires that, at infinity, the Higgs scalars \(\Phi^{(A)} \), \((A = 1, 2, \ldots, N) \) take their vacuum value, minimizing the symmetry breaking potential. Moreover,

\[
\lim_{\rho \to \infty} D_\mu [\Phi^{(A)}] = 0
\]

Condition (9) can be achieved either by taking the scalars in the Cartan algebra of \(SU(N) \) or in its complement. Let us write the \(SU(N) \) generators in the Cartan-Weyl basis, with \(H_i \) the \(N-1 \) generators spanning the Cartan algebra and \(E_{\pm\alpha} \) those in its complement,

\[
[H_i, E_{\pm\alpha}] = \pm \alpha_i E_{\pm\alpha}
\]

\[
[E_{\alpha}, E_{-\alpha}] = \sum_{i=1}^{N-1} \alpha_i H_i
\]
where \(\alpha_i = \alpha^i \) are the roots in an orthonormal basis. Then, one can choose the symmetry breaking potential so that the first \(S \) scalars \(\Phi^{(1)}, \Phi^{(2)}, \ldots, \Phi^{(S)} \) are in the Cartan algebra and the rest, \(\Phi^{(1)}, \Phi^{(2)}, \ldots, \Phi^{(T)} \) in its complement, \(S + T = N \). Now, in order to satisfy (9), one necessarily has

\[
\lim_{\rho \to \infty} \Phi^{(A)}(\rho, \phi) = \sum_{j=1}^{N-1} C_j^{(A)} H_j
\]

\[
\lim_{\rho \to \infty} \Phi^{(A)}(\rho, \phi) = U_n^+(\phi) \left(\sum_{\pm \alpha} \eta_\alpha^{(A)} E_\alpha \right) U_n(\phi) = U_n^+(\phi) \eta^{(A)} U_n(\phi)
\]

with \(C_j^{(A)} \) and \(\eta_\alpha^{(A)} \) constants. The constants \(\eta^{(A)} \) should be adjusted to so that they would minimize \(V(\Phi^{(A)}) \).

In view of the conditions described above, a consistent ansatz for a \(Z_N \) vortex configuration can be proposed in the form

\[
\Phi^{(A)} = \sum_{j=1}^{N-1} C_j^{(A)} H_j
\]

\[
\Phi^{(A)} = U_n^+(\phi) \left(\sum_{\pm \alpha} \eta_\alpha^{(A)} \psi^{(A)}(\rho) E_\alpha \right) U_n(\phi)
\]

\[
A_\phi = \frac{1}{e} a(\rho) M_n
\]

\[
A_\rho = A_0 = A_z = 0
\]

(12)

Here we have taken the \(\Phi^{(A)} \) scalars to be constant everywhere. \(F^{(A)}(\rho) \) and \(a(\rho) \) should satisfy the boundary conditions

\[
\lim_{\rho \to \infty} \psi^{(A)}(\rho) = 1, \quad \lim_{\rho \to \infty} a(\rho) = n.
\]

(13)

Ansatz (12) implies that

\[
D_\phi \Phi^{(A)} = (n - a(\rho)) \partial_\phi \Phi^{(A)}
\]

(14)

Given the ansatz for the \(\Phi \)-type scalars, the equations of motion derived from (1) take the form

\[
D_\mu G^{\mu\nu} = i e \sum_{A=1}^{N-1} [D_\nu \Phi^{(A)}, \Phi^{(A)}] = \frac{\delta V}{\delta \Phi^{(A)}}
\]

(15)

That is, apart from the potential, the \(\Phi^{(A)} \) fields play no role in the dynamics. Concerning the other scalars \(\Phi^{(A)} \), separability of the equations of motion into radial and angular parts imposes [11]

\[
[M_n, [M_n, \Phi^{(A)}]] = R_n^A(\rho) \Phi^{(A)}
\]

\[
\sum_{i=1}^{N-1} [\Phi^{(A)}, [\Phi^{(A)}, M_n]] = S_n^A(\rho) M_n
\]

(16)
One can see that these conditions simplify the ansatz (12) to

\[\Phi^{(A)} = N - 1 \sum_{j=1}^{N-1} C_j \phi \]
\[\Phi^{(A)} = \eta^{(A)}(\phi) U_n(\phi) (E_{\alpha A} + E_{-\alpha A}) U_n(\phi) \]
\[A_\phi = \frac{1}{e} \eta(\phi) M_n \]
\[A_\rho = A_0 = A_z = 0 \]

