On the continuum limit of fermionic topological charge in lattice gauge theory

David H. Adams

Math. dept. and Centre for the Subatomic Structure of Matter,
University of Adelaide, S.A. 5005, Australia.
email: dadams@maths.adelaide.edu.au

Abstract

It is proved that the fermionic topological charge of SU(N) lattice gauge fields on the 4-torus, given in terms of a spectral flow of the Hermitian Wilson–Dirac operator, or equivalently, as the index of the Overlap Dirac operator, reduces to the continuum topological charge in the classical continuum limit when the parameter m_0 is in the physical region $0 < m_0 < 2$.

Let T^4 denote the Euclidean 4-torus with fixed edge length L and fundamental domain $[0,L]^4 \subseteq \mathbb{R}^4$. A gauge potential on an SU(N) bundle over T^4 can be viewed as an su(N)-valued gauge field $A_\mu(x)$ on \mathbb{R}^4 satisfying

$$A_\mu(x + Le_\nu) = \Omega(x,\nu)A_\mu(x)\Omega(x,\nu)^{-1} + \Omega(x,\nu)\partial_\mu\Omega(x,\nu)^{-1}$$

(1)

where e_ν is the unit vector in the positive ν-direction and $\Omega(x,\nu)$, $\nu = 1,2,3,4$, are the SU(N)-valued monodromy fields which specify the principal SU(N) bundle over T^4.\(^1\) The Pontryagin number of the bundle is encoded in the gauge field as its topological charge:

$$Q = \frac{-1}{8\pi^2} \int_{T^4} \text{tr}(F \wedge F) = \frac{-1}{32\pi^2} \int d^4x \epsilon_{\mu\nu\rho\sigma} \text{tr}(F_{\mu\nu}(x)F_{\rho\sigma}(x))$$

(2)

\(^1\)These also satisfy a cocycle condition which ensures that $A_\mu(x + Le_\nu + Le_\rho)$ is unambiguous. It is always possible to make a gauge transformation so that $\Omega(x,\nu) = 1$ for $\nu = 1,2,3$ and $\Omega(x,4)$ is periodic in x_1,x_2,x_3. Then for fixed x_4 $\Omega(x,4)$ determines a map $T^3 \to \text{SU(N)}$. The degree of this map (which is independent of x_4 since $\Omega(x,4)$ depends smoothly on x_4) equals the Pontryagin number of the SU(N) bundle over T^4.\(^1\)
The sections $\psi(x)$ in the standard spinor bundle over T^4 twisted by the SU(N) bundle can be viewed as spinor fields on \mathbb{R}^4 satisfying

$$\psi(x + Le_\nu) = \Omega(x, \nu)\psi(x)$$ \hspace{1cm} (3)

The Dirac operator $\partial^A = \gamma^\mu(\partial_\mu + A_\mu)$ acts on these, and the Index Theorem [1] gives

$$Q = \text{index} \partial^A$$ \hspace{1cm} (4)

The index ∂^A is equal to the spectral flow of the hermitian operator $-\gamma_5(i\partial^A - m)$ as m increases from any negative to any positive value (note that eigenvalues can only cross the origin at $m = 0$ since $(\gamma_5(i\partial - m))^2 = \partial^2 + m^2$).

The spectral flow description of Q motivates a fermionic definition of topological charge Q_{lat} in lattice gauge theory [2, 3, 4], which has been extensively studied numerically in its various guises; see, e.g., [2, 5, 6, 4, 7, 8, 9, 10, 11] The purpose of this paper is to analytically prove that Q_{lat} reduces to Q in the classical continuum limit. (This result was announced in [12] although the argument we give here is simpler and more direct than the one sketched there.)

Put a hyper-cubic lattice on \mathbb{R}^4 with sites $a\mathbb{Z}^4$. We consider only the lattice spacings a for which L/a is a whole number. Furthermore we restrict to lattice spacings with the property $a_1\mathbb{Z}^4 \subset a_2\mathbb{Z}^4$ for $a_2 < a_1$. This implies that if $x \in \mathbb{R}^4$ is a lattice site in the lattice with spacing a then it is also a lattice site in all the other lattices with spacing $a' < a$. In the following, in statements concerning $a \to 0$ limits (in particular Proposition 2 below) the variable x always denotes such a point in \mathbb{R}^4; it is fixed in \mathbb{R}^4 and does not change as we go from one lattice to another.

