The Orbital Period of Intermediate Polar 1WGA J1958.2+3232

Sergei. V. Zharikov, Gaghik. H. Tovmassian, Juan Echevarría, and Aixa Aubé Cárdenas

Observatorio Astronómico Nacional, Instituto de Astronomía, UNAM, 22800, Ensenada, B.C., Mexico

Received – / Accepted –

Abstract The detection of the orbital period of $4^{h}36$ is reported for the new Intermediate Polar 1 WGA J1958.2+3232. The orbital period was derived from time-resolved photometric and spectral observations. We also confirmed the 733 sec spin period of the White Dwarf consistent with the X-ray pulsations and were able to distinguish the beat period in the light curve. Strong modulations with orbital period are detected in the emission spectral lines from spectral observations. They show the presence of a bright hot spot on the edge of the accretion disk. The parameters of this recently discovered Intermediate Polar are determined.

Key words: stars: individual: 1 WGA J1958.2+3232 - stars:novae, cataclysmic variables - stars: binaries: close - X-rays: stars - intermediate polars: star magnetic CVs

1. Introduction.

Cataclysmic variables (CVs) are close binary systems in which mass is transferred from a red dwarf star that fills its Roche lobe onto a white dwarf (WD). Intermediate polars (or DQ Her systems) are a subclass of magnetic cataclysmic variables with an asynchronously rotating ($P_{\text{spin}} < P_{\text{orb}}$) magnetic white dwarf (Patterson, 1994; Warner, 1995). The accretion flow from the red dwarf star forms an accretion disk around white dwarf, and this disk is disrupted by the magnetic field close to the white dwarf. Within the magnetospheric radius, the material is channeled towards the magnetic polar regions in an arc-shaped accretion (Rosen, 1988).

The recently discovered pulsating X-ray source 1 WGA J1958.2+3232 (Israel et al., 1998) was announced as a new Intermediate Polar (IP) by Negueruela et al., (2000) from spectral observations. Strong modulations of this source in X-rays (~ 12 min) period (Uslenghi et al., 2000). This modulation was interpreted as evidence of a spin period of the WD in this close binary system.

In this paper we present the results of new photometric and spectral observations of this system.

2. Observations.

The CCD photometric and spectral observations of the 1 WGA J1958.2+3232 were carried out on 2–5 August 2000 at the 1.5m and 2.12m telescopes of the Observatorio Astronómico Nacional, San Pedro Martir of the Institute of Astronomy of UNAM, Mexico. The log of observations is presented in Table 1.

Table 1. Observations Log

<table>
<thead>
<tr>
<th>HJD start (day of exposure)</th>
<th>Duration (min)</th>
<th>Time of exposure (sec)</th>
<th>Band</th>
<th>Telescope</th>
</tr>
</thead>
<tbody>
<tr>
<td>759.719</td>
<td>380</td>
<td>120</td>
<td>R_c</td>
<td>1.5m</td>
</tr>
<tr>
<td>760.671</td>
<td>435</td>
<td>120</td>
<td>R_c</td>
<td>1.5m</td>
</tr>
<tr>
<td>761.851</td>
<td>173</td>
<td>700</td>
<td>4025–5600Å</td>
<td>2.12m</td>
</tr>
<tr>
<td>762.649</td>
<td>461</td>
<td>700</td>
<td>4025–5600Å</td>
<td>2.12m</td>
</tr>
<tr>
<td>763.678</td>
<td>319</td>
<td>700/350</td>
<td>4025–5600Å</td>
<td>2.12m</td>
</tr>
</tbody>
</table>

*2 August.

2.1. Optical photometry

We obtained R_c-band time-resolved photometry of the optical counterpart of 1 WGA J1958.2+3232 during two nights in August 2000 at the 1.5m telescope. The telescope was equipped with a 1024×1024 pixel SITE CCD. The frame was reduced in size to 450 \times 450 pix for faster read-out. It accommodated the object and at least two comparison stars in the field of view. The exposure times were 120 sec, which leads to the time resolution of 169 sec, taking into account dead time between readouts. In total the object was monitored during ~ 13.55h (6.3h the first night and 7.25h the second). The data reduction was performed...
Figure 1. 1 WGA J1958.2+3232 light curves in Rc band are presented. Binning time is 120s.

