document

Detection of X-ray Emission from Gravitationally Lensed Submillimeter Sources in the Field of Abell 370

M. W. Bautz,1 M. R. Malm,1 F. K. Baganoff,1 G. R. Ricker,1 C. R. Canizares,1 W. N. Brandt,2 A. E. Hornschemeier,2 and G. P. Garmire2

1Center for Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 2Department of Astronomy & Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802

abstract

We report the detection by Chandra of and, two distant submillimeter sources, (z=1.06 and z=2.81, respectively) with significances (>7σ) X-ray detections of the high-redshift submillimeter source population. The X-ray positions are coincident with the optical positions to within one arcsecond. The X-ray spectra, while of low signal-to-noise ratio, are quite hard. Absorbed power law models with fixed photon indices of Γ = 2.0 imply local absorbing columns \(> 2 \times 10^{23} \) cm\(^{-2}\) and unabsorbed luminosities \(> 10^{44} \) erg s\(^{-1}\) in both sources. These results imply that nuclear activity is responsible for the bulk of the luminosity in, and for at least 20% of the luminosity of, consistent with previous optical observations. We also place an upper limit on the X-ray flux of a third submillimeter source, . Considered together with previously published Chandra upper limits on X-ray flux from submillimeter sources, our results imply that 20\(^{+30}_{-10}\) % of submillimeter sources exhibit X-ray emission from AGN (90% confidence), consistent with expectations of their contribution to the diffuse X-ray background.
\[\alpha (850\mu m-2\text{keV}) \]

Redshift

Arp 220

NGC 6240

LRG J0239-0134

SMM 0239-0136

\(N_t = 5.23 \text{cm}^{-2} \)