(17)

In order to characterize the vortex solutions from the topological point of view one can introduce an “electromagnetic tensor” \(G_{\mu \nu} \) analogous to that proposed by Polyakov for the \(SO(3) \) monopole solution [9]. In view of the ansatz for the gauge field, it is natural to take

\[G_{\mu \nu} = \frac{\text{tr} (M_n G_{\mu \nu})}{(\text{tr} (M_n^2))^{1/2}} \]

(18)

Then, the flux \(\Phi \) associated to the magnetic field \(G_{12} \) reads, for the \(n \)-vortex solution

\[\Phi = (n + Nk) \Phi_0 \]

(19)

with \(\Phi_0 = 2\pi/e \). Let us recall that \(n = 1, 2, \ldots, N - 1 \) indicates the topological class to which the configuration belongs while \(k \in Z \) is related to gauge transformations that, although leading to the same behavior at infinity (and hence are topologically trivial), cannot be well defined everywhere and then are not gauge equivalent everywhere, thus giving, for a fixed \(n \), different values for the magnetic flux [12].

Although the analysis of the radial equations of motion and their solution can be performed for arbitrary \(N \), let us concentrate in the \(SU(3) \) vortex solution, for which two topologically inequivalent classes exist. The associated \(U_n(\phi) \) are (we take for simplicity \(k = 0 \))

\[U_n(\phi) = e^{in\phi \lambda_8/\sqrt{3}}, \quad n = 1, 2 \]

(20)

One then has

\[M_n = n\lambda_8/\sqrt{3} \]

(21)

An explicit realization of the Cartan Algebra is

\[H_1 = \frac{\lambda_3}{2}, \quad H_2 = \frac{\lambda_8}{2} \]

(22)

where \(\lambda_3 \) and \(\lambda_8 \) are the diagonal Gell-Mann matrices. One then has, for the two-component magnetic weight (7)

\[\tilde{m} = (0, 2/\sqrt{3}) \]

(23)

Concerning the step generators \(E_\alpha \), they can be written in terms of the Gell-Mann matrices \(\lambda_i \) in the form

\[E_{\alpha_1} + E_{-\alpha_1} = \frac{1}{\sqrt{2}} \lambda_4 \]
\[E_{\alpha_2} + E_{-\alpha_2} = \frac{1}{\sqrt{2}} \lambda_6 \]
\[E_{\alpha_3} + E_{-\alpha_3} = \frac{1}{\sqrt{2}} \lambda_1 \]

(24)
The solution found in [7] corresponds to just one Φ-type scalar,
\[\Phi = B\lambda_3 + C\lambda_8 \] (25)
and two Φ-type ones
\[\Phi^{(1)} = \frac{1}{\sqrt{6}}\eta^{(1)}\psi^{(1)}(\rho)U^\dagger(n)(\phi)\lambda_4 U_n(\phi) \]
\[\Phi^{(2)} = \frac{1}{\sqrt{6}}\eta^{(2)}\psi^{(2)}(\rho)U^\dagger(n)(\phi)\lambda_6 U_n(\phi) \] (26)

With this choice, the radial equations of motion read
\[\frac{1}{\rho} \frac{d}{d\rho} \left(\rho \frac{d\psi^{(A)}}{d\rho} \right) - \left(\frac{n - a(\rho)}{\rho} \right)^2 \psi^{(A)} - v^{(A)}(\rho)\psi^{(A)}(\rho) = 0 \]
\[\rho \frac{d}{d\rho} \left(\frac{1}{\rho} \frac{da}{d\rho} \right) - \frac{e}{2} \left(\left(\eta^{(1)}\psi^{(1)} \right)^2 + \left(\eta^{(2)}\psi^{(2)} \right)^2 \right) \left(n - a(\rho) \right) = 0 \] (27)
where $v^{(A)}(\rho)$ stands for the derivative of the potential with respect to $\Phi^{(A)}$.

