Cosmic Statistics of Statistics: \(N\)-point Correlations

István Szapudi
Canadian Institute for Theoretical Astrophysics
University of Toronto
60 St. George Street
Toronto, Ontario, M5S 3H8

Abstract.

The fully general calculation of the cosmic error on \(N\)-point correlation functions and related quantities is presented. More precisely, the variance caused by the finite volume, discreteness, and edge effects is determined for any estimator which is based on a general function of \(N\)-tuples, such as multi-point correlation functions and multi-spectra. The results are printed explicitly for the two-point correlation function (or power-spectrum), and for the three-point correlation (or bispectrum). These are the most popular statistics in the study of large scale structure, yet, the general calculation of their variance has not been performed until now.

1. Introduction

Astrophysics provides prime examples of random fields, such as the distribution of galaxies and the fluctuations of the Cosmic Microwave Background (CMB). Such random fields can be characterized statistically by a series of well chosen estimators. The most popular ones include counts-in-cells, \(N\)-point correlation functions, as well as statistics derived from them. Indeed, there are mathematical theorems, which state that, under certain conditions, both series describe a random process fully.

Our goal in astrophysics is not simply estimating these statistics, but to constrain underlying theories. This aim necessitates a firm control over the expected statistical errors from a survey. The theory of errors for finite surveys, the “cosmic statistics of statistics”, is therefore of utmost importance for practical applications. Such a theory was formulated in the past for counts in cells statistics. \(^9,^3,^2\)

For the \(N\)-point correlation functions, however, to date only partial results are published, such as calculation of the discreteness effects for the two-point correlation function\(^7\), and for \(N\)-point correlation functions for Poisson and multinomial point processes\(^10\), full calculation for the two-point function under the hierarchical assumption with edge effects neglected\(^1\), and some results in Fourier space with various degree of approximations.
The aim of this proceedings is to present the general variance calculation for N-point correlation functions with all major contributions included, such as discreteness effects, arising from sampling the underlying random field with a finite number of galaxies, edge effects, due to the geometry of the survey and the corresponding uneven weighting of N-tuples, and finite volume effects, caused by fluctuations at and above the scale of a survey. The underlying technique of calculation, as well as the fully general results are presented here; specializations such as power spectrum and bispectrum, and approximations, such as weakly non-linear perturbation theory, hierarchical assumptions, will be presented elsewhere in collaboration with S. Colombi, and A.S. Szalay.

The next section sets up the general mathematical framework for the calculation using computer algebra packages. §3 presents the results for $N = 2$, and $N = 3$. The final discussion section outlines how the formulae can be used in practice, as well as describes developments in the immediate future.

2. General Framework

Many interesting statistics, such as the N-point correlation functions and their Fourier analogs, can be formulated as functions over N points in a catalog. The covariance of a pair of such estimators will be calculated for a general point process under the assumption that the average density is a priori known. This is the obvious generalization of the Poisson process when arbitrarily high order correlations are present. The number of objects is thus varied corresponding to a grand canonical ensemble in statistical physics. The following calculations lean heavily on the elegant formalism by Ripley, which can be consulted for details, and are the direct generalization of the framework set up by Szapudi & Szalay.

Let D be a catalog of data points to be analyzed, and R randomly generated over the same area, with averages λ and ρ respectively. The role of R is to perform a Monte Carlo integration compensating for edge effects, therefore eventually the limit $\rho \to \infty$ will be taken. λ on the other hand is assumed to be externally estimated with arbitrary precision. No other assumption is taken about the point process. In practice, λ is usually estimated from the same survey, which gives rise to additional correlations, the “integral constraint bias”. This effect will be investigated in more detail elsewhere.

