QUANTUM FIELD THEORY FROM FIRST PRINCIPLES

Giampiero Esposito

Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Via Cintia, Edificio N’, 80126 Napoli, Italy

Dipartimento di Scienze Fisiche, Complesso Universitario di Monte S. Angelo, Via Cintia, Edificio N’, 80126 Napoli, Italy

Abstract. When quantum fields are studied on manifolds with boundary, the corresponding one-loop quantum theory for bosonic gauge fields with linear covariant gauges needs the assignment of suitable boundary conditions for elliptic differential operators of Laplace type. There are however deep reasons to modify such a scheme and allow for pseudo-differential boundary-value problems. When the boundary operator is allowed to be pseudo-differential while remaining a projector, the conditions on its kernel leading to strong ellipticity of the boundary-value problem are studied in detail. This makes it possible to develop a theory of one-loop quantum gravity from first principles only, i.e. the physical principle of invariance under infinitesimal diffeomorphisms and the mathematical requirement of a strongly elliptic theory. It therefore seems that a non-local formulation of quantum field theory has some attractive features which deserve further investigation.
The space-time approach to quantum mechanics and quantum field theory has led to several profound developments in the understanding of quantum theory and space-time structure at very high energies.1,2 In particular, we are here concerned with the choice of boundary conditions. On using path integrals, which lead, in principle, to the appropriate formulation of the ideas of Feynman, DeWitt and many other authors,2–5 the assignment of boundary conditions consists of two main steps:

(i) Choice of Riemannian geometries and field configurations to be included in the path-integral representation of transition amplitudes.

(ii) Choice of boundary data to be imposed on the hypersurfaces Σ_1 and Σ_2 bounding the given space-time region.

The main object of our investigation is the second problem of such a list, when a one-loop approximation is studied for a bosonic gauge theory in linear covariant gauges. The well posed mathematical formulation relies on the “Euclidean approach”, i.e., in geometric language, on the use of differentiable manifolds endowed with positive-definite metrics g, so that Lorentzian space-time is actually replaced by an m-dimensional Riemannian manifold (M, g).

In particular, in Euclidean quantum gravity, mixed boundary conditions on metric perturbations h_{cd} occur naturally if one requires their complete invariance under infinitesimal diffeomorphisms, as is proved in detail in Ref. 6. On denoting by N^a the inward-pointing unit normal to the boundary, by

$$q^a_b \equiv \delta^a_b - N^a N_b$$

the projector of tensor fields onto ∂M, with associated projection operator

$$\Pi_{ab}^{cd} \equiv q^c_{(a} q^d_{b)};$$

the gauge-invariant boundary conditions for one-loop quantum gravity read6

$$\left[\Pi_{ab}^{cd} h_{cd}\right]_{\partial M} = 0,$$
where Φ_a is the gauge-averaging functional necessary to obtain an invertible operator P_{ab}^{cd} on metric perturbations. When P_{ab}^{cd} is chosen to be of Laplace type, Φ_a reduces to the familiar de Donder term

$$\Phi_a(h) = \nabla^b \left(h_{ab} - \frac{1}{2} g_{ab} g^{cd} h_{cd} \right) = E_{a}^{bcd} \nabla_b h_{cd},$$

where E_{abcd} is the DeWitt supermetric on the vector bundle of symmetric rank-two tensor fields over M (g being the metric on M):

$$E_{abcd} \equiv \frac{1}{2} (g^{ac} g^{bd} + g^{ad} g^{bc} - g^{ab} g^{cd}).$$

The boundary conditions (3) and (4) can then be cast in the Grubb–Gilkey–Smith form:

$$\left(\Pi \quad 0 \right) \left(\begin{array}{c} [\varphi]_{\partial M} \\ [\varphi, N]_{\partial M} \end{array} \right) = 0.$$

However, the work in Ref. 6 has shown that an operator of Laplace type on metric perturbations is then incompatible with the requirement of strong ellipticity of the boundary-value problem, because the operator Λ contains tangential derivatives of metric perturbations.