The lattice transcript of A,

$$U_\mu(x) = T \exp\left(\int_0^1 aA_\mu(x + tae_\mu) \, dt \right)$$ \hspace{1cm} (5)

($T = t$-ordering) satisfies

$$U_\mu(x + Le_\nu) = \Omega(x, \nu)U_\mu(x)\Omega(x + ae_\mu, \nu)^{-1}.$$ \hspace{1cm} (6)
Given such a lattice, let \mathcal{C} denote the infinite-dimensional complex vectorspace of lattice spinor fields $\psi(x)$ (i.e. functions on the lattice sites taking values in $\mathbb{C}^4 \otimes \mathbb{C}^N$) and define the inner product

$$\langle \psi_1, \psi_2 \rangle = a^4 \sum_{x \in a\mathbb{Z}^4} \psi_1(x)^* \psi_2(x)$$

where a contraction of spinor and colour indices is implied. Let $\mathcal{H} \subset \mathcal{C}$ denote the Hilbert space of spinor fields with $||\psi|| < \infty$ and let $\mathcal{C}_L \subset \mathcal{C}$ denote the finite-dimensional subspace of spinor fields satisfying the lattice version of (3):

$$\psi(x + Le_\nu) = \Omega(x, \nu)\psi(x), \quad \forall \, x \in a\mathbb{Z}^4$$

The fields $\psi \in \mathcal{C}_L$ are determined by their restriction to $\mathcal{F}_L :=$the set of lattice sites contained in $[0, L)^4 \subset \mathbb{R}^4$. We define an inner product in \mathcal{C}_L by

$$\langle \psi_1, \psi_2 \rangle_L = a^4 \sum_{x \in \mathcal{F}_L} \psi_1(x)^* \psi_2(x)$$

The covariant forward (backward) finite difference operators $\frac{1}{a} \nabla_\mu^+ \ (\frac{1}{a} \nabla_\mu^-)$ are defined on \mathcal{C} by

$$\nabla_\mu^+ \psi(x) = U_\mu(x)\psi(x + ae_\mu) - \psi(x)$$
$$\nabla_\mu^- \psi(x) = \psi(x) - U_\mu(x - ae_\mu)^{-1}\psi(x - ae_\mu)$$

These are bounded ($||\nabla_\mu^\pm|| \leq 2$) and therefore map \mathcal{H} to \mathcal{H}. They also preserve (8) and therefore map \mathcal{C}_L to \mathcal{C}_L. Note that

$$\left(\nabla_\mu^\pm\right)^* = -\nabla_\mu^\mp$$

on \mathcal{H} and \mathcal{C}_L. The lattice version of $i\slashed{\partial}$ is the Wilson-Dirac operator:

$$D_w = i\frac{1}{a}\slashed{\nabla} + r\frac{1}{a^2}\Delta$$

where $\frac{1}{a}\slashed{\nabla} = \sum_\mu \gamma^\mu \frac{1}{2}(\nabla_\mu^+ + \nabla_\mu^-)$ is the naive lattice Dirac operator and $\frac{1}{a^2}\Delta = \frac{1}{a^2} \sum_\mu (\nabla_\mu^- + \nabla_\mu^+)^* \nabla_\mu^+ = \frac{1}{a^2} \sum_\mu (\nabla_\mu^-)^* \nabla_\mu^- \nabla_\mu^+$ is the lattice Laplace operator. Note that $\slashed{\nabla}$ is hermitian\(^2\) due to (12) and Δ is hermitian and positive. (The

\(^2\)We are following the maths convention where the γ^μ's are anti-hermitian. This explains the factor i in $i\frac{1}{a}\slashed{\nabla}$ in (13) which is not usually present in the physics literature where the γ^μ's are hermitian.
Wilson term, i.e. the second term in (13), which formally vanishes in the \(a \to 0 \) limit, is included to avoid the fermion doubling problem: a degeneracy of the nullspace of \(\nabla \) which is a lattice artifact unrelated to the continuum theory [13, 14].) The lattice version of \(\gamma_5 (i \nabla - m) \) is the hermitian operator \(\frac{1}{a} H_m \):

\[
\frac{1}{a} H_m = \frac{1}{a} \gamma_5 (D_w - \frac{r m}{a})
\]

\(H_m = \gamma_5 (i \nabla + r (\frac{1}{2} \Delta - m)) \) (15)