Following, let us define symbolically an estimator $D^p R^q$, with $p + q = N$ for a function Φ symmetric in its arguments

$$D^p R^q = \sum \Phi(x_1, \ldots, x_p, y_1, \ldots, y_q),$$

where $x_i \neq x_j \in D, y_i \neq y_j \in R$. As an example, the two point correlation function corresponds to $\Phi(x, y) = [x, y \in D, r \leq d(x, y) \leq r + dr]$, where $d(x, y)$ is the distance between the two points, and $[condition]$ equals 1 when condition holds, 0 otherwise. Ensemble averages can be estimated via factorial moment measures, ν_s. In the Poisson limit $\nu_s = \lambda^s \mu_s$, where μ_s is the s dimensional Lebesgue measure, and in the most general case $\nu_s f(x_1, \ldots, x_s) = (x^s) \lambda^s \mu_s$. The function $\lambda^s f(x_1, \ldots, x_s) = F(x_1, \ldots, x_s)$ can be identified as the full, i.e. non-reduced, N-point correlation function. The connection between these and
the reduced N-point correlation functions is well known10, and can be obtained through either generating functions, or recursions.

The general covariance of a pair of estimators is

$$E(p_1, p_2, N_1, N_2) = \langle \hat{D}^{p_1} \hat{R}_a^{q_1} \hat{D}^{p_2} \hat{R}_b^{q_2} \rangle = \sum_{i,j} \binom{p_1}{i} \binom{p_2}{j} i! j! S_i \lambda^{-i} \rho^{-j},$$

with $p_1 + q_1 = N_1, p_2 + q_2 = N_2$, S will be specified later, $\hat{\cdot}$ denotes normalization with λ, ρ respectively, i.e. $\langle \hat{D} = D/\lambda, \hat{R} = R/\rho$. The expression simply describes the fact that out of the p_1 and p_2 different data points in D we have an i-fold degeneracy, as well as a j-fold degeneracy in the random points drawn from R.

To simplify the exposition of the calculation, it is convenient to assume from the very beginning the $\rho \to \infty$, i.e. the random process employed for the Monte Carlo integration of the shape of the survey is arbitrarily dense. This is usually achievable in practice, thus it will not be considered further. The above equation describes the cross-correlation of two estimators even for two different objects as well: e.g., two particular bins of the two- and three-point correlation functions.

An interesting special case, $N_1 = 1$ (the average density in the survey) and $N_2 \geq 2$, is needed for calculating the “integral constraint” correction.

When the random process is arbitrarily dense only $j = 0$ survives,

$$E(p_1, p_2, N_1, N_2) = \langle \langle \hat{D}^{p_1} \hat{R}_a^{q_1} \hat{D}^{p_2} \hat{R}_b^{q_2} \rangle = \sum_{i,j} \binom{p_1}{i} \binom{p_2}{j} i! \lambda^{-i} \hat{S}_i f(1, 2, \ldots, p_1, N_1 + 1, \ldots, N_1 + p_2 - i),$$

where \hat{S} is now an operator acting on f,

$$\hat{S}_k = \int \Phi_a(1 \ldots N_1) \Phi_b(1 \ldots i, N_1 + 1, \ldots, N_1 + N_2 - i) \ldots \mu_{2N-k}.$$ (4)

The operator \hat{S}_k is analogous to the phase space integral S_k.10 The dot emphasizes that the integral can be performed only after \hat{S}_k is acted on f which is part of the measure. The phase space has to be calculated in the general case via the full factorial moment measure of which f is an integral part. Throughout the paper we use the convention that $\binom{k}{l}$ is nonzero only for $k \geq 0, l \geq 0, k \geq l$, and the variables x_i are denoted with i for simplicity. Here Φ_a and Φ_b denote two different functions, for instance corresponding to two radial bins of two estimators of the same or different orders. In the above formula the symmetry of Φ in its arguments was heavily relied on to achieve the above “standard” representation of the operator.

