Curvature Dependence of Peaks in the Cosmic Microwave Background Distribution

Steven Weinberg*
Theory Group, Department of Physics, University of Texas
Austin, TX, 78712

Abstract
The widely cited formula $\ell_1 \approx 200 \Omega_0^{-1/2}$ for the multipole number of the first Doppler peak is not even a crude approximation in the case of greatest current interest, in which the cosmic mass density is less than the vacuum energy density. For instance, with Ω_M fixed at 0.3, the position of any Doppler peak varies as $\Omega_0^{-1.58}$ near $\Omega_0 = 1$.

*Electronic address: weinberg@physics.utexas.edu
The precise measurement1 of the multipole number $\ell_1 = 197 \pm 6$ at the first ‘Doppler’ peak has provided an invaluable constraint on cosmological parameters. In a 1994 numerical calculation, Kamionkowski, Spergel and Sugiyama2 presented a formula giving ℓ_1 as a function essentially of the curvature alone:

$$\ell_1 \sim \frac{200}{\sqrt{\Omega_0}},$$

where $\Omega_0 \equiv \Omega_M + \Omega_\Lambda$, in which Ω_M and Ω_Λ are the present ratios of the cosmic mass density and the vacuum energy (associated, e. g., with a cosmological constant) to the critical density. This calculation was done before supernova studies3 indicated the likely presence of a relatively large cosmological constant, and therefore assumed that $\Omega_\Lambda = 0$. They also explained the $\Omega_0^{-1/2}$ behavior by noting that ℓ_1 is approximately inversely proportional to the angle subtended at the earth by the horizon at the time of last scattering, which was known4 to be proportional to $\Omega_0^{1/2}$ for $\Omega_\Lambda = 0$. The same Ω_0-dependence was derived on the same grounds by Frampton et al.,5 explicitly for the case $\Omega_\Lambda = 0$.

Unfortunately, despite the fact that it was derived only for the case $\Omega_\Lambda = 0$, Eq. (1) continues to be quoted1,6,7,8,9 as if it were generally applicable also when Ω_Λ is appreciable. As far as I know, this formula has not been used by observational groups in analysis of their data, but in view of the great current interest in these matters, it seems worth warning that in fact, Eq. (1) is not valid for parameters in the range suggested by supernova observations, for
which $\Omega_\Lambda > \Omega_M$. Although it is true that when Ω_0 is near unity, ℓ_1 depends less sensitively on other parameters than on Ω_0, the dependence of ℓ_1 on Ω_0 bears no resemblance whatever to Eq. (1), except for the case $\Omega_\Lambda \ll 1$. Instead, we shall see that the dependence of ℓ_1 on Ω_0 near $\Omega_0 = 1$ with Ω_M fixed at values less than 0.4 is much stronger than given by Eq. (1) (for instance, $\ell_1 \propto \Omega_M^{-1.58}$ for $\Omega_M = 0.3$), and it depends sensitively on Ω_M.

To calculate the full dependence of ℓ_1 on Ω_0, Ω_M, Ω_{baryon}, $\Omega_{\text{radiation}}$, etc. is a complicated task, requiring the consideration of the evolution of the acoustic velocity and of the ratio of radiation and matter energies, and the consideration of Doppler shifts as well as temperature fluctuations. We can avoid all these complications by considering the dependence of ℓ_1 on Ω_0 when only Ω_Λ is allowed to vary, with Ω_M and all other parameters held fixed. If it were really true (as Eq. (1) says) that ℓ_1 depends only on Ω_0, then this would be all we need to calculate the full Ω_0-dependence.

The advantage of letting only Ω_Λ vary is that the vacuum energy density is negligible compared with the densities of matter and radiation at and before the redshift $z_L \simeq 1100$ of last scattering, so the only effect of variations in Ω_Λ on the multipole number ℓ_n of the nth Doppler peak is to change the paths followed by light rays since the time of last scattering. The angle subtended at the earth by any feature of the cosmic microwave background of proper length d is

$$\theta = d/d_A,$$

(2)
where d_A is the angular diameter distance of the surface of last scattering:

$$d_A = \frac{1}{\Omega_k^{1/2} H_0 (1 + z_L)} \sinh \left[\frac{1}{2} \int_{1/(1+z_L)}^{1} \frac{dx}{\sqrt{\Omega_A x^4 + \Omega_k x^2 + \Omega_M x}} \right],$$ \hspace{1cm} (3)

and Ω_k is a measure of curvature

$$\Omega_k \equiv 1 - \Omega_\Lambda - \Omega_M = 1 - \Omega_0.$$ \hspace{1cm} (4)

It follows that the Ω_Λ-dependence of ℓ_n is given by

$$\ell_n \propto d_A.$$ \hspace{1cm} (5)