Figure 2. The CLEANed power spectrum of Rc light curve is given. The orbital period \(\Omega_{\text{orb}} \) and \(\omega_{\text{rot}} \) spin period frequencies are marked. In the inset part of the cleaned power spectrum with a fewes number of iterations is shown. The beat frequencies \(\omega_{\text{rot}} - \Omega_{\text{orb}}, \omega_{\text{rot}} + \Omega_{\text{orb}} \) and \(\omega = 1/727.78 \) sec are presented.

by using ESO-MIDAS\(^1\) and IRAF\(^2\) softwares. The images were corrected for bias and flatfield before aperture photometry was carried out. An estimate of uncertainty of the CCD photometry of the optical counterpart of 1 WGA J1958.2+3232 was obtained from the dispersion of magnitudes in the differential photometry of comparison stars with similar brightness. The dispersion ranged from 0.005 to 0.01 mag. We did not obtain an absolute calibration for our photometric data.

2.2 Optical spectroscopy

Time-resolved spectroscopy of the optical counterpart of 1 WGA J1958.2+3232 was obtained on 4-6 Aug, 2000 using the Boller & Chivens spectrograph installed in the Cassegrain focus of the 2.12m telescope. We used the 400 l/mm grating with a 13\(^{\circ}\)54 blaze in the second order, combined with the blue BG39 filter and CCD TEK1024 \(\times \) 1024 pix with a 0.24\(\mu \) pixel size. The slit width was 1.5 arcsec projected on the sky. This combination yielded a spectral resolution of 2.7\(\AA \) FWHM and provided a wavelength coverage of \(\lambda 4050 - 5600 \) \(\AA \). From three nights of spectral observations the second and third nights were disrupted by passing clouds. However the seeing was satisfactory with images being \(\leq 1.2 \) arcsec. The slit was oriented with position angle of 306\(^{\circ}\) to accommodate nearby star for the flux level control. The exposure time in the first two nights was 700 sec, while on the third night, 700 and 350 sec. The He-Ar comparison spectra were taken every \(\sim 120 \) min. A total of 68 spectra were obtained. The IRAF long slit spectroscopic reduction package was used for extraction of spectra, wavelength and flux calibrations. Before head the images were reduced for bias and cosmic rays.

3. Results

3.1 Light Curve. Orbital and Spin Modulations

The object demonstrates multi-scale time variability in the range 0.3 magnitudes (see. Fig.1). Four pronounced eclipse-like depressions obviously shape the light curve. Strong flickering with optical pulse amplitude (semiamplitude) of about 0.1 magnitude is also obvious in the light curve detected and identified earlier (Israel et al., 1998, Uslenghi et al., 2000) as spin related modulations. The photometric data of 1 WGA J1958.2+3232 was analyzed for periodicities using Discrete Fourier Transform (DFT) code (Deeming, 1975) with the CLEAN procedure (Roberts et al., 1987). The CLEANed power spectrum (Fig.2) of Rc photometric data shows a clear peak at \(\Omega_{\text{orb}} = 5.54996 \pm 0.39624 \), corresponding to \(P = 0.1802 \pm 0.0065d \). This peak is caused by above mentioned eclipses in the light curve and clearly marks the orbital period of the system.

We found also a significant peak at the spin period \(\omega_{\text{rot}} \) of the WD corresponding to 733.82 \(\pm \) 1.25sec. This period is in excellent accordance with that recently discovered by ASCA X-ray pulsations (Israel et al., 1999). The beat frequencies at search in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation

\(^1\) ESO-MIDAS is a copyright protected software product of the European Southern Observatory, and provides general tools for image processing and data reduction.

