Abstract: The zero-point energy of a contrasting superstring theory is studied by imposing the
background with boundary conditions on a better understanding of how gauge independence is realized in quantum field theory on
integral manifolds in the Lorenz gauge, and with BPS states. This investigation leads to
undeformed backgrounds with second derivatives. Conformal agreement is found with a previous paper-
studied a boundary-conformal field with boundary conditions on conformal fields for the Maxwell field. The resulting system can be decomposed by
longitudinal modes for the Maxwell field. The resulting modes are then found to be the Lenz and
potential and ghost fields. The coupled modes are then found to be the Lenz and
each gauge in the path-integral methods with boundary conditions on the electromagnetic
andakash energy of a contrasting superstring theory is studied by imposing the

Sudbury Laboratory, Oxford Road, Manchester M13 9PL, England

3rd, M. Moskva 117334, Russian Academy of Sciences, Russian Academy of Sciences, Moscow

University of Manchester, Department of Physics and Astronomy, Theory Group,

1, Lund, University of Lund, Sweden, 20126 Norrköping, Sweden

Nordita, Stockholm, Sweden, 20126 Norrköping, Sweden

Cambridge University, Department of Applied Mathematics and Theoretical Physics, Cambridge

Cambridge, 28 Jun 2000
The quantization programme of fundamental interactions in non-covariant gauges has been always of great importance, as is well known from the work in Refs. [1,2]. On the other hand, recent progress in the measurement of Casimir energies [3–6] motivates new theoretical efforts, including the comparison of covariant and non-covariant gauges for the evaluation of Casimir energies.

We here rely entirely on the path-integral analysis of Ref. [7], and avoid review for length reasons. Recall therefore that, in the case of a spherical shell of radius R, the axial gauge forces normal modes of the potential to vanish everywhere, jointly with ghost modes. One is then left with transverse modes $T_l(r) = \sqrt{\pi/2} \sqrt{r} I_{l+1/2}(Mr)$ which obey homogeneous Dirichlet conditions at $r = R$, while temporal and longitudinal modes (denoted by a_l and c_l, respectively), obey the coupled system [7]

\[
\left[\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} - \frac{l(l+1)}{r^2} \right] a_l - \frac{M(l+1)}{r^2} c_l = 0, \tag{1}
\]

\[
\left[\frac{d^2}{dr^2} - M^2 \right] c_l - Ma_l = 0. \tag{2}
\]

First, we now point out that this system can be decoupled if a_l is expressed from Eq. (2) and the result is inserted into Eq. (1). On setting $y \equiv Mr$, this leads to the fourth-order equation

\[
\left[\frac{d^4}{dy^4} + \frac{2}{y} \frac{d^3}{dy^3} - \left(1 + \frac{l(l+1)}{y^2} \right) \frac{d^2}{dy^2} - \frac{2}{y} \frac{d}{dy} \right] c_l(y) = 0. \tag{3}
\]

Moreover, we know from Ref. [7] that, at $r = R$, both a_l and c_l should vanish. By virtue of Eq. (2) this implies that, at $r = R$, both c_l and its second derivative should vanish. The origin $r = 0$ is a regular singular point of our boundary-value problem, and hence we require that both a_l and c_l should vanish therein. By virtue of Eq. (2), this implies that also the second derivative of c_l with respect to y vanishes at $y = 0$. Now we set $F_l(y) \equiv c'_l(y)$, and cast Eq. (3) in the form

\[
\frac{1}{y^2} \frac{d}{dy} \left[y^2 \left(\frac{d^2}{dy^2} - \left(1 + \frac{l(l+1)}{y^2} \right) \right) F_l(y) \right] = 0. \tag{4}
\]
On denoting by C a constant, the desired $F_i(y)$ solves therefore the inhomogeneous equation

$$
\left[\frac{d^2}{dy^2} - \left(1 + \frac{l(l + 1)}{y^2} \right) \right] F_i(y) = \frac{C}{y^2},
$$

(5)

whose regular solution reads (d being a constant)

$$
F_i(y) = C F_{sp}(y) + d \sqrt{\frac{\pi}{2}} \sqrt{y} I_{l+1/2}(y),
$$

(6)

where F_{sp} is chosen to be a particular solution of Eq. (5) with $C = 1$ whose first derivative vanishes at 0 and at $b \equiv MR$. The vanishing of c_l at the boundary fixes the relation between C and d, i.e.

$$
C = -d \int_0^b \frac{dz}{\pi} \sqrt{\frac{\pi}{2}} \sqrt{y} I_{l+1/2}(z) \int_0^b dz F_{sp}(z).
$$

(7)

Eventually, the vanishing of c_l'' at the boundary leads to

$$
I'_{l+1/2} + \frac{1}{2b} I_{l+1/2}(b) = 0,
$$

(8)

because, by construction, $C F_{sp}$ is a particular solution of Eq. (5) whose first derivative vanishes at the boundary. Equation (8), jointly with the vanishing at the boundary of transverse modes, yields the same set of eigenvalue conditions, with the same degeneracies, found for the interior problem in the Lorenz gauge in Ref. [7]. Thus, complete agreement [8] with Boyer’s value [9] for the Casimir energy is recovered.

Although non-covariant gauges break relativistic covariance, they make it possible to decouple Faddeev–Popov ghosts from the gauge field. Thus, ghost diagrams do not contribute to cross-sections and need not be evaluated, and this property has been regarded as the main advantage of non-covariant gauges [2]. In the case of Casimir energies, the ghost field is forced to vanish everywhere by virtue of the boundary conditions appropriate for the axial gauge [7], and the analysis of temporal and longitudinal modes, although rather involved, has been proved to lead to the same Casimir energy [9] for the interior problem in the Lorenz gauge [7]. The particular solution of the inhomogeneous equation (5) plays a non-trivial role in ensuring that, despite some technical points, the resulting Casimir
energy is the same as in the Lorenz gauge, hence proving explicitly the equivalence of a covariant and a non-covariant gauge for a conducting spherical shell. A better theoretical understanding of gauge independence in quantum field theory has been therefore gained, after the encouraging experimental progress of recent years in the measurement of Casimir forces [3–6].

Acknowledgments. Klaus Kirsten thanks Stuart Dowker for interesting discussions. The work of Klaus Kirsten has been supported by EPSRC, grant no GR/M08714.

References