To take care of this serious drawback, the work in Ref. 9 has proposed to consider in the boundary condition (4) a gauge-averaging functional given by the de Donder term (5) plus an integro-differential operator on metric perturbations, i.e.

$$\Phi_a(h) \equiv E_{a}^{bcd} \nabla_b h_{cd} + \int_M \zeta_{a}^{cd}(x, x') h_{cd}(x') dV'.$$

We now point out that the resulting boundary conditions can be cast in the form

$$\left(\Pi \quad 0 \right) \left(\begin{array}{c} [\varphi]_{\partial M} \\ [\varphi, N]_{\partial M} \end{array} \right) = 0,$$
where $\tilde{\Lambda}$ reflects the occurrence of the integral over M in Eq. (8). It is convenient to work first in a general way and then consider the form taken by these operators in the gravitational case. On requiring that the resulting boundary operator

$$B \equiv \begin{pmatrix} \Pi & 0 \\ \Lambda + \tilde{\Lambda} & I - \Pi \end{pmatrix}$$

should remain a projector: $B^2 = B$, we find the condition

$$(\Lambda + \tilde{\Lambda})\Pi - \Pi(\Lambda + \tilde{\Lambda}) = 0,$$

which reduces to

$$\Pi\tilde{\Lambda} = \tilde{\Lambda}\Pi,$$

by virtue of the property $\Pi\Lambda = \Lambda\Pi = 0$ considered in Ref. 6.

In Euclidean quantum gravity at one-loop level, Eq. (12) leads to

$$\Pi^{\ b}_{\ c}(x) \int_M \zeta^{\ cd}_{\ \ a}(x, x') h_{qr}(x') dV' = \int_M \zeta^{\ cd}_{\ \ a}(x, x') \Pi^{\ qr}_{\ cd}(x') h_{qr}(x') dV',$$

which can be re-expressed in the form

$$\int_M \left[\Pi^{\ b}_{\ c}(x) \zeta^{\ cd}_{\ \ a}(x, x') - \zeta^{\ cd}_{\ \ a}(x, x') \Pi^{\ qr}_{\ cd}(x') \right] h_{qr}(x') dV' = 0.$$

Since this should hold for all $h_{qr}(x')$, it eventually leads to the vanishing of the term in square brackets in the integrand. The notation $\zeta^{\ cd}_{\ \ a}(x, x')$ is indeed rather awkward, because there is an even number of arguments, i.e. x and x', with an odd number of indices. Hereafter, we therefore assume that a vector field T and kernel $\tilde{\zeta}$ exist such that

$$\zeta^{\ cd}_{\ \ a}(x, x') \equiv T^p_{\ bp} \zeta^{\ cd}_{\ \ a}(x, x') \equiv T^p_{\ bp} \tilde{\zeta}^{\ cd}_{\ \ a}(x, x').$$

The projector condition (12) is therefore satisfied if and only if

$$T^p(x) \left[\Pi^{\ b}_{\ c}(x) \tilde{\zeta}^{\ cd}_{\ \ a}(x, x') - \tilde{\zeta}^{\ cd}_{\ \ a}(x, x') \Pi^{\ qr}_{\ cd}(x') \right] = 0.$$
We are now concerned with the issue of ellipticity of the boundary-value problem of one-loop quantum gravity. For this purpose, we begin by recalling what is known about ellipticity of the Laplacian (hereafter P) on a Riemannian manifold with smooth boundary. This concept is studied in terms of the leading symbol of P. It is indeed well known that the Fourier transform makes it possible to associate to a differential operator of order k a polynomial of degree k, called the characteristic polynomial or symbol. The leading symbol, σ_L, picks out the highest order part of this polynomial. For the Laplacian, it reads

$$\sigma_L(P; x, \xi) = |\xi|^2 I = g^{\mu\nu} \xi_\mu \xi_\nu I. \quad (17)$$

With a standard notation, (x, ξ) are local coordinates for $T^*(M)$, the cotangent bundle of M. The leading symbol of P is trivially elliptic in the interior of M, since the right-hand side of (17) is positive-definite, and one has

$$\det \left[\sigma_L(P; x, \xi) - \lambda \right] = (|\xi|^2 - \lambda)^{\dim V} \neq 0, \quad (18)$$