The dependence of S_k on a, b, and N is not noted for convenience10, but they will be assumed throughout the paper. The estimator10 for the generalized N-point correlation function is $(\hat{D} - \hat{R})^N$, or more precisely,

$$\tilde{w}_N = \frac{1}{S} \sum_i \binom{N}{i} (-)^{N-i} (\frac{D}{\lambda})^i (\frac{R}{\rho})^{N-i},$$ (5)

3
where \(S = \int \Phi \mu N \) (without subscript). In this case \(S \) is a number since it corresponds to the Poisson catalog with its simple factorial moment measure. The average of the estimator yields

\[
\langle \hat{w}_N \rangle = \frac{1}{S} \sum_i \left(\begin{array}{c} N \\ i \end{array} \right) (-)^{N-i} \int \Phi(1, \ldots, N) f(1, \ldots, N) \mu N =
\]

\[
\frac{1}{S} \int \Phi(1, \ldots, N) \xi N(1, \ldots, N) \mu N.
\]

Since the role of \(\Phi \) is effectively a window, with a window operator \(\hat{W} \) this can be written symbolically as

\[
\langle \hat{w}_N \rangle = \hat{W} \xi N / \hat{W}.
\]

The asymptotic centered covariance between two estimators of the above for a general point process in the limit of \(\rho \to \infty \) can be written according to the previous considerations as

\[
\langle \delta \hat{w}_{N_1} \delta \hat{w}_{N_2} \rangle = \langle \hat{w}_{a,N_1} \hat{w}_{b,N_2} \rangle - \langle \hat{w}_{a,N_1} \rangle \langle \hat{w}_{b,N_2} \rangle = \frac{1}{S^2} \sum_{i,j} \left(\begin{array}{c} N_1 \\ i \end{array} \right) \left(\begin{array}{c} N_2 \\ j \end{array} \right) (-)^{i+j} \left[E(i, j, N_1, N_2) - S_0 f(1, \ldots, i) f(N_1 + 1, \ldots, N_1 + j) \right].
\]

In the above the operator \(S_0 \) acts on the multiple of the two \(f \)'s on the right. The above equation is the main result of this paper. While it is quite cumbersome, it is easily expandable with the help of computer algebra, as demonstrated by the examples of the next section. The special cases rendered will also illustrate how the simplicity of the proposed class of estimators exactly manifests itself by a mass cancellation of terms. Any other estimator would have extra terms in the variance.\(^\text{10}\)

3. **The cosmic error on the two-and three-point correlation functions**

The above equation was entered into a computer algebra package. The symmetries and simplicity of the estimator give rise to cancellations and possibilities for collecting similar terms. This is the reason why the final result for the two-point correlation function has only three to six terms, while formally it could have up to about a hundred. Alternative estimators, such as \(DD/RR - 1 \), etc. would not yield significantly less cancellations, therefore error-calculation for them was not attempted; although the same formalism applies.

3.1. **The two-point function**

The covariance for the two-point function (or any quantity estimated from doublets of points, such as the power spectrum) can be expressed after the cancellations and the possible simplifications as

\[
\langle \delta \hat{w}_{a} \hat{w}_{b} \rangle = \frac{1}{S^2} \left\{ \int \Phi_a(1, 2) \Phi_b(3, 4) [\xi(1, 2, 3, 4) + 2\xi(1, 3)\xi(2, 4)] + \right. \]

\[
\left. \frac{4}{\lambda} \int \Phi_a(1, 2) \Phi_b(1, 3) [\xi(2, 3) + \xi(1, 2, 3)] + \right. \]

\[
\left. \frac{2}{\lambda^2} \int \Phi_a(1, 2) \Phi_b(1, 2) [1 + \xi(1, 2)] \right\}.
\]
The above equation is essentially identical to the result of Hamilton\(^6\) where he calculates the variance of \(\delta\), the fluctuation field itself. This is not at all surprising.\(^{10}\) The estimator contains exactly the same terms and coefficients (regardless of the choice of \(\Phi\)) as \(\delta\) itself, which strongly suggests that it is (nearly) optimal.