The symmetry breaking potential proposed in [7] can be written in the form
\[V(\Phi^{(A)}, \bar{\Phi}) = \frac{g_1\eta^4}{8} \sum_{A=1}^2 \left(\frac{1}{2}\text{Tr}[\Phi^{(A)}]^2 - 1 \right)^2 + \frac{\bar{g}_1\eta^4}{8} \left(\frac{1}{2}\text{Tr}[\bar{\Phi}\bar{\Phi}] - 1 \right)^2 \]
\[+ \frac{g_2\eta^4}{4} \left(\text{Tr}[\Phi^{(1)}\Phi^{(2)}] \right)^2 + d_{abc} \Phi^a \left(\sum_{A=1}^2 f_A \Phi^{(A)} b_\Phi^{(A)c} + h\Phi^{(1)} b_\Phi^{(2)c} \right) \] (28)
where $\Phi^{(A)} = \Phi^{(A)} b\chi^b$ and d_{abc} is the completely symmetric $SU(3)$ tensor. In (28) and in our subsequent discussion we will use Higgs fields that become normalized in the limit $\rho \to \infty$. One can see that the choice of the same coupling constant g_1 for the quartic coupling of the $\Phi^{(A)}$ fields implies that $f^{(1)} = f^{(2)}$ and reduces system (27) to that arising in the $U(1)$ case, which is solved, at critical coupling, by the solutions of the original Bogomol’nyi equations.

3 A 2-Higgs vortex in $SU(3)$ gauge theory

In this section we shall present a ‘minimal’ $SU(3)$ solution with only two Higgs fields $\Phi^{(A)} (A = 1, 2)$ in the adjoint. The Hamiltonian of the model is defined uniquely up to the Higgs potential. There is a considerable freedom in the Higgs potential. In a way we consider a Higgs potential simpler than that of the previous section, but in an other way we generalize it such that it will disallow solutions of the form discussed in Ref. [7]. Vortex solutions for a similar generalization of the $SU(2)$ Higgs potential were shown to exist in Ref. [3].

The Higgs potential we propose is identical in form to that of Ref. [3] for $SU(2)$:
\[V(\Phi^{(1)}, \Phi^{(2)}) = \frac{g_1\eta^4}{8} \sum_{A=1}^2 \left(\frac{1}{2}\text{Tr}[\Phi^{(A)}]^2 - 1 \right)^2 + \frac{g_2\eta^4}{4} \left(\frac{1}{2}\text{Tr}[\Phi^{(1)}\Phi^{(2)}] - c \right)^2 \] (29)
The generalization compared to Ref. [7] appears in the nonzero value of the constant \(c \), that is the cosine of the ‘angle’ between the two Higgs fields at infinity. The brackets of (29) must vanish at infinity to keep the Hamiltonian finite. Thus, unlike in previous models the Higgs fields are \textit{required not to be orthogonal} at infinity. Admittedly, the model we study here is less general in the sense that the self coupling of the two Higgs bosons is assumed to be identical.

The field equations derived from the Lagrangian, analogous to (15) and (14), are

\[
D_\mu G_{\mu\nu} - i e \eta^2 \sum_{A=1}^{2} [\Phi^{(A)}, D_\nu \Phi^{(A)}] = 0 \tag{30}
\]

and

\[
D_\mu D_\nu \Phi^{(A)} - g_1 \eta^2 \Phi^{(A)} \left(\frac{1}{2} \text{Tr}[\Phi^{(A)}]^2 - 1 \right) - g_2 \eta^2 \Phi^{(B)} \left(\frac{1}{2} \text{Tr}[\Phi^{(1)} \Phi^{(2)}] - c \right) = 0, \tag{31}
\]

where \(A = 1, 2 \) and then \(B = 2, 1 \).

As in the previous section, the ansatz we use for finding vortex solutions is based on the philosophy that the vortex solution is associated with a singular gauge transformation that maps circles linked with the vortex to a smooth transformation connecting two elements of the center. Choosing \(U_n(\phi) \), as in (20), the Higgs fields are defined as

\[
\Phi^{(i)}(x) = U_n(\phi) \psi^{(i)}(\rho) U_n^\dagger(\phi), \tag{32}
\]

where \(i = 1, 2 \) for the two Higgs bosons.

The ansatz for the gauge field,

\[
A_\mu(x) = \partial_\mu \phi[a_8(\rho) \lambda_8 + a_3(\rho) \lambda_3], \tag{33}
\]

is diagonal in gauge space. We will later show that unlike for vortices of the previous section the component \(a_3(\rho) \) must be different from zero, despite the fact that this component does not contribute to the vortex at \(\rho \to \infty \). The gauge field of (33) satisfies the gauge fixing condition \(\partial_\mu A_\mu = 0 \). Taking the derivative of the Higgs field generates a vortex contribution in the \(\lambda_8 \) gauge direction. The form of the gauge field was chosen to be able to cancel this vortex at infinity in the covariant derivative. Without such a cancellation the term of the Hamiltonian containing the covariant derivative of the Higgs fields would diverge.