for all $\lambda \in \mathbb{C} - \mathbb{R}_+$. In the presence of a boundary, however, one needs a more careful definition of ellipticity. First, for a manifold M of dimension m, the m coordinates x are split into $m - 1$ local coordinates on ∂M, hereafter denoted by $\{\hat{x}^k\}$, and r, the geodesic distance to the boundary. Moreover, the m coordinates ξ_μ are split into $m - 1$ coordinates $\{\zeta_j\}$ (with ζ being a cotangent vector on the boundary), jointly with a real parameter $\omega \in T^*(\mathbb{R})$. At a deeper level, all this reflects the split

$$T^*(M) = T^*(\partial M) \oplus T^*(\mathbb{R}) \quad (19)$$

in a neighbourhood of the boundary.6,11

The ellipticity we are interested in requires now that σ_L should be elliptic in the interior of M, as specified before, and that strong ellipticity should hold. This means that a unique solution exists of the differential equation obtained from the leading symbol:

$$\left[\sigma_L \left(P; \{\hat{x}^k\}, r = 0, \{\zeta_j\}, \omega - i \frac{\partial}{\partial r} \right) - \lambda \right] \varphi(r, \hat{x}, \zeta; \lambda) = 0, \quad (20)$$
subject to the boundary conditions

$$\sigma_g(B)\left(\{\hat{x}^k\},\{\zeta_j\}\right)\psi(\varphi) = \psi'(\varphi) \quad (21)$$

and to the asymptotic condition

$$\lim_{r \to \infty} \varphi(r, \hat{x}, \zeta; \lambda) = 0. \quad (22)$$

In Eq. (21), σ_g is the graded leading symbol of the boundary operator in the local coordinates $\{\hat{x}^k\},\{\zeta_j\}$, and is given by

$$\sigma_g(B) = \begin{pmatrix} \Pi & 0 \\ i\Gamma^j\zeta_j & I - \Pi \end{pmatrix}. \quad (23)$$

Roughly speaking, the above construction uses Fourier transform and the inward geodesic flow to obtain the ordinary differential equation (20) from the Laplacian, with corresponding Fourier transform (21) of the original boundary conditions. The asymptotic condition (22) picks out the solutions of Eq. (20) which satisfy Eq. (21) with arbitrary boundary data $\psi'(\varphi) \in C^\infty(W', \partial M)$ for W' a vector bundle over the boundary, and vanish at infinite geodesic distance to the boundary. When all the above conditions are satisfied $\forall \zeta \in T^* (\partial M), \forall \lambda \in \mathbb{C} - \mathbb{R}_+, \forall (\zeta, \lambda) \neq (0,0)$ and $\forall \psi'(\varphi) \in C^\infty(W', \partial M)$, the boundary-value problem (P, B) for the Laplacian is said to be strongly elliptic with respect to the cone $\mathbb{C} - \mathbb{R}_+$.

However, when the gauge-averaging functional (8) is used in the boundary condition (4), the work in Ref. 9 has proved that the operator on metric perturbations takes the form of an operator of Laplace type P_{ab}^{cd} plus an integral operator G_{ab}^{cd}. Explicitly, one finds (with R_{bcdf}^a being the Riemann curvature of the background geometry (M, g))

$$P_{ab}^{cd} = E_{ab}^{cd}(-\Box + R) - 2E_{ab}^{qf}R_{qpf}^{cd}g^{dp} - E_{ab}^{pd}R_p^c - E_{ab}^{cp}R_p^d, \quad (24)$$

$$G_{ab}^{cd} = U_{ab}^{cd} + V_{ab}^{cd}, \quad (25)$$

where

$$U_{ab}^{cd}h_{cd}(x) = -2E_{rsab}\nabla^r \int_M T^p(x)\tilde{\zeta}_p^{cd}(x, x')h_{cd}(x')dV', \quad (26)$$

with

$$V_{ab}^{cd} = \int_M T^p(x)\tilde{\zeta}_p^{cd}(x, x')h_{cd}(x')dV', \quad (27)$$

and

$$E_{ab}^{cd} = \int_M T^p(x)\tilde{\zeta}_p^{cd}(x, x')h_{cd}(x')dV', \quad (28)$$

where

$$T^p(x) = \nabla^p T(x), \quad (29)$$

and

$$\tilde{\zeta}_p^{cd}(x, x') = \zeta_p^{cd}(x, x') - \zeta_p^{cd}(x') + \zeta_p^{cd}(x) - \zeta_p^{cd}(x''), \quad (30)$$