The above formula contains the different contributions to the error\(^9\) entirely mixed. Approximate separation of the different terms appears to be fruitless. The only general point to be made is that discreteness effects are absent in the first term, while they are present (mixed with the other two effects) in the \(1/\lambda^s\) terms, with \(s > 0\). This is naturally true for the higher order calculations as well.

It is worth to emphasize again, that this formula applies for the generalized 2-point function, including the “traditional” 2-point function, and any of its incarnations, such as the the power spectrum. In the latter case, esthetic or practical reasons might dictate that the errors on the power spectrum are expressed in terms of the power-spectrum, bi-, and tri-spectrum, instead of the two-, three-, and four-point correlation functions. Since the connection is a simple Fourier transform, this trivial exercise is left for the reader. Explicit formulae, aimed at practical applications for power-spectrum will be presented elsewhere.\(^{11}\)

3.2. The three-point correlation function

The same method yields (co)variance for higher order estimators as well. We present another example, the generalized three-point correlation function. Its variance, using again the main result of the proceeding, translates into:

\[
\langle \delta \tilde{w}_3^a \delta \tilde{w}_3^b \rangle = \frac{1}{S^2} \left\{ \int \Phi_a(1, 2, 3)\Phi_b(4, 5, 6) [\xi(1, 2, 3, 4, 5, 6) + 3\xi(1, 2)\xi(3, 4, 5, 6) + 9\xi(1, 4)\xi(2, 3, 5, 6) + 3\xi(4, 5)\xi(1, 2, 3, 6) + 9\xi(1, 4)\xi(2, 3)\xi(5, 6) + 6\xi(1, 4)\xi(2, 5)\xi(3, 6)] \right. \\
\frac{9}{\lambda} \int \Phi_a(1, 2, 3)\Phi_b(1, 4, 5) [\xi(1, 2, 3, 4, 5) + \xi(2, 3, 4, 5) + 2\xi(1, 2)\xi(3, 4, 5) + 2\xi(1, 4)\xi(2, 3, 5) + \xi(2, 3)\xi(4, 5) + 2\xi(2, 4)\xi(3, 5)] \right. \\
\frac{18}{\lambda^2} \int \Phi_a(1, 2, 3)\Phi_b(1, 2, 4) [\xi(1, 2, 3, 4) + 2\xi(1, 3)\xi(2, 4)\xi(3, 4)] \right. \\
\frac{6}{\lambda^3} \int \Phi_a(1, 2, 3)\Phi_b(1, 2, 3) [\xi(1, 2, 3) + 3\xi(1, 2) + 1] \right\}.
\]
For simplicity, in the above formula the order of ξ is notated with the number of arguments only, e.g., $\xi_3(1, 2, 3) = \xi(1, 2, 3)$. The above equation is less obviously useful then that of the two-point correlation function. Nevertheless, given a model for the higher order correlation functions, such as weakly non-linear perturbation theory, or any well specified version of the hierarchical assumption, the equation can easily be turned into a practical computer program.\(^{11}\)

The variance of the four-point and higher order correlation functions can be calculated analogously, but it would make no sense to print the results. When needed, the formulae generated by computer algebra can be transformed into Fortran or C-code directly.

4. Discussion

The above method, and the explicit formulae given, can be used to evaluate the cosmic error on any statistical measure based on N-tuples of a distribution. This includes, but is not limited to, N-point correlation functions, N-th order cumulants, cumulant correlators, multi-spectra, etc.

The above calculation was performed only for the best N-point estimator.\(^{10}\) Any other estimator can be calculated analogously, but be warned that the resulting number of terms can be overwhelming due to the insufficient cancellation arising from suboptimal edge correction.

The fact that the average density is assumed to be given as an outside parameter appears to be fairly restrictive. However, maximum likelihood context, which is the most important potential practical application of the results, it is easy to remedy the situation. The proposed estimator\(^ {10}\) can be trivially changed by not normalizing with the average density λ. This introduces only a small modification to the final formulae, and a set of estimators, including that of the average count, contains all information need for constructing likelihood function. Such a procedure yields full statistical description, takes into account fluctuations in the mean, and the fact the average is estimated from the same surveys ("integral constraint"). Practical demonstration of this procedure will be presented elsewhere.\(^ {11}\)

The proposed estimator used here is not connected for $N \geq 4$.\(^ {10}\) Therefore the calculations for the higher order connected estimator should be modified for accurate results for the connected moments. This trivial but tedious generalization is left for future research.