We still need to show that the forms chosen for the fields are consistent with field equations (30) and (31). Before doing so we will further restrict the form of our solution. We will assume that the Higgs fields have only components

\[
\psi^{(A)} = \psi^{(A)}_4 \lambda_4 + \psi^{(A)}_6 \lambda_6, \tag{34}
\]

where \(\lambda_4 \) and \(\lambda_6 \) are off diagonal Gell-Mann matrices matrices. Two is the minimal number of components needed to satisfy the all the constraints on the normalization of the Higgs fields at \(\rho \to \infty \) simultaneously. The two Higgs fields, provided their coefficients are not identical, break \(SU(3) \) symmetry completely, down to its center, \(Z_3 \).
Let us now show that the gauge structure we propose is consistent with the field equations. First of all consider (31). The two equations, for the choices \(A = 1\) and \(2\), are consistent with the solution

\[
\psi_I^{(1)} = \pm \psi_I^{(2)}.
\]

We will show that the choice

\[
\psi_4^{(1)} = \psi_4^{(2)} \equiv \psi_4, \quad \psi_6^{(1)} = -\psi_6^{(2)} \equiv \psi_6
\]

is also consistent with (30). Under the assumptions (32)-(35) (30) can be calculated as

\[
D_\mu G_{\mu\nu} - i \eta^2 \sum_{A=1}^2 [\Phi^{(A)}, D_\nu \Phi^{(A)}] = \partial_\mu \phi \left[\lambda_8 \rho \frac{d}{d \rho} \left(\frac{1}{\rho} \frac{d a_8}{d \rho} \right) + \lambda_3 \rho \frac{d}{d \rho} \left(\frac{1}{\rho} \frac{d a_3}{d \rho} \right) \right]
\]

\[
- 2 \eta^2 \partial_\mu \phi \left[(\psi_4)^2 e a_+ (\sqrt{3} \lambda_8 + \lambda_3) + (\psi_6)^2 e a_- (\sqrt{3} \lambda_8 - \lambda_3) \right] = 0,
\]

where

\[
a_\pm = \sqrt{3} a_8 + \frac{n}{e} \pm a_3.
\]

Clearly the space and isospace structures are consistent and (36) leads to two scalar equations for the two unknown functions, \(a_+\) and \(a_-\). These equations are

\[
\rho \frac{d}{d \rho} \left(\frac{1}{\rho} \frac{d a_+}{d \rho} \right) - 4 e^2 \eta^2 [(\psi_4)^2 a_+ + (\psi_6)^2 a_-] = 0,
\]

and

\[
\rho \frac{d}{d \rho} \left(\frac{1}{\rho} \frac{d a_-}{d \rho} \right) - 4 e^2 \eta^2 [(\psi_4)^2 a_+ + 2(\psi_6)^2 a_-] = 0.
\]

In a similar way, the scalar equations reduce to two equations for the two components, \(\psi_4\) and \(\psi_6\)

\[
\frac{1}{\rho} \frac{d}{d \rho} \left(\rho \frac{d \psi_4}{d \rho} \right) - \frac{a_4^2}{\rho^2} \psi_4 - g_1 \eta^2 \psi_4 (\psi_4^2 + \psi_6^2 - 1) - g_2 \eta^2 \psi_4 (\psi_4^2 - \psi_6^2 - c) = 0,
\]

and

\[
\frac{1}{\rho} \frac{d}{d \rho} \left(\rho \frac{d \psi_6}{d \rho} \right) - \frac{a_6^2}{\rho^2} \psi_6 - g_1 \eta^2 \psi_6 (\psi_4^2 + \psi_6^2 - 1) + g_2 \eta^2 \psi_6 (\psi_4^2 - \psi_6^2 - c) = 0.
\]

The boundary conditions for the four fields are the following:

\[
a_\pm(0) = \frac{n}{e},
\]

\[
\lim_{\rho \to \infty} a_\pm(\rho) = 0,
\]

\[
\psi_4(0) = \psi_6(0) = 0
\]

\[
\lim_{\rho \to \infty} \psi_4(\rho) = \sqrt{\frac{1+c}{2}}, \quad \lim_{\rho \to \infty} \psi_6(\rho) = \sqrt{\frac{1-c}{2}}.
\]

Now at this point it should be obvious that \(a_3 = 0\), equivalent to \(a_+ = a_-\) is not an admissible solution. If \(a_+ = a_-\) then from (38) and (39) it follows that \(\psi_4 = \psi_6\). Such a solution would not satisfy the boundary condition (42), unless \(c = 0\).