with

$$\zeta_p^{cd}(x, x') = \zeta_p^{cd}(x, x') - \zeta_p^{cd}(x') + \zeta_p^{cd}(x) - \zeta_p^{cd}(x''), \quad (31)$$

and

$$\zeta_p^{cd}(x, x') = \zeta_p^{cd}(x, x') - \zeta_p^{cd}(x') + \zeta_p^{cd}(x) - \zeta_p^{cd}(x''). \quad (32)$$
\[h^{ab} V_{ab} \delta_{cd} h_{cd}(x) = \int_{M^2} h^{ab}(x') T^q(x) \tilde{\xi}_{pqab}(x, x') T^r(x) \tilde{\xi}_{pr} \delta_{cd}(x, x'') h_{cd}(x'') dV' dV''. \tag{27} \]

We now assume that the operator on metric perturbations, which is so far an integro-differential operator defined by a kernel, is also pseudo-differential. This means that it can be characterized by suitable regularity properties obeyed by the symbol. More precisely, let \(S^d \) be the set of all symbols \(p(x, \xi) \) such that

1. \(p \) is \(C^\infty \) in \((x, \xi)\), with compact \(x \) support.

2. For all \((\alpha, \beta)\), there exist constants \(C_{\alpha, \beta} \) for which

\[
\left| (-i)^{\sum_{k=1}^m (\alpha_k + \beta_k)} \left(\frac{\partial}{\partial x_1} \right)^{\alpha_1} \cdots \left(\frac{\partial}{\partial x_m} \right)^{\alpha_m} \left(\frac{\partial}{\partial \xi_1} \right)^{\beta_1} \cdots \left(\frac{\partial}{\partial \xi_m} \right)^{\beta_m} p(x, \xi) \right| \leq C_{\alpha, \beta} \left(1 + \sqrt{g_{ab}(x) \xi_a \xi_b} \right)^{d - \sum_{k=1}^m \beta_k}, \tag{28} \]

for some real (not necessarily positive) value of \(d \). The associated pseudo-differential operator, defined on the Schwarz space and taking values in the set of smooth functions on \(M \) with compact support:

\[P : S \to C^\infty_c(M) \]

acts according to

\[Pf(x) \equiv \int e^{i(x-y) \cdot \xi} p(x, \xi) f(y) \mu(y, \xi), \tag{29} \]

where \(\mu(y, \xi) \) is here meant to be the invariant integration measure with respect to \(y_1, \ldots, y_m \) and \(\xi_1, \ldots, \xi_m \). Actually, one first gives the definition for pseudo-differential operators \(P : S \to C^\infty_c(\mathbb{R}^m) \), eventually proving that a coordinate-free definition can be given and extended to smooth Riemannian manifolds.\(^{11}\)

In the presence of pseudo-differential operators, both ellipticity in the interior of \(M \) and strong ellipticity of the boundary-value problem need a more involved formulation. In our paper, inspired by the flat-space analysis in Ref. 12, we make the following requirements.\(^{10}\)
(i) Ellipticity in the Interior

Let U be an open subset with compact closure in M, and consider an open subset U_1 whose closure \overline{U}_1 is properly included into U: $\overline{U}_1 \subset U$. If p is a symbol of order d on U, it is said to be elliptic on U_1 if there exists an open set U_2 which contains \overline{U}_1 and positive constants C_0, C_1 so that

$$|p(x,\xi)|^{-1} \leq C_1 (1 + |\xi|)^{-d},$$

(30)

for $|\xi| \geq C_0$ and $x \in U_2$, where $|\xi| \equiv \sqrt{g^{ab}(x)\xi_a\xi_b}$. The corresponding operator P is then elliptic.

(ii) Strong Ellipticity in the Absence of Boundaries

Let us assume that the symbol under consideration is polyhomogeneous, in that it admits an asymptotic expansion of the form

$$p(x,\xi) \sim \sum_{l=0}^{\infty} p_{d-l}(x,\xi),$$

(31)

where each term p_{d-l} has the homogeneity property

$$p_{d-l}(x, t\xi) = t^{d-l} p_{d-l}(x, \xi) \quad \text{if} \quad t \geq 1 \quad \text{and} \quad |\xi| \geq 1.$$

(32)

The leading symbol is then, by definition,

$$p^0(x, \xi) \equiv p_d(x, \xi).$$

(33)

