abstract We present proper motions obtained from a dual frequency, six-epoch, VLBA polarization experiment monitoring a sample of 12 blazars. The observations were made at 15 GHz and 22 GHz at bi-monthly intervals over 1996. Ten of the eleven sources for which proper motion could be reliably determined are superluminal. Only J2005+77 has no superluminal components. Three sources (OJ 287, J1224 + 21, and J1512-09) show motion faster than $10h^{-1}c$, requiring γ_{pattern} of at least $10h^{-1}$ ($H_0 = 100h$ km s$^{-1}$ Mpc$^{-1}$). We compare our results to those in the literature and find motions outside the previously observed range for four sources. While some jet components exhibit significant non-radial motion, most motion is radial. In at least two sources there are components moving radially at significantly different structural position angles. In five of six sources (3C 120, J1224 + 21, 3C 273, 3C 279, J1512-09, and J1927 + 73) that have multiple components with measurable proper motion, the innermost component is significantly slower than the others.