Note that at \(c = 0\) \(\psi_4 = \psi_6\) and \(a_+ = a_-\). In other words the \(a_3\) component of the gauge field vanishes. Then, after appropriate rescaling, the vortex defined by (38)-(41) coincides with that defined by (27), provided we choose \(g_1 = \bar{g}_1\) and \(\eta^{(1)} = \eta^{(2)}\).
We have not been able to prove analytically the existence of solutions of these equations. In a future publication [16] we will study the solutions numerically. At special values of the couplings, however, the second order equations become first order. The system of equations also decouples and can be rescaled to a form identical to a combination of two critical abelian vortices. Abelian vortices have been well studied [11] and the existence of solutions has been shown.

The form of the solutions for two-adjoint-Higgs model is unique up to gauge transformations. A gauge transformation can always bring $U_n(\phi)$ to the form used above. Then the gauge field, commuting with $U_n(\phi)$ should only have components a_8 or a_3. Furthermore, the combination of constraint

$$\sum_A [\Phi^{(A)}, \partial_{\mu} \Phi^{(A)}] = 0$$

and of the field equations for the two Higgs fields can only be satisfied with at most two nonvanishing components of $\Phi^{(A)}$. Choosing these as Φ_4 and Φ_6 we arrive at the choice of this section.\(^1\)

4 Critical coupling

At a critical coupling the second order differential equations for the gauge and Higgs field of abelian vortex solutions can be transformed to linear equations [11],[10]. We will show below that the solution found in the previous section also satisfies linear equations at a critical coupling. Furthermore, we will also observe that the first order equations decouple into equations coupling the gauge field a_+ with ψ_4 and the gauge field a_- with the Higgs field ψ_6 only.

First of all, it will be advantageous to express Hamiltonian (1) in terms of the Higgs component a_8, a_3 (or a_+ and a_-), ψ_4, and ψ_6. One obtains

$$H = 2\pi \int_0^\infty \rho \, d\rho \left[\frac{1}{2\rho^4} (\rho a'_8 - a_8)^2 + \frac{1}{2\rho^4} (\rho a'_3 - a_3)^2 + \frac{\eta^2}{\rho^2} (\psi^2_4 a^2_4 + \psi^2_6 a^2_6 - 1) \right] + \frac{\eta^2}{4} (\psi^2_4 + \psi^2_6 - 1)^2 + \frac{g_2 \eta^4}{4} (\psi^2_4 - \psi^2_6 - c)^2$$

The variation of (43) results in field equations (38)-(41).

Inspired by Ref. [12] we write rearrange the Hamiltonian into an alternative form

$$H = 2\pi \int_0^\infty \rho \, d\rho \left\{ \eta^2 (\psi^2_4 + \gamma \rho \psi_4 w_+) + \eta^2 (\psi^2_6 + \delta \rho \psi_6 w_-) \right\} + \frac{1}{2\rho^4} (\rho a'_8 - a_8)^2 + \frac{1}{2\rho^4} (\rho a'_3 - a_3)^2 + \frac{1}{2\rho^4} (\rho a'_3 - a_3 - \beta \rho^2 \eta^2 (\psi^2_4 - \psi^2_6 - c))^2$$

$$+ \frac{f_1 \eta^4}{4} (\psi^2_4 + \psi^2_6 - 1)^2 + \frac{f_2 \eta^4}{4} (\psi^2_4 - \psi^2_6 - c)^2 + \frac{1}{\rho} \frac{dX}{d\rho} \right\},$$