\(^2\) IRAF is the Image Reduction and Analysis Facility, a general purpose software system for the reduction and analysis of astronomical data. IRAF is written and supported by the IRAF programming group at the National Optical Astronomy Observatories (NOAO) in Tucson, Arizona. NOAO is operated by the Association of Universities for Research in Astronom y (AURA), Inc. under cooperative agreement with the National Science Foundation.
3.2. Radial Velocity Variations and Binary System Parameters

The spectrum of 1WGA J1958.2+3232 shows features characteristic to Cataclysmic Variables. We refer to the Fig. 1 of Negueruela et al., (2000), who obtained spectrum of the object in a wider spectral range and with better spectral resolution. Meanwhile we obtained time-resolved spectroscopy of 1WGA J1958.2+3232 around the emission lines of H_β and He I, covering several orbits. Thus, we were able to consider periodical variations in the spectrum of the object, primarily in the emission lines. The simple stacking of consecutive spectra onto the trailed spectrum showed strong variability in lines. It is distinct in Balmer lines and in the higher excitation lines of ionized Helium. The Balmer lines are double- peaked with S-wave moving inside, which makes it hard to see the periodic pattern. In the He I 4686 line the central narrow component dominates in most of the phases, and it shows clear sinusoidal variation.

In order to determine the orbital elements we measured the radial velocities (RV) of H_β applying the double Gaussian deconvolution method introduced by Schneiger & Young, (1980) further developed by Shafter (1983). This method is especially efficient for measurements of the orbital motion of CVs with a prominent spot at the edge of the accretion disk, contaminating the central parts of the emission lines. It allows us to measure RV variations using the wings of the lines. The width of Gaussians were chosen to be slightly larger than our spectral resolution (8.5 Å), where deconvolution was reached at all orbital phases. The radial velocities were measured as a function of distance a between the Gaussians, and then the diagnostic diagrams were constructed using an initial guess for the orbital period, derived from photometry and from preliminary radial velocity measurements via Gaussian fits to the lines. The optimal value of separation (a = 1175 km /sec) was determined from

$\omega_{\text{rot}} - \Omega_{\text{orb}}, \omega_{\text{rot}} + \Omega_{\text{orb}}$ are also present in the CLEANed power spectrum but with a fewer number of iterations (see insert in the upper right corner of the Fig 2). The harmonics of basic frequencies Ω_{orb} and ω_{rot} are detected as well. Besides these, there are comparably significant peaks at the periods of 727.78 sec and 1.36h. The former was detected also by Uslengi et al., (2000) and is probably the one day alias of the ω_{rot}, while for the latter we could not find any reasonable explanation.
the diagnostic diagrams, and the RV values measured for these Gaussian separations were again subjected to a power spectrum analysis in order to refine the period. The spectroscopic period peaked at slightly longer value, than the photometric (however within errors of the photometric period). This method quickly converged and after two iterations no further improvement was achieved. The diagnostic diagrams for Hβ are shown in Fig.3. Fig.5 (top) shows the Hβ radial velocity curve.

A narrow single Gaussian profile was fitted to the prominent emission features in the profile of He II λ4686Å, and the measured line centers were used to determine the radial velocity solution for 1WGA J1958.2+3232. The radial velocity curve for He II λ4686 line is presented on the middle panel of Fig.5. These measurements were also subjected to the power spectrum analysis. The obtained orbital period is in good agreement with the values derived from the photometry and the Hβ line radial velocities. The power spectra around the values corresponding to the orbital period from these three independent determinations are plotted in the Fig.4. One can see the excellent match of the central peak. We adopted the 0.18152 ± 0.00011 as the final value for the orbital period of 1WGA J1958.2+3232 from our observations. Longer time base observations are needed to improve this value.

Each of the radial velocity curves was fitted using a least-squares routine of the form

$$v(t) = \gamma_0 + K_1 \sin(2\pi (t - t_o)/P),$$

where \(\gamma_0\) is the systematic velocity of the system, and \(K_1\) is the semi-amplitude of radial velocity, both in km s\(^{-1}\). The observation time is \(t\), the epoch \(t_0 = 2451761.2281 ± 0.00001\) corresponds to the +/- zero crossing of the \(H_\beta\) radial velocity curve, and therefore is a superior conjunction of the binary system (secondary located between observer and the WD). Accordingly the phase 0.0 was calculated and operated further at this epoch. Table.2 gives summary of the radial velocity fits for Hβ and He II 4686 emission line.