The explicit formulae can be specialized for several cases, which will be presented elsewhere.\(^ {11}\) The interesting limits include Poisson, Gaussian, weakly-nonlinear, strong correlations, hierarchy, shot noise limited, continuous limit etc. The detailed discussion of these limits, and specializations to particular statistics, such as N---point correlation functions, multi-spectra, would go beyond the scope of the present exposition. Similarly, the main equation yields cross correlations between different statistics as well, a must for any investigation in the maximum likelihood framework.

Finally, it is worth to note here, that recent advances in algorithms for calculating N-point correlation functions render these objects more interesting then ever. Fast algorithms\(^ {4}\) will make it possible to calculate N-point functions from very large catalogs, be it artificial or real data, which undoubtedly will culminate...
in new insights into the subject. The formulae presented in this proceedings will provide the firm theoretical grounding for any such investigation.

Acknowledgments
This work will form the integral part of a project in collaboration with S. Colombi, and A.S. Szalay soon to be published.¹¹

References

5. An Alternative Technique

An alternative method of calculation is possible, which is instructive and insightful, even if less rigorous mathematically than the above formalism using factorial moment measures. This alternative technique is well suited for obtaining quick results for low order estimators by hand. We demonstrate the calculation for two-point correlation function, higher order results can be obtained analogously, although it quickly becomes prohibitively tedious.

Let us assume that the survey is divided into K bins, each of them with fluctuations δ_i, with i running from 1...K. For this configuration our estimator can be written as

$$\tilde{w} = f_{12}\delta_1\delta_2.$$ (10)
The above equation uses a “shorthand” Einstein convention: 1, 2 substituting for i_1, i_2, and repeated indices summed. The pairwise weights f_{12} correspond to Φ in the main body of the paper, and it is assumed that the two indices cannot overlap.

The ensemble average of the above estimator is clearly $f_{12}\xi_{12}$. The continuum limit (co)variance between bins a and b can be calculated by taking the square of the above, and taking the ensemble average.

$$\langle \tilde{\delta}^a \tilde{\delta}^b \rangle = f_{12}^a f_{34}^b (\langle \delta_1 \delta_2 \delta_3 \delta_4 \rangle - \langle \delta_1 \delta_2 \rangle \langle \delta_3 \delta_4 \rangle). \tag{11}$$

Note that the averages in this formula are not connected moments, which are distinguished by $\langle \rangle_c$.

The above equation yields only the continuum limit terms. To add Poisson noise contribution to the error, note that it arises from the possible overlaps between the indices (indices between two pairweights can still overlap!). In the spirit of infinitesimal Poisson models, we replace each overlap with a $1/\lambda$ term, and express the results in terms of connected moments. There are three possibilities, i) no overlap (continuum limit)

$$f_{12}^a f_{34}^b (\xi_{1234} + \xi_{13} \xi_{24} + \xi_{14} \xi_{23}), \tag{12}$$

ii) one overlap (4 possibilities)

$$\frac{4}{\lambda} f_{12}^a f_{13}^b (\xi_{123} + \xi_{23}), \tag{13}$$

iii) two overlaps (2 possibilities)

$$\frac{2}{\lambda^2} f_{12}^a f_{12}^b (1 + \xi_{12}), \tag{14}$$

In these equations, for the sake of the Einstein convention we used $\xi^{(i, j, k, l)} \rightarrow \xi_{ijkl}$. The above substitutions (rigorously true only in the infinitesimal Poisson sampling limit) become increasingly accurate with decreasing cell size. In that limit, adding the above three equations is equivalent to Eq. 8.