\(^1\)Components that can be transformed into each other by a global $U(1) \times U(1)$ transformations and therefore satisfy the same field equations are not counted as different. For our choice of the components Φ_5 and Φ_7 can be eliminated by global $U(1) \times U(1)$ transformations.
where α, β, γ, and δ are yet undetermined constants and X is an undetermined form. Comparing (44) with (43) provides the following values for the constants:

$$\gamma = \delta = -\frac{n}{|n|} \quad (45)$$

$$\alpha = \sqrt{3}\beta = 2\sqrt{3}e\frac{n}{|n|}. \quad (46)$$

Furthermore, one obtains

$$X = |n|(\psi_4^2 + \psi_6^2), \quad (47)$$

$$f_1 = g_1 - 24e^2, \quad (48)$$

and

$$f_2 = g_2 - 8e^2, \quad (49)$$

Substituting these values back into the Hamiltonian we can see that the Hamiltonian is minimized with a minimum value of $2\pi|n|$ at the critical couplings

$$g_1 = 24e^2, \quad (50)$$

and

$$g_2 = 8e^2, \quad (51)$$

if the fields satisfy the following Bogomol’nyi type equations:

$$\psi_4' = \frac{e}{\rho} \psi_4 a_+, \quad (52)$$

$$\psi_6' = \frac{e}{\rho} \psi_6 a_-, \quad (53)$$

$$a_8' - \frac{1}{\rho} a_8 = \frac{\eta^2 \rho}{2\sqrt{3}e} (\psi_4^2 + \psi_6^2 - 1), \quad (54)$$

and

$$a_3' - \frac{1}{\rho} a_3 = \frac{\eta^2 \rho}{2e} (\psi_4^2 - \psi_6^2 - c). \quad (55)$$

In fact, appropriate linear combinations of (54) and (55) can be taken to arrive at the equations

$$a_+' - \frac{1}{\rho} a_+ = \frac{\eta^2 \rho}{e} \left(\psi_4^2 - \frac{1 + c}{2} \right), \quad (56)$$

and

$$a_-' - \frac{1}{\rho} a_- = \frac{\eta^2 \rho}{e} \left(\psi_6^2 - \frac{1 - c}{2} \right). \quad (57)$$

Now field equation (52) and (56) decouple from (53) and (57). Both of these systems are identical to the systems one obtains for the gauge and Higgs fields at critical coupling for $SU(2)$ vortices. This is not an accident, as a gauge rotation can transform ψ_4 (or ψ_6) into ψ_1 and a_+ (or a_-) into a_3 simultaneously. In the next section we will connect the $SU(2)$ vortices with abelian vortices at critical coupling.
5 Relation to Abelian vortices and supersymmetry

One can rewrite eqs.(52) and (56) so that they coincide with the Bogomol’nyi equations of an Abelian Higgs model where ψ_4 is identified with the modulus of the Higgs scalar and a_+ identified with the A_ϕ component of the Abelian gauge field. Indeed, if one calls

$$f = \frac{\sqrt{2F}}{e} \psi_4$$

$$a_+ - \frac{n}{e} \equiv \sqrt{3}a_8 + a_3 = A$$

then, eqs.(52) and (56) become

$$f'(\rho) = (n + eA)\frac{f}{\rho}$$

$$\frac{1}{\rho} \frac{dA_\phi}{d\rho} = \frac{e}{2} \left(f^2 - \frac{F^2}{e^2} (1 + c) \right)$$

These are nothing but the first order (BPS) equations, as originally written in [11] (see eqs. (3.5) and (3.6) in that paper), once an axially symmetric ansatz is imposed in the form

$$\Phi = f(\rho) \exp(-in\phi)$$

$$A_\phi = -\frac{1}{\rho} A(\rho)$$

Here we have called Φ the complex scalar field and A_μ the $U(1)$ gauge field. The condition for the Higgs field at infinity corresponds to

$$\lim_{\rho \to \infty} f(\rho) = \frac{F}{e} \sqrt{1 + c}$$

The solution to eqs. (59) corresponds to a vortex with magnetic flux $\Phi = -(2n\pi)/e$. First order equations (59) solve the second order Euler-Lagrange equations for the Abelian Higgs model with symmetry breaking potential

$$V_{U(1)} = \frac{\lambda}{8} \left(|\phi|^2 - |\phi_0|^2 \right)^2$$

provided the ϕ^4 coupling constant λ is chosen as [11], [10]

$$\lambda = e^2$$

We then see that eqs.(59) correspond to the Bogomol’nyi equations for a vortex with topological charge -1. Of course, the $+1$ topological charge equation is also obtainable just by changing eq.(58) to

$$f = \frac{\sqrt{2F}}{e} \psi_4$$

$$a_+ = -\frac{n}{e} + A$$
The same can be done for magnetic flux \(n = \pm 2 \), etc. An analogous identification can be done concerning \(\psi_0 \) and \(w_- \). One gets the same equations as in (59) with \(c \rightarrow -c \).