Strong ellipticity in the absence of boundaries is formulated in terms of the leading symbol, and it requires that

$$\text{Re} p^0(x, \xi) \geq c(x)|\xi|^d,$$

(34)

where $x \in M$ and $|\xi| \geq 1$, c being a positive function on M. It can then be proved that the Gårding inequality holds, according to which, for any $\varepsilon > 0$,

$$\text{Re}(Pu, u) \geq b\|u\|_{\frac{d}{2}}^2 - b_1\|u\|_{\frac{d}{2} - \varepsilon}^2 \quad \text{for} \quad u \in H^{\frac{d}{2}}(M),$$

(35)
with \(b > 0\).

(iii) **Strong Ellipticity in the Presence of Boundaries**

The homogeneity property (32) only holds for \(t \geq 1\) and \(|\xi| \geq 1\). Consider now the case \(l = 0\), for which one obtains the leading symbol which plays the key role in the definition of ellipticity. If \(p^{0}(x, \xi) \equiv p_{d}(x, \xi) \equiv \sigma_{L}(P; x, \xi)\) is not a polynomial (which corresponds to the genuinely pseudo-differential case) while being a homogeneous function of \(\xi\), it is irregular at \(\xi = 0\). When \(|\xi| \leq 1\), the only control over the leading symbol is provided by estimates of the form

\[
\left| (-i)^{m} \sum_{k=1}^{m}(\alpha_{k}+\beta_{k}) \left(\frac{\partial}{\partial x_{1}} \right)^{\alpha_{1}} \cdots \left(\frac{\partial}{\partial x_{m}} \right)^{\alpha_{m}} \left(\frac{\partial}{\partial \xi_{1}} \right)^{\beta_{1}} \cdots \left(\frac{\partial}{\partial \xi_{m}} \right)^{\beta_{m}} p^{0}(x, \xi) \right| \\
\leq c(x)\langle \xi \rangle^{d-|\beta|}.
\]

We therefore come to appreciate the problematic aspect of symbols of pseudo-differential operators.\(^{12}\) The singularity at \(\xi = 0\) can be dealt with either by modifying the leading symbol for small \(\xi\) to be a \(C^{\infty}\) function (at the price of losing the homogeneity there), or by keeping the strict homogeneity and dealing with the singularity at \(\xi = 0\).\(^{12}\)

On the other hand, we are interested in a definition of strong ellipticity of pseudo-differential boundary-value problems that reduces to Eqs. (20)–(22) when both \(P\) and the boundary operator reduce to the form considered in Ref. 6. For this purpose, and bearing in mind the occurrence of singularities in the leading symbols of \(P\) and of the boundary operator, we make the following requirements.\(^{10}\)

Let \((P+G)\) be a pseudo-differential operator subject to boundary conditions described by the pseudo-differential boundary operator \(B\) (the consideration of \((P+G)\) rather than only \(P\) is necessary to achieve self-adjointness, as is described in detail in Refs. 12 and 13). The pseudo-differential boundary-value problem \(((P+G), B)\) is strongly elliptic with respect to \(C - R_{+}\) if:

(I) The inequalities (30) and (34) hold;
(II) There exists a unique solution of the equation

\[
\sigma_L \left((P + G); \{ \hat{x}^k \}, r = 0, \{ \zeta_j \}, \omega \to -i \frac{\partial}{\partial r} \right) - \lambda \varphi(r, \hat{x}, \zeta; \lambda) = 0, \tag{20'}
\]

subject to the boundary conditions

\[
\sigma_L(B) \left(\{ \hat{x}^k \}, \{ \zeta_j \} \right) \psi(\varphi) = \psi'(\varphi) \tag{21'}
\]

and to the asymptotic condition (22). It should be stressed that, unlike the case of differential operators, Eq. (20') is not an ordinary differential equation in general, because \((P + G)\) is pseudo-differential.

(III) The strictly homogeneous symbols associated to \((P + G)\) and \(B\) have limits for \(|\zeta| \to 0\) in the respective leading symbol norms, with the limiting symbol restricted to the boundary which avoids the values \(\lambda \not\in \mathbb{C} - \mathbb{R}_+\) for all \(\{ \hat{x} \}\).