<table>
<thead>
<tr>
<th>Name</th>
<th>(\gamma_0)</th>
<th>(K_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hβ</td>
<td>−39 ± 5</td>
<td>74 ± 7</td>
</tr>
<tr>
<td>He II 4686</td>
<td>−70.2 ± 15.0</td>
<td>197.4 ± 25.7</td>
</tr>
</tbody>
</table>

After refining the orbital period from spectroscopy, and determining the phase 0.0, the photometric light curve was folded by the corresponding parameters and presented in the lower panel of Fig.5.

Several conclusions can be made after considering the three curves in Fig.5 in conjunction with and taking into account common knowledge of Intermediate Polar systems (Patterson, 1994, Warner, 1995):

- The double peaked Balmer lines are due to the presence of an accretion disk or ring orbiting the primary WD in this IP. RV variations in the wings of lines describe the rotation of the primary of the binary system.
- The S-wave present in the Balmer and He II emission lines is evidence for a hot compact region on the accretion disk.
- From the difference of phases and amplitudes of radial velocities of wings of Hβ and the narrow component of He II we can localize the hot spot in the second quarter of the disk, if the center of coordinates is at the WD. It is the usual location of the spot originating from the impact of the mass transfer stream with the accretion disk. However it is also the area which most commonly heated by the energetic X-ray beam from the magnetically accreting pole on the surface of the WD in IPs (see the sketch in Hellier et al., 1989).
- The hot spot is self eclipsed by the accretion ring as follows from the phasing of the light curve, the dips in the light curve centered at the phase \(0.12\phi_{orb}\). The primary at this phase starts to move toward the observer and the hot spot is on the opposite side of the ring approaching maximum velocity.

We estimate the mass and radius of the secondary star as \(M_2 = 0.41 M_\odot\) and \(R_2 = 0.47 R_\odot\) from

\[
M_2/M_{sun} = 0.0751 P(h)^{1.16},
\]

\[
R_2/R_{sun} = 0.101 P(h)^{1.05}, \quad 1.4 < P(h) < 12
\]

the mass-period and radius-period relations of Echevarría, (1983)

The mean mass estimate of 76 CV white dwarfs is \(M_{WD} = 0.86 M_\odot\) (Sion, 1999). Webbink, (1990) gives statistically average white dwarf masses ratios \((q = 0.29)\) and average masses for all systems \((M_{wd} = 0.61 M_\odot)\) below the period gap and \((q = 0.64, M_{wd} = 0.82 M_\odot)\) above the period gap.
Figure 7. Trailed, continuum-subtracted, spectrums of 1WGA J1958.2+3232 plotted in two cycles. Doppler maps of the emission lines He II (left panel), Hβ (right panel) in velocity space \((V_x, V_y)\) are given. A schematic overlay marks the Roche lobe of the secondary, the ballistic trajectory and the magnetically funneled horizontal part of the accretion stream. The secondary star and gas-stream trajectory are plotted for \(K=74\) km/s and \(q=0.46\).

From our spectroscopic radial velocity solution, we can determine preliminary values for the basic system parameters of 1 WGA J1958.2+3232. The binary orbital plane inclination can be determined from (see Downes et al., 1986; Dobrzycka & Howel, 1992):

\[
\sin^3(i) = \frac{K_1^3 P}{2 \pi G M_2} \left(\frac{q + 1}{q}\right)^2
\]

if the mass ratio of the system is known. The dependance of \(i\) versus \(q = M_2/M_1\) in the range 0.4 up to 0.75 is shown in Fig.6 for the above determinated \(K_1_{H\beta}\).

We attempted to refine this estimate for 1 WGA J1958.2+3232 by constraining Doppler tomograms from observed emission line profiles. Doppler tomography is a useful tool to extract further information on CVs from trailed spectra. This method, which was developed by Marsh & Horne, (1988), uses the velocity profiles of emission lines at each phase to create a two-dimensional intensity image in