It can be shown that the spectrum of \(H_m \) is symmetric and without zero for all \(m < 0 \). Hence the spectral flow of \(-H_m \) as \(m \) increases from any negative value to some positive value \(m_0 \) is equal to half the spectral asymmetry of \(-H_{m_0} \) [3, 4]. This suggests the following fermionic definition of the topological charge of the lattice gauge field \(U_\mu (x) \):

\[
Q_{\text{lat}} = Q_{m_0} := -\frac{1}{2} \text{Tr} \left(\frac{H_{m_0}}{|H_{m_0}|} \right)
\] (16)

where \(H_{m_0} \) is acting on \(\mathcal{C}_L \). The spectral flow of \(H_m \) was first studied numerically in [2]. The definition (16) arose in the overlap formulation of chiral gauge theory on the lattice [3, 4]. \(Q_{m_0} \) also arises as an index: \(Q_{m_0} = \text{index} (D_{m_0}) := \text{Tr} (\gamma_5 |_{\ker D_{m_0}}) \) where \(D = \frac{1}{a} (1 + \gamma_5 \frac{H}{|H|}) \) is the Overlap Dirac operator [15].

Unlike in the continuum case, the spectral flow of \(-H_m \) depends on the final value \(m_0 > 0 \) of \(m \). Numerical studies have shown that for reasonably smooth lattice gauge fields, e.g. when \(U_\mu (x) \) is the lattice transcript of a smooth continuum gauge field and the lattice is reasonably fine, the eigenvalue crossings of \(-H_m \) are localised around \(m = 0, 2, 4, 6, 8 \) [2, 8]. Furthermore, when the lattice gauge field is the lattice transcript of a continuum field the spectral flow due to crossings close to \(m = 0 \) was found to reproduce the continuum topological charge \(Q \). In this paper we complement the previous numerical studies with the following analytical result:

Theorem. In the above setting, where \(U_\mu (x) \) is the lattice transcript (5) and \(m_0 \notin \{0, 2, 4, 6, 8\} \), there exists an \(a_0 > 0 \) (depending on \(A_\mu (x) \) and \(m_0 \)) such that

\[
Q_{m_0} = I(m_0)Q \quad \text{for all lattice spacings } a < a_0
\] (17)
where

\[
I(m_0) = \begin{array}{cccccc}
0 < m_0 < 2 & 2 < m_0 < 4 & 4 < m_0 < 6 & 6 < m_0 < 8 & m_0 \neq [0,8] \\
1 & -3 & 3 & -1 & 0
\end{array}
\]

(18)

Remarks. (i) The dependence on \(m_0 \) in (17)–(18) coincides with that found in the above-mentioned numerical studies with smooth lattice gauge fields.

(ii) The definition (16) of \(Q_{m_0} \) is only meaningful when \(H_{m_0} \) does not have zero-modes. In the present case this is guaranteed when \(m_0 \not\in \{0, 2, 4, 6, 8\} \) and \(a \) is sufficiently small. Indeed, it is known that when \(||1 - U(p)|| < \epsilon\) for all lattice plaquettes \(p \), where \(U(p) \) is the product of the link variables \(U_\mu(x) \) around \(p \), then there is a lower bound \(H_{m_0}^2 > b \), depending only on \(\epsilon \) and \(m_0 \), such that for fixed \(m_0 \not\in \{0, 2, 4, 6, 8\} \) \(b > 0 \) when \(\epsilon \) is sufficiently small. This bound was established in [16] (and improved in [17]) for the case where \(0 < m_0 < 2 \) and can be generalised to arbitrary \(m_0 \not\in \{0, 2, 4, 6, 8\} \) [18]. In the present case, where \(U_\mu(x) \) is the lattice transcript (5), we have

\[
1 - U(p_{x,\mu}) = a^2 F_{\mu\nu}(x) + O(a^3)(x)
\]

(19)

leading to

\[
||1 - U(p)|| \sim O(a^2)
\]

(20)

Hence the above-mentioned lower bound \(H_{m_0}^2 > b > 0 \) holds for all sufficiently small \(a \). Here and in the following \(O(a^p)(x) \) denotes a function on the lattice sites \(x \in \mathcal{F}_L \) such that the operator norm of \(O(a^p)(x) \), considered as a multiplication operator on \(\mathcal{C} \), satisfies \(||O(a^p)(x)|| \leq a^p K \) for all \(x \in \mathcal{F}_L \) where \(K \) is a constant independent of \(a \) and \(x \). (In (19) \(O(a^p)(x) \) takes values in the space of linear maps on \(\mathbf{C}^N \); sometimes \(O(a^p)(x) \) will just be a \(\mathbf{C} \)-valued function of \(x \), in which case we have \(|O(a^p)(x)| \leq a^p K. \)) We discuss the derivation of (19)–(20), and other bounds used in the following, in an appendix. In general, to conclude (20) from (19) we need the \(O(a^3)(x) \) term to satisfy \(||O(a^3)(x)|| \leq a^3 K \) for all \(x \in a\mathbf{Z}^4 \). For general gauge field \(A_\mu(x) \) on \(\mathbf{R}^4 \) this holds when \(||A_\mu(x)|| \) and \(||\partial_\mu A_\nu(x)|| \) are bounded on \(\mathbf{R}^4 \) (cf. the
In the present case the condition (1) generally results in divergence of $A_\mu(x)$ at infinity (for topologically non-trivial field). Nevertheless we still have (20) in this case: it is a consequence of (6) (note that $||U_\mu(x)|| = 1$ since $U_\mu(x)$ is unitary) and the fact that the $O(a^3)(x)$ term satisfies $||O(a^3)(x)|| \leq a^3K$ when x is restricted to be in the fundamental domain F_L.