The connection between BPS relations and supersymmetry has been thoroughly analysed for the Abelian Higgs model, including the case in which a Chern-Simons term is added to the Maxwell term [13]-[14]. The outcome is that in order to achieve the \(N = 2 \) supersymmetric extension of the purely bosonic model, one is forced to impose the condition (63), exactly as it happens when trying to find a BPS bound proceeding à la Bogomol’nyi [10]. In the supersymmetric framework, the bound for the energy coincides with the central charge of the \(N = 2 \) SUSY algebra, which can be seen to coincide with the magnetic flux, related to the topological charge.

Once the connection between the non-Abelian \(SU(3) \) model presented in Section 3 and the \(U(1) \) model is established, the supersymmetric analysis can be done in a very simple way. Indeed, since the first order system (52)-(57) decouples into two systems, one for \((w_+, \psi_1)\) and the other for \((w_-, \psi_0)\), one can analyse them separately. Let us consider for example the former system. Identification (58) implies that the \(U(1) \) Lagrangian from which eqs.(52) and (56) can be derived takes the form

\[
L_{U(1)} = -\frac{1}{4} F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}(\partial_\mu \Phi^* - ieA_\mu \Phi^*)(\partial_\mu \Phi + ieA_\mu \Phi) - \frac{e^2}{8}(|\Phi|^2 - |\Phi_0|^2)^2
\]

(65)

In view of the axial symmetry of the problem (no \(x^3 \) dependence), one should consider \(\mu = 0, 1, 2 \); that is, one is effectively working in \(2 + 1 \) dimensional space-time. In (65) \(A_\mu \) and \(\Phi \) are connected with \(w_+ \) and \(\psi_1 \) according to eqs.(58),(60).

The \(N = 2 \) supersymmetric extension of the model defined by Lagrangian (65) can be written in the form

\[
L_{N=2} = \left\{ -\frac{1}{4} F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}(\partial_\mu M)(\partial^\mu M) + \frac{1}{2}(D_\mu \Phi)^*(D^\mu \Phi) - \frac{e^2}{4} M^2 |\Phi|^2 \right.
\]

\[- \frac{e}{2} (|\Phi|^2 - |\Phi_0|^2)^2 + i \sum \phi \Sigma + \frac{e}{2} \bar{\psi} D\psi - \frac{e}{2} M \overline{\psi} \psi
\]

\[- \frac{e}{2} (\overline{\psi} \Sigma \Phi + h.c.)
\]

(66)

Here \(M \) is a real scalar, \(\psi \) and \(\Sigma (\Sigma = \chi + i \xi) \) being Dirac fermions.

Lagrangian (66) is invariant under the supersymmetric transformations

\[
\delta \Sigma = -\left(\frac{1}{2} \epsilon^{\mu\nu\lambda} F_{\mu\nu} \gamma_\lambda + \frac{e}{2} (|\Phi|^2 - |\Phi_0|^2) \right) \eta_\epsilon, \quad \delta A_\mu = -i \eta_\epsilon \gamma_\mu \xi
\]

\[
\delta \psi = -i \epsilon^{\mu\nu\lambda} D_\mu \eta_\epsilon - (e^2)^{1/2} M \Phi \eta_\epsilon, \quad \delta M = \eta_\epsilon \chi, \quad \delta \Phi = \eta_\epsilon \psi
\]

(67)

The spinor supercharges generating these transformations can be shown to be [14]

\[
Q = \frac{\sqrt{2}}{e \Phi_0} \int d^2 x \left[\left(-\frac{1}{2} \epsilon^{\mu\nu\lambda} F_{\mu\nu} \gamma_\lambda + i \phi M - \frac{e}{2} (|\Phi|^2 - |\Phi_0|^2) \right) \gamma^0 \Sigma \right.
\]

\[+ \left(i (\bar{\psi} \Phi)^* - \frac{e}{2} M \Phi^* \right) \gamma^0 \psi \]

(68)

and

\[
\overline{Q} = \frac{\sqrt{2}}{e \Phi_0} \int d^2 x \left[\Sigma \gamma^0 \left(-\frac{1}{2} \epsilon^{\mu\nu\lambda} F_{\mu\nu} \gamma_\lambda - i \phi M - \frac{e}{2} (|\Phi|^2 - |\Phi_0|^2) \right) \right.
\]

\[+ \left. \overline{\psi} \gamma^0 \left(-i \bar{\psi} \Phi - \frac{e}{2} M \Phi \right) \right]