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{\text{orb}})</td>
<td>0.18152d</td>
<td>(R_2)</td>
<td>0.47 (R_\odot)</td>
</tr>
<tr>
<td>(P_{\text{rot}})</td>
<td>733.7s</td>
<td>(a)</td>
<td>1.5 (R_\odot)</td>
</tr>
<tr>
<td>(M_2)</td>
<td>0.41 (M_\odot)</td>
<td>(i)</td>
<td>35°</td>
</tr>
<tr>
<td>(q)</td>
<td>0.46</td>
<td>(M_1)</td>
<td>0.9 (M_\odot)</td>
</tr>
</tbody>
</table>
Apart from the spot a cometary tail linked to it and of C III /N III are displayed as a gray-scale image in Fig.7 is with the gray scale image. Our preferred solution of inclination fit" (by simple eye inspection) of calculated stream trajectory combination of \(i\) and \(q\) are marked on Fig.6 and is given in Table.3. Therefore, the Doppler tomogram can be interpreted as a projection of emitting regions in cataclysmic variables onto the plane perpendicular to the observers view. We used the code developed by Spruit (1998) to constrain Doppler maps of 1 WGA J1958.2+3232 with maximum entropy method. The resulting Doppler maps (or tomogram) of emission lines of H\(\beta\), He II and the blend of C III/N III are displayed as a gray-scale image in Fig.7 and Fig.8. Also in Fig.7 are displayed trailed spectra of H\(\beta\) and He II in phase space and their corresponding reconstructed counterparts. Two features in the maps are distinct: an accretion disk seen as a dark circle extending to up to \(\sim 700\) km/sec on H\(\beta\) doppler tomogram and a bright spots detected in all three maps to the left and below the center of mass at velocities \(V_x \sim -225\) km s\(^{-1}\), \(V_y \sim -100\) km s\(^{-1}\) in He II 4686. Apart from the spot a cometary tail linked to it and extending to \(V_x \approx V_y \approx -500\) km s\(^{-1}\) can be clearly seen on the He II map. These we identify with the mass transfer stream and its shape was essential for our selection of the ballistic trajectory. A helpful assistance in interpreting Doppler maps are additional inserted plots which mark the position of the secondary star and the ballistic trajectory of the gas stream. Here we used our estimates of \(P_{\text{orb}}\) and \(M_2\) with various combination of \(i\) and \(q\) from Fig.6 in order to obtain the “best fit” (by simple eye inspection) of calculated stream trajectory with the gray scale image. Our preferred solution of inclination is \(i = 35\) deg. It is marked on Fig.6 and is given in Table.3. Of course other close solutions are applicable. Comparing the location of spots in Doppler maps of He II and H\(\beta\) we can distinguish actually two hot spots on the disk (Fig.7). The elongated spot coinciding in both emission lines is caused probably by the mass transfer stream and the shock of impact with the disk, while the compact dense spot toward negative \(V_y\)'s, much better seen in H\(\beta\) than in the two other lines, is a result of heating of the disk by X-ray beam. The C III/N III pattern mostly repeats that of He II with less intensity of course (Fig.8).

4. Conclusions

The 1 WGA J1958.2+3232 results to be a classical “textbook” Intermediate Polar. It has an orbital period \(P_{\text{orb}} = 4\) days above the period gap, as the vast majority of IPs. It exhibits X-ray and optical coherent pulsations of the order of \(\sim 0.05P_{\text{orb}}\), undoubtedly originating from asynchronous spin of magnetic WD in a close binary system. Also the beat period in optical light is detectable. This is another characteristic of Intermediate Polars.

Other orbital parameters derived from assumption that the system obeys the \(P_{\text{orb}}\sim M_2\) relation for CVs are also in-line with accumulated data on other IPs and theoretical aspects (Warner, 1995, Paterson, 1994, see also URL\(^3\)).

The radial velocity curves, the light curve and the Doppler tomography confirm the presence of an accretion ring around the WD and the existence of hot spots caused by heating of parts of the disk by the X-ray beam and from interaction with the mass transfer stream.

Acknowledgements. This work was supported in part by CONACYT project 25454-E and DGAPA project.

References

Patterson J., 1994, PASP 106, 209
Webbink, R. 1990, in Accretion-Powered Compact Binaries, ed. C. W. Mauche (Cambridge: Cambridge Univ. Press), 177

\(^3\) http://lheawww.gsfc.nasa.gov/users/mukai/iphome/members.html#cand