The strategy for proving the theorem is to express Q_{m_0} as the sum of a density:

$$Q_{m_0} = a^4 \sum_{x \in F_L} q_L(x)$$ \hspace{1cm} (21)

and show that

$$q_L(x) = I(m_0)q^A(x) + O(a)(x) \quad (x \in F_L)$$ \hspace{1cm} (22)

where

$$q^A(x) = \frac{-1}{32\pi^2} \epsilon_{\mu\rho\sigma} \text{tr} F_{\mu\nu}(x) F_{\rho\sigma}(x)$$ \hspace{1cm} (23)

Then $\lim_{a \to 0} Q_{m_0} = I(m_0)Q$, and since Q_{m_0} is integer it follows that Q_{m_0} must coincide with $I(m_0)Q$ for small non-zero a as stated in the theorem.

To specify the density $q_L(x)$ in (21) we introduce the following definitions. We decompose $C = C^{sc} \otimes (C^4 \otimes C^N), H = H^{sc} \otimes (C^4 \otimes C^N)$ where C^{sc}, H^{sc} denote the corresponding spaces of scalar lattice fields. H^{sc} has the orthonormal basis $\{\delta_x^a\}_{x \in aZ^4}$ where $\delta_x(y) = \delta_{xy}$. For linear operator O_H on H we define $O_H(x,y) = \frac{1}{a^4}(\delta_x^a, O_H(\delta_y^a))$; this is a linear operator on $C^4 \otimes C^N$ satisfying

$$O_H \psi(x) = a^4 \sum_{y \in aZ^4} O_H(x,y) \psi(y) \quad \forall \psi \in H$$ \hspace{1cm} (24)

There is also an obvious decomposition $C_L = C_L^{sc} \otimes (C^4 \otimes C^N)$ with C_L^{sc} having the basis $\{\phi_x\}_{x \in F_L}$ where $\phi_x(y) = \frac{1}{a^4} \delta_{xy}$ for $y \in F_L$ and is extended to aZ^4 in accordance with (8):

$$\phi_x(y + Ln) = \frac{1}{a^2} \Omega(n)(x) \delta_{xy}, \quad \Omega(n)(x) = \prod_\nu \Omega(x,\nu)^{n_\nu}, \quad n \in Z^4$$ \hspace{1cm} (25)
For linear operator \mathcal{O}_L on \mathcal{C}_L we define $\mathcal{O}_L(x, y) = \frac{1}{a^4} \langle \phi_x, \mathcal{O}_L^\phi_y \rangle_L$ for $x, y \in \mathcal{F}_L$; this is a linear operator on $\mathbb{C}^4 \otimes \mathbb{C}^N$ satisfying

$$\mathcal{O}_L \psi(x) = a^4 \sum_{y \in \mathcal{F}_L} \mathcal{O}_L(x, y) \psi(y) \quad \forall \psi \in \mathcal{C}_L, x \in \mathcal{F}_L$$

The Cauchy–Schwarz inequality gives $\|\mathcal{O}_L(x, y)\| \leq \frac{1}{a^4} \|\mathcal{O}_L\|$ and $\|\mathcal{O}_L(x, y)\| \leq \frac{1}{a^4} \|\mathcal{O}_L\|$. The definition (16) of Q_{m_0} can now be rewritten as (21) with