Condition (III) requires a last effort for a proper understanding. Given a pseudo-differential operator of order \(d\) with leading symbol \(p^0(x, \xi)\), the associated strictly homogeneous symbol is defined by\(^{12}\)

\[
p^h(x, \xi) \equiv |\xi|^d p^0 \left(x, \frac{\xi}{|\xi|} \right) \text{ for } \xi \neq 0. \tag{37}
\]

This extends to a continuous function vanishing at \(\xi = 0\) when \(d > 0\). In the presence of boundaries, the boundary-value problem \(((P + G), B)\) has a strictly homogeneous symbol on the boundary equal to (some indices are omitted for simplicity)

\[
\left(p^h \left(\{ \hat{x} \}, r = 0, \{ \zeta \}, -i \frac{\partial}{\partial r} \right) + g^h \left(\{ \hat{x} \}, \{ \zeta \}, -i \frac{\partial}{\partial r} \right) - \lambda \right),
\]

where \(p^h, g^h\) and \(b^h\) are the strictly homogeneous symbols of \(P, G\) and \(B\) respectively, obtained from the corresponding leading symbols \(p^0, g^0\) and \(b^0\) via equations analogous to (37), after taking into account the split (19), and upon replacing \(\omega\) by \(-i \frac{\partial}{\partial r}\). The
limiting symbol restricted to the boundary (also called limiting λ-dependent boundary symbol operator) and mentioned in condition III reads therefore12

$$a^h \left(\{ \hat{x} \} , r = 0, \zeta = 0, -i \frac{\partial}{\partial r} \right) = \left(p^h \left(\{ \hat{x} \} , r = 0, \zeta = 0, -i \frac{\partial}{\partial r} \right) + g^h \left(\{ \hat{x} \} , \zeta = 0, -i \frac{\partial}{\partial r} \right) - \lambda \right), \tag{38}$$

where the singularity at $\xi = 0$ of the leading symbol in absence of boundaries is replaced by the singularity at $\zeta = 0$ of the leading symbols of P, G and B when a boundary occurs.

Let us now see how the previous conditions on the leading symbol of $(P + G)$ and on the graded leading symbol of the boundary operator can be used. The equation (20') is solved by a function φ depending on $r, \{ \hat{x}^k \}, \{ \zeta_j \}$ and, parametrically, on the eigenvalues λ. For simplicity, we write $\varphi = \varphi(r, \hat{x}, \zeta; \lambda)$, omitting indices. Since the leading symbol is no longer a polynomial when $(P + G)$ is genuinely pseudo-differential, we cannot make any further specification on φ at this stage, apart from requiring that it should reduce to (here $|\zeta|^2 \equiv \zeta_i \zeta^i$)

$$\chi(\hat{x}, \zeta) e^{-r \sqrt{|\zeta|^2 - \lambda}}$$

when $(P + G)$ reduces to a Laplacian.

The equation (21') involves the graded leading symbol of B and restriction to the boundary of the field and its covariant derivative along the normal direction. Such a restriction is obtained by setting to zero the geodesic distance r, and hence we write, in general form (here we denote again by Λ the full matrix element B_{21} in the boundary operator (10)),

$$\left(\begin{array}{cc} \Pi & 0 \\ \sigma_L(\Lambda) & I - \Pi \end{array} \right) \left(\begin{array}{c} \varphi(0, \hat{x}, \zeta; \lambda) \\ \varphi'(0, \hat{x}, \zeta; \lambda) \end{array} \right) = \left(\begin{array}{c} \Pi \rho(0, \hat{x}, \zeta; \lambda) \\ (I - \Pi) \rho'(0, \hat{x}, \zeta; \lambda) \end{array} \right), \tag{39}$$

where ρ differs from φ, because Eq. (21') is written for $\psi(\varphi)$ and $\psi'(\varphi) \neq \psi(\varphi)$. Now Eq. (39) leads to

$$\Pi \varphi(0, \hat{x}, \zeta; \lambda) = \Pi \rho(0, \hat{x}, \zeta; \lambda), \tag{40}$$