(69)

and satisfy the $N = 2$ algebra
\[
\{ Q_\alpha, \overline{Q}^\beta \} = 2(\gamma_0)_\alpha^\beta P^0 + \delta_\alpha^\beta Z
\]
where $\alpha, \beta = 1, 2$ and
\[
P^0 = E = \frac{1}{2e^2 \phi_0^2} \int d^2 x \left[\frac{1}{2} F_{ij}^2 + |D_i \Phi|^2 + \frac{e^2}{4} (|\Phi|^2 - \Phi_0^2)^2 \right]
\]
while the central charge is given by:
\[
Z = -\frac{1}{e^2 \phi_0^2} \int d^2 x \left[\frac{e}{2} \epsilon^{ij} F_{ij} (|\Phi|^2 - \Phi_0^2) + i \epsilon^{ij} (D_i \Phi)(D_j \Phi)^* \right]
\]
Here we have considered static configurations with $A_0 = 0$ so that $i, j = 1, 2$. Moreover, we have put M and all fermions to zero to restrict the supersymmetric model to the original $U(1)$ model. One can easily see that the central charge, as given by (72), coincides with the magnetic flux,
\[
Z = \int \partial_i \left(\frac{1}{e} A_j + \frac{i}{e^2 \phi_0^2} \Phi^* D_j \Phi \right) \epsilon^{ij} = \frac{2\pi}{e} n
\]
It is now easy to find the Bogomol’nyi bound from the supersymmetry algebra (70). Indeed, since the anticommutators in (70) are Hermitian, one has:
\[
\{ Q_\alpha, \overline{Q}^\beta \} \{ Q^\alpha, \overline{Q}_{\beta} \} \geq 0
\]
or using (70),
\[
E \geq |Z|
\]
In order to explicitly obtain Bogomol’nyi equations (saturating the energy bound) from the supersymmetry algebra, one considers
\[
Q_I = \frac{Q_+ + iQ_-}{\sqrt{2}}
\]
\[
Q_{II} = \frac{Q_+ - iQ_-}{\sqrt{2}}
\]
where we have defined Q_\pm from
\[
Q = \begin{pmatrix} Q_+ \\ Q_- \end{pmatrix}
\]
\[
\overline{Q} = \begin{pmatrix} \overline{Q}_+ \\ \overline{Q}_- \end{pmatrix}
\]
Now, suppose that a field configuration $|B\rangle$ saturates the Bogomol’nyi bound derived from (74). Then, one necessarily has
\[
(Q_I \pm Q_{II}) |B\rangle = 0
\]
or, using (76)-(79) and (68)-(69)
\[
\epsilon^{ij} F_{ij} = \pm e (|\Phi|^2 - \Phi_0^2)
\]
\[
i \epsilon^{ij} D^j \Phi = \pm (D_i \Phi)^*
\]
which are nothing but the equations (59) once the axially symmetric ansatz (60) is imposed.
6 Conclusions

A new vortex solution was shown to exist in SU(3) gauge theory with two adjoint Higgs bosons. This can be contrasted with the solution found in Ref. [7] that requires three adjoint Higgs bosons. At a critical value of the Higgs self-coupling (where the gauge and Higgs masses coincide) the Hamiltonian has an exact lower bound and the Higgs and gauge fields satisfy first order Bogomol’nyi type field equations. The field equations for two Higgs and two gauge components also decouple at the critical couplings and both of the decoupled sets are equivalent to an SU(2) vortex model at critical coupling. [3] That model, as it has been shown here, is equivalent to an Abelian Higgs model at critical coupling. [11] Thus, the critical SU(3) model is ultimately equivalent to a pair of critical Abelian Higgs models. This relationship connects our models to supersymmetry. The supersymmetric version of our model implies that the vortex mass per unit length is bounded by the $N = 2$ SUSY central charge, which, at the same time equals to the magnetic flux of the vortex. In this respect, we expect that the non Abelian vortices discussed here could play a relevant role in the confinement scenario arising in strongly coupled supersymmetric theories [17].

Acknowledgments

F.A.S will like to thank J. Edelstein, G. Lozano and C. Núñez for discussions and helpful comments. F.A.S is partially supported by CICBA as Investigador, and through grants CONICET (PIP 4330/96), and ANPCYT (PICT 97/2285). P.S. is supported in part by the U.S. Department of Energy through grant #DE FG02-84ER-40153.

References