$$q_L(x) = -\frac{1}{2} \text{tr} \left(\frac{H}{\sqrt{H^2}} \right)_L(x, x)$$

where $H = H_{m_0}$ and the trace is over spinor and colour indices (i.e. over $\mathbb{C}^4 \otimes \mathbb{C}^N$). The strategy for deriving (22)–(23) is now to relate $q_L(x)$ to $q_H(x)$, defined by replacing $\left(\frac{H}{\sqrt{H^2}} \right)_L$ by $\left(\frac{H}{\sqrt{H^2}} \right)_H$ in (27). (The latter is defined via the spectral theory for bounded operators on Hilbert space.) This approach was suggested to me by Martin Lüscher [19]. The point is that (22)–(23) are relatively easy to derive for $q_H(x)$; in fact this has essentially already been done in previous works [20, 21, 22, 23]. One potentially problematic aspect with regards to these previous calculations is that in the present case $A_\mu(x)$ can diverge for $|x| \to \infty$. However, we will get around this by exploiting the locality property of $\left(\frac{H}{\sqrt{H^2}} \right)_H$ [16], which will allow to replace $A_\mu(x)$ by a gauge field which vanishes outside a bounded region of \mathbb{R}^4.

The relation between $q_L(x)$ and $q_H(x)$ is as follows:

Proposition 1.

$$\left(\frac{H}{\sqrt{H^2}} \right)_L(x, y) = \sum_{n \in \mathbb{Z}^4} \left(\frac{H}{\sqrt{H^2}} \right)_H(x, y + Ln) \Omega^{(n)}(y) \quad (x, y \in \mathcal{F}_L)$$

where $\Omega^{(n)}(x)$ is defined in (25). In particular, setting $y = x$ and substituting in (27) we get

$$q_L(x) = q_H(x) - \frac{1}{2} \sum_{n \in \mathbb{Z}^4 - \{0\}} \text{tr} \left(\frac{H}{\sqrt{H^2}} \right)_H(x, x + Ln) \Omega^{(n)}(x)$$

Proof. We begin by deriving a relation between $\mathcal{O}_L(x, y)$ and $\mathcal{O}_H(x, y)$ for bounded operators \mathcal{O} on \mathcal{C} which leave \mathcal{C}_L invariant. The proposition will then follow by
exploiting the fact that \(\left(\frac{H}{\sqrt{H^2}} \right)_L \) and \(\left(\frac{H}{\sqrt{H^2}} \right)_\mathcal{H} \) can be simultaneously approximated by such operators. The approximation part is necessary since \(\frac{H}{\sqrt{H^2}} \) is not a well-defined operator on the whole of \(\mathcal{C} \); the technicalities are related to the fact that \(\mathcal{C}_L \not\subset \mathcal{H} \), i.e. elements in \(\mathcal{C}_L \) can have infinite norm.

Let \(\mathcal{O} \) be a bounded operator on \(\mathcal{C} \) which maps \(\mathcal{C}_L \) to itself. Then it follows from the above definitions and (25) that, for \(x, y \in \mathcal{F}_L \),

\[
\mathcal{O}_L(x, y) = \frac{1}{a^4} \langle \phi_x, \mathcal{O}\phi_y \rangle_L = \sum_{z \in \mathcal{F}_L} \phi_x(z) (\mathcal{O}\phi_y)(z) = \frac{1}{a^2} \langle \mathcal{O}\phi_y \rangle(x) = a^2 \sum_{z \in aZ^4} \mathcal{O}_\mathcal{H}(x, z) \phi_y(z) = \sum_{n \in Z^4} \mathcal{O}_\mathcal{H}(x, y + Ln) \Omega^{(n)}(y)
\]

We now exploit the fact [16] that \(\frac{1}{\sqrt{H^2}} \) has a power series expansion \(\kappa \sum_{k=0}^{\infty} t^k P_k(H^2) \) norm-convergent to \(\left(\frac{H}{\sqrt{H^2}} \right)_L \) and \(\left(\frac{H}{\sqrt{H^2}} \right)_\mathcal{H} \) on \(\mathcal{C}_L \) and \(\mathcal{H} \) respectively. \(P_k(\cdot) \) is a Legendre polynomial of order \(k \); \(||P_k(H^2)|| \leq 1 \); \(t = e^{-\theta} \); the constants \(\kappa, \theta > 0 \) depend only on the (strictly positive) lower and upper bounds on \(H^2 \) [16]. (We are assuming that \(a \) is sufficiently small so that \(H^2 \) has a lower bound \(b \) cf. remark (ii) above). Set

\[
P^{(N)} := H \left(\kappa \sum_{k=0}^{N} t^k P_k(H^2) \right)
\]