$$\sigma_L(\Lambda) \varphi(0, \hat{x}, \zeta; \lambda) + (I - \Pi) \varphi'(0, \hat{x}, \zeta; \lambda) = (I - \Pi) \rho'(0, \hat{x}, \zeta; \lambda), \tag{41}$$
and we require that, for \(\varphi \) satisfying Eq. (20') and the asymptotic decay (22), with \(\lambda \in \mathcal{C} - \mathbb{R}_+ \), Eqs. (40) and (41) can be always solved with given values of \(\rho(0, \hat{x}, \zeta; \lambda) \) and \(\rho'(0, \hat{x}, \zeta; \lambda) \), whenever \((\zeta, \lambda) \neq (0, 0)\). The idea is now to relate, if possible, \(\varphi'(0, \hat{x}, \zeta; \lambda) \) to \(\varphi(0, \hat{x}, \zeta; \lambda) \) in such a way that Eq. (40) can be used to simplify Eq. (41). For this purpose, we consider the function \(f \) such that

\[
\frac{\varphi'(0, \hat{x}, \zeta; \lambda)}{\varphi(0, \hat{x}, \zeta; \lambda)} = \frac{\rho'(0, \hat{x}, \zeta; \lambda)}{\rho(0, \hat{x}, \zeta; \lambda)} = f(\hat{x}, \zeta; \lambda),
\]

\[
\Pi(\hat{x}) f(\hat{x}, \zeta; \lambda) = f(\hat{x}, \zeta; \lambda) \Pi(\hat{x}).
\]

If both (42) and (43) hold, Eq. (41) reduces indeed to

\[
\sigma_L(\Lambda) \varphi(0, \hat{x}, \zeta; \lambda) + f(\hat{x}, \zeta; \lambda) \left(\varphi(0, \hat{x}, \zeta; \lambda) - \rho(0, \hat{x}, \zeta; \lambda) \right)
\]

\[
= f(\hat{x}, \zeta; \lambda) \Pi \left(\varphi(0, \hat{x}, \zeta; \lambda) - \rho(0, \hat{x}, \zeta; \lambda) \right),
\]

and hence, by virtue of (40),

\[
\left[\sigma_L(\Lambda) + f(\hat{x}, \zeta; \lambda) \right] \varphi(0, \hat{x}, \zeta; \lambda) = \rho'(0, \hat{x}, \zeta; \lambda).
\]

Thus, the strong ellipticity condition with respect to \(\mathcal{C} - \mathbb{R}_+ \) implies in this case the invertibility of \(\left[\sigma_L(\Lambda) + f(\hat{x}, \zeta; \lambda) \right] \), i.e.

\[
\det \left[\sigma_L(\Lambda) + f(\hat{x}, \zeta; \lambda) \right] \neq 0 \quad \forall \lambda \in \mathcal{C} - \mathbb{R}_+.
\]

Moreover, by virtue of the identity

\[
\left[f(\hat{x}, \zeta; \lambda) + \sigma_L(\Lambda) \right] \left[f(\hat{x}, \zeta; \lambda) - \sigma_L(\Lambda) \right] = \left[f^2(\hat{x}, \zeta; \lambda) - \sigma^2_L(\Lambda) \right],
\]

the condition (45) is equivalent to

\[
\det \left[f^2(\hat{x}, \zeta; \lambda) - \sigma^2_L(\Lambda) \right] \neq 0 \quad \forall \lambda \in \mathcal{C} - \mathbb{R}_+.
\]
Since \(f(\hat{x}, \zeta; \lambda) \) is, in general, complex-valued, one can always express it in the form
\[
f(\hat{x}, \zeta; \lambda) = \text{Re} f(\hat{x}, \zeta; \lambda) + i \text{Im} f(\hat{x}, \zeta; \lambda),
\]
so that (47) reads eventually
\[
det \left[\text{Re}^2 f(\hat{x}, \zeta; \lambda) - \text{Im}^2 f(\hat{x}, \zeta; \lambda) - \sigma_L^2(\Lambda) + 2i \text{Re} f(\hat{x}, \zeta; \lambda) \text{Im} f(\hat{x}, \zeta; \lambda) \right] \neq 0.
\] (49)

In particular, when
\[
\text{Im} f(\hat{x}, \zeta; \lambda) = 0,
\] condition (49) reduces to
\[
det \left[\text{Re}^2 f(\hat{x}, \zeta; \lambda) - \sigma_L^2(\Lambda) \right] \neq 0.
\] (51)

A **sufficient condition** for strong ellipticity with respect to the cone \(C - \mathbb{R}_+ \) is therefore the negative-definiteness of \(\sigma_L^2(\Lambda) \):
\[
\sigma_L^2(\Lambda) < 0,
\]
so that
\[
\text{Re}^2 f(\hat{x}, \zeta; \lambda) - \sigma_L^2(\Lambda) > 0,
\]
and hence (51) is fulfilled.