Furthermore, although the relation between the present Hubble constant H_0 and the proper scales of phenomena at the time of last scattering depends on Ω_M and $\Omega_{\text{radiation}}$, it does not depend on Ω_Λ. (For instance, if we neglect radiation, then the acoustic horizon at the redshift of last scattering is \(2(1+z_L)^{-3/2}/\sqrt{3\Omega_M H_0}\).) Therefore, with Ω_M fixed, the dependence of ℓ_n on Ω_Λ is given by

$$\ell_n \propto F(\Omega_\Lambda) = \frac{1}{\Omega_k^{1/2}} \sinh \left[\frac{1}{2} \int_{0}^{1} \frac{dx}{\sqrt{\Omega_A x^4 + \Omega_k x^2 + \Omega_M x}} \right],$$ \hspace{1cm} (6)

with Ω_k given in terms of Ω_Λ by Eq. (4). (The lower limit on the integral has here been set equal to zero because $z_L >> 1$.) Of course, all the detailed physics of the acoustic oscillations responsible for the Doppler peaks is contained in the constant of proportionality; all we need to know here is that it does not involve Ω_Λ.

3
Now let us consider the variation of the quantity (6) as we make small changes in Ω_0 near $\Omega_0 = 1$ with Ω_M fixed. An elementary calculation gives

$$\ell_n \propto \Omega_0^{-\nu},$$

(7)

where

$$\nu \equiv \left(\frac{\partial \ln F}{\partial \Omega_\Lambda} \right)_{\Omega_\Lambda = 1 - \Omega_M} = \frac{I_1^2}{6} - \frac{I_2}{2I_1},$$

(8)

with

$$I_1 = \int_0^1 \frac{dx}{[(1 - \Omega_M)x^4 + \Omega_Mx]^{1/2}}$$

and

$$I_2 = \int_0^1 \frac{(x^2 - x^4) dx}{[(1 - \Omega_M)x^4 + \Omega_Mx]^{3/2}}.$$

(9)

The table below gives values of these integrals, and of the resulting exponent ν in Eq. (7).

<table>
<thead>
<tr>
<th>Ω_M</th>
<th>I_1</th>
<th>I_2</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>3.891</td>
<td>2.546</td>
<td>2.196</td>
</tr>
<tr>
<td>0.3</td>
<td>3.305</td>
<td>1.601</td>
<td>1.578</td>
</tr>
<tr>
<td>0.4</td>
<td>2.938</td>
<td>1.145</td>
<td>1.244</td>
</tr>
<tr>
<td>1.0</td>
<td>2/21</td>
<td>8/21</td>
<td>4/7</td>
</tr>
</tbody>
</table>

The only approximation made in deriving these results is that the universe becomes transparent suddenly at a redshift $z_L \gg 1$, and has been dominated since then by non-relativistic matter and vacuum energy. Also, we are neglecting the effect of changing gravitational potentials at redshifts $z \ll z_L$, which introduce an additional Λ- dependence that is quite small at the wavelengths of the Doppler peaks. Otherwise, these results are exact.
The behavior $\ell_1 \propto \Omega_0^{-4/7}$ near $\Omega_0 = 1$ for Ω_M fixed at unity is close to the behaviour $\ell_1 \propto \Omega_0^{-1/2}$ near $\Omega_0 = 1$ found2,5 for Ω_A fixed at zero, confirming that ℓ_1 is approximately a function of Ω_0 alone for $\Omega_A = 0$ and Ω_M near unity. The fact that ν depends strongly on Ω_M for smaller values of Ω_M shows that for observationally favored parameters ℓ_1 is not approximately a function of Ω_0 alone. Indeed, there is no physical reason why ℓ_1 should be even approximately a function of Ω_0 alone. For fixed values of Ω_M less than 0.4 the ℓ_n fall off with increasing Ω_0 much more rapidly than would be expected from Eq. (1), so the measurement of the positions of the Doppler peaks provides a more stringent constraint on Ω_0 than would be the case if Eq. (1) were correct.

Acknowledgements

I am grateful for conversations with M. Kamionkowski, M. Roos, M. Turner, and M. White. This research was supported in part by the Robert A. Welch Foundation and NSF Grant PHY-9511632.

References

5. P. Frampton, Y. J. Ng, and R. Rohm, *Mod. Phys. Lett.* A13, 2541 (1998). There are aspects of this paper with which I disagree, but they are not relevant to the present work.

9. Bahcall et al.6 cited reference 2, while Turner7 cited no reference for Eq. (1). De Bernardis et al.1 cited no references for Eq. (1), but relied on references 2, 5, and 6. Roos and Harun-or-Rashid8 also cited no references, but took this formula from reference 1.

10. This formula is given, e. g., in reference 5.