For arbitrary finite \(N \) this is a bounded operator on \(\mathcal{C} \) which maps \(\mathcal{C}_L \) to itself. In light of (30), to prove the proposition it suffices to show that \(\left(\frac{H}{\sqrt{H^2}} \right)_L(x, y) - P^{(N)}_L(x, y) \) and \(\sum_{n \in Z^4} \left[\left(\frac{H}{\sqrt{H^2}} \right)_\mathcal{H}(x, y + Ln) - P^{(N)}_\mathcal{H}(x, y + Ln) \right] \Omega^{(n)}(y) \) both vanish in the \(N \to \infty \) limit. The former is obvious. To show the latter it suffices to show that \(\sum_{n \in Z^4} \sum_{k=N+1}^{\infty} t^k ||P_k(x, y + Ln)|| \) vanishes in the \(N \to 0 \) limit. (We have set \(P_k(x, z) = [P_k(H^2)](x, z) \)). For simplicity we show this for \(y = x \) (the relevant case for (29)); the argument in the general case is a straightforward generalisation. Since \(P_k(H^2) \) is of order \(k \) in \(H^2 \), and \(H \) couples only nearest neighbour sites, we have \(P_k(x, x + Ln) = 0 \) when \(\frac{L}{a} \sum_{\mu} |n_{\mu}| > 2k \). Since \(||P_k(x, z)|| \leq \frac{1}{a^4} ||P_k(H^2)|| \leq a^4 \) it follows that

\[
\sum_{n \in Z^4} \sum_{k=N+1}^{\infty} t^k ||P_k(x, x + Ln)||
\]

8
\[
\leq \frac{1}{a^4} t N \left(\sum_{n \in \mathbb{Z}^4, \frac{L}{2a} \sum_{\mu} |n_\mu| \leq N} \sum_{k=1}^{\infty} t^k \right) + \frac{1}{a^4} \left(\sum_{n \in \mathbb{Z}^4, \frac{L}{2a} \sum_{\mu} |n_\mu| > N} t \left(\frac{L}{2a} \sum_{\mu} |n_\mu| \right) \sum_{k=1}^{\infty} t^k \right)
\]

(31)

The first sum over \(n \) vanishes as \(N^4 t^N \) for \(N \to \infty \), while the second clearly vanishes for \(N \to \infty \) since it is convergent for finite \(N \). This completes the proof of the proposition.

We now derive a small \(a \) bound on the second term in (29). The facts that \(P_k(x, x + Ln) = 0 \) for \(\frac{L}{a} \sum_{\mu} |n_\mu| > 2k \) and \(||P_k(H^2)|| \leq 1 \) imply the following locality property of \((\frac{1}{\sqrt{H^2}})H\) [16]:

\[
||\left(\frac{1}{\sqrt{H^2}}\right)H (x, x + Ln)|| \leq ||\sum_{k=0}^{\infty} t^k P_k (x, y)||
\]

\[
\leq \kappa t \left(\frac{L}{\sqrt{a}} \sum_{\mu} |n_\mu| \right) \sum_{k=0}^{\infty} t^k \frac{1}{a^4} = \tilde{\kappa} \frac{1}{a^4} \exp \left(-\theta \frac{L}{2a} \sum_{\mu} |n_\mu| \right) \]

(32)

where \(\tilde{\kappa} := \kappa / (1 - e^{-\theta}) \). For sufficiently small \(a \) this gives

\[
\left| \sum_{n \in \mathbb{Z}^4 \setminus \{0\}} \left(\frac{1}{\sqrt{H^2}} \right)H (x, x + Ln) \right| \leq \sum_{n \in \mathbb{Z}^4 \setminus \{0\}} \tilde{\kappa} \frac{1}{a^4} \prod_{\mu} \exp \left(-\theta \frac{L}{2a} |n_\mu| \right)
\]

\[
\leq \tilde{\kappa} \prod_{\mu} \left[2 \int_{1/2}^{\infty} \exp \left(-\theta \frac{L}{2a} t_\mu \right) dt_\mu \right]
\]

\[
= \tilde{\kappa} \left(\frac{4}{\theta L} \right)^4 \exp \left(-\theta \frac{L}{a} \right)
\]

(33)

The second inequality follows from the fact that \(\int_{1/2}^{\infty} \exp \left(-\frac{\theta L}{2a} t \right) dt \geq \exp \left(-\frac{\theta L}{2a} \right) \) for sufficiently small \(a \). It now follows from (29) that \(q_L(x) = q_H(x) + O(e^{-\rho/a}) \) for sufficiently small \(a \). (This had already been noted by M. Lüscher in the abelian case in [24] although the derivation was not provided there.)

To prove the theorem it now suffices to to show (22)–(23) for \(q_H(x) \) instead of \(q_L(x) \), i.e. to show

\[
q_H(x) = I(m_0)q^A(x) + O(a)(x) \quad \text{for } x \in \mathcal{F}_L
\]

(34)

To simplify the derivation we exploit the fact that \(q_H(x) \) is local in the gauge field [16]. Because of this it suffices to show (34) in the case where \(A_\mu(x) \) is replaced by
another $SU(N)$ gauge field $\tilde{A}_\mu(x)$ on \mathbb{R}^4 with $\tilde{A}_\mu(x) = A_\mu(x)$ in a neighbourhood of $[0, L]^4$ and $\tilde{A}_\mu(x) = 0$ outside a bounded region of \mathbb{R}^4. Specifically, we can take $\tilde{A}_\mu(x) = \lambda(x)A_\mu(x)$ where $\lambda(x)$ is a smooth function on \mathbb{R}^4 equal to 1 on $[-d, L+d]^4$ ($d > 0$) and vanishing outside a bounded region. To see this, let H and \tilde{H} denote the operators defined by (15) with lattice gauge fields U and \tilde{U} being the lattice transcripts (defined by (5)) of A and \tilde{A} respectively. Then, for small a, just as for H^2 we have $\tilde{H}^2 > b > 0$ and an expansion $\left(\frac{1}{\sqrt{\tilde{H}^2}}\right)_{\tilde{H}} = \kappa \sum_{k=0}^{\infty} t^k \tilde{P}_k$ where $\tilde{P}_k = P_k(\tilde{H}^2)$.

Since H and \tilde{H} only couple nearest neighbour sites, $P_k(H^2)$ and $P_k(\tilde{H}^2)$ can only couple a lattice site in $[0, L]^4$ to another lattice site in $[0, L]^4$ via a site outside of $[-d, L+d]^4$ if if $k \geq 2(d/2a)$. Therefore $P_k(x, y) = \tilde{P}_k(x, y)$ for $x, y \in F_L$ when $k < d/a$, and we find by an analogous argument to the one leading to (32) that, for $x, y \in F_L$,

$$\left\| \left(\frac{1}{\sqrt{H^2}}\right)_{\tilde{H}} - \left(\frac{1}{\sqrt{\tilde{H}^2}}\right)_{\tilde{H}} \right\| \leq \kappa \sum_{k \geq d/a} t^k \left\| P_k(x, y) - \tilde{P}_k(x, y) \right\| \leq \frac{2\kappa}{a^4} e^{-\theta d/a}$$

(35)

This together with the ultra-locality of H and \tilde{H} implies

$$q_{\tilde{H}}(x) = \tilde{q}_{\tilde{H}}(x) + O(\frac{1}{a^4} e^{-\rho/a})(x) \quad \text{for } x \in F_L$$

(36)

In light of this, the theorem now follows from (a special case of) the following:

Proposition 2. Let $A_\mu(x)$ be a general smooth $SU(N)$ gauge field on \mathbb{R}^4 with the property that $||A_\mu(x)||, ||\partial_\nu A_\mu(x)||, \text{and } ||\partial_\sigma \partial_\nu A_\mu(x)||$ are all bounded. Let $H = H_{m_0}$ be defined as in (15) with the lattice gauge field being the lattice transcript (5) of $A_\mu(x)$. Then $q_{\tilde{H}}(x) = -\frac{1}{2} \tr \left(\frac{H}{\sqrt{H^2}} \right)_{\tilde{H}}(x, x)$ satisfies $q_{\tilde{H}}(x) = I(m_0)q^A(x) + O(a)(x)$ for all $x \in a\mathbb{Z}^4$, where $||O(a)(x)|| \leq aK$ for some constant K independent of x and small a.

Clearly the gauge field $\tilde{A}_\mu(x)$ introduced above satisfies the conditions of the proposition (since it vanishes outside a bounded region). Combining the proposition with (36) then gives (34), proving the theorem.
To prove proposition 2 we use an integral representation to expand $\frac{1}{\sqrt{H^2}}$ as a power series following [21, 12]. (This gives a more explicit power series expansion than the expansion in Legendre polynomials [16] discussed above.) Henceforth all operators are assumed to be acting on \mathcal{H} and we drop the subscript "\mathcal{H}" in the notation. Also, from now on $O(a^p)(x)$ denotes a term with $||O(a^p)(x)|| \leq a^pK$ for all $x \in a\mathbb{Z}^4$ (not just for $x \in \mathcal{F}_L$). We first decompose

$$H^2 = L - V$$ (37)

where

$$L = -\nabla^2 + r^2(\frac{1}{2}\Delta - m_0)^2$$ (38)

$$V = \frac{i}{2}r\gamma_\mu V_\mu - \frac{1}{4}[\gamma_\mu, \gamma_\nu]V_{\mu\nu}$$ (39)

with

$$V_\mu = \frac{1}{2}[(\nabla_\mu^+ + \nabla_\mu^-), \sum_\nu(\nabla_\nu^- - \nabla_\nu^+)]$$ (40)

$$V_{\mu\nu} = \frac{1}{4}[(\nabla_\mu^+ + \nabla_\mu^-), (\nabla_\nu^+ + \nabla_\nu^-)]$$ (41)