In the derivation of the sufficient conditions (49) and (52), the assumption (43) plays a crucial role. In general, however, \(\Pi \) and \(f \) have a non-vanishing commutator, and hence a \(C(\hat{x}, \zeta; \lambda) \) exists such that
\[
\Pi(\hat{x}) f(\hat{x}, \zeta; \lambda) - f(\hat{x}, \zeta; \lambda) \Pi(\hat{x}) = C(\hat{x}, \zeta; \lambda).
\] (54)

The occurrence of \(C \) is a peculiar feature of the fully pseudo-differential framework. Equation (41) is then equivalent to (now we write explicitly also the independent variables in the leading symbol of \(\Lambda \))
\[
\left[(\sigma_L(\Lambda) - C)(\hat{x}, \zeta; \lambda) + f(\hat{x}, \zeta; \lambda) \right] \varphi(0, \hat{x}, \zeta; \lambda)
= \rho'(0, \hat{x}, \zeta; \lambda) - C(\hat{x}, \zeta; \lambda) \rho(0, \hat{x}, \zeta; \lambda).
\] (55)
On defining
\[\gamma(\hat{x}, \zeta; \lambda) \equiv \left[\sigma_L(\Lambda) - C \right](\hat{x}, \zeta; \lambda), \] (56)
we therefore obtain strong ellipticity conditions formally analogous to (45) or (49) or (51), with \(\sigma_L(\Lambda) \) replaced by \(\gamma(\hat{x}, \zeta; \lambda) \) therein, i.e.
\[\det \left[\gamma(\hat{x}, \zeta; \lambda) + f(\hat{x}, \zeta; \lambda) \right] \neq 0 \quad \forall \lambda \in \mathbb{C} - \mathbb{R}^+, \] (57)
which is satisfied if
\[\det \left[\text{Re}^2 f(\hat{x}, \zeta; \lambda) - \text{Im}^2 f(\hat{x}, \zeta; \lambda) - \gamma^2(\hat{x}, \zeta; \lambda) + 2i\text{Re} f(\hat{x}, \zeta; \lambda)\text{Im} f(\hat{x}, \zeta; \lambda) \right] \neq 0. \] (58)

We have therefore provided a complete characterization of the properties of the symbol of the boundary operator for which a set of boundary conditions completely invariant under infinitesimal diffeomorphisms are compatible with a strongly elliptic one-loop quantum theory. Our analysis is detailed but general, and hence has the merit (as far as we can see) of including all pseudo-differential boundary operators for which the sufficient conditions just derived can be imposed. This is not yet the same, however, as saying that the pseudo-differential framework in one-loop quantum theory is definitely better. One still has to prove that the set of symbols satisfying all our conditions is non-empty. Moreover, our definition of strong ellipticity is given for self-adjoint pseudo-differential boundary-value problems, and is therefore less general than the one applied in Ref. 7.

It would be now very interesting to prove that, by virtue of the pseudo-differential nature of \(B \) in (10), the quantum state of the universe in one-loop semiclassical theory can be made of surface-state type.\(^{14}\) This would describe a wave function of the universe with exponential decay away from the boundary, which might provide a novel description of quantum physics at the Planck length. It therefore seems that by insisting on path-integral quantization, strong ellipticity of the Euclidean theory and invariance principles, new deep perspectives are in sight. These are in turn closer to what we may hope to test, i.e. the one-loop semiclassical approximation in quantum gravity. In the seventies, such calculations could provide a guiding principle for selecting couplings of matter fields to gravity in a
unified field theory. Now they can lead instead to a deeper understanding of the interplay between non-local formulations\(^{15-17}\) elliptic theory, gauge-invariant quantization\(^ {18}\) and a quantum theory of the very early universe.\(^ {10}\)

Acknowledgments

The author is indebted to the Organizers for giving him the opportunity to submit this invited contribution, to Ivan Avramidi for scientific collaboration and to Gerd Grubb for detailed correspondence.

References