As pointed out in [16], the norms of the commutators of the ∇_μ^\pm’s are bounded by $max_p||1 - U(p)||$. The bound (20) on $||1 - U(p)||$ is valid when the conditions of proposition 2 are satisfied (cf. the appendix), hence

$$||V|| \sim O(a^2)$$ (42)

It follows that for small a we have $||V|| < b/2$ where b is the lower bound on H^2 mentioned earlier in remark (ii). This in turn implies the lower bound $L > b/2 > 0$ for the positive operator L in (38). Thus for sufficiently small a the operator L is invertible, $||L^{-1}|| \cdot ||V|| < 1$, and we can make the expansion

$$\frac{H}{\sqrt{H^2}} = H\int_{-\infty}^{\infty} \frac{d\sigma}{\pi} \frac{1}{H^2 + \sigma^2}$$

$$= H\int_{-\infty}^{\infty} \frac{d\sigma}{\pi} \left(\frac{1}{1 - (L + \sigma^2)^{-1}V} \right) \left(\frac{1}{L + \sigma^2} \right)$$

$$= \int_{-\infty}^{\infty} \frac{d\sigma}{\pi} \sum_{k=0}^{\infty} H(G_\sigma V)^k G_\sigma .$$ (43)

3The suggestion to use an integral representation was made to me by M. Lüscher.
where \(G_\sigma := (L + \sigma^2)^{-1} \). Note that the \(\gamma \)-matrices in (37) are all contained in \(V \). Since the trace of \(\gamma_5 \) times a product of less than 4 \(\gamma \)-matrices vanishes, the \(k = 0 \) and \(k = 1 \) terms in (43) give vanishing contribution to \(q_H(x) \). On the other hand, the terms with \(k \geq 3 \) satisfy the following bound:

\[
\left\| \int_{-\infty}^{\infty} \frac{d\sigma}{\pi} \sum_{k=3}^{\infty} [H(G_\sigma V)^k G_\sigma](x, x) \right\|
\leq \frac{1}{a^3} \|H\| \int_{-\infty}^{\infty} \frac{d\sigma}{\pi} \sum_{k=3}^{\infty} \|G_\sigma\|^{k+1} \|V\|^k
\leq a^2 K^3 \|H\| \left[\int_{-\infty}^{\infty} \frac{d\sigma}{\pi} \left(\frac{1}{b/2 + \sigma^2} \right)^4 \right] \sum_{k=0}^{\infty} \left(\frac{2 a^2 K}{b} \right)^k
\]

(44)

where we have used (42) and the bounds \(G_\sigma < (b/2 + \sigma^2)^{-1} \leq 2/b \). This is \(O(a^2) \) since the integral and sum are finite and remain so in the \(a \to 0 \) limit. Hence only the \(k = 2 \) term in (43) contributes in the \(a \to 0 \) limit:

\[
q_H(x) = q_H^{(2)}(x) + O(a^2)(x)
\]

(45)

where

\[
q_H^{(2)}(x) = -\frac{1}{2} \int_{-\infty}^{\infty} \frac{d\sigma}{\pi} \text{tr}[HG_\sigma V G_\sigma V G_\sigma](x, x).
\]

(46)

For lattice operators \(O \) which are polynomials in \(\nabla^\pm_\mu \) we denote by \(O^{(0)} \) the operator obtained by setting \(U = 1 \) in (10)–(11). Standard arguments give (cf. the appendix) \(\|H - H^{(0)}\| \sim O(a) \) and \(\|L - L^{(0)}\| \sim O(a) \). The latter implies \(\|G_\sigma - G_\sigma^{(0)}\| \sim O(a) \); this follows from \(G_\sigma - G_\sigma^{(0)} = G_\sigma^{(0)}(L^{(0)} - L)G_\sigma \) since \(G_\sigma \) and \(G_\sigma^{(0)} \) are bounded from above by \(2/b \) when \(a \) is sufficiently small. This allows us to replace \(H \) and \(G_\sigma \) by \(H^{(0)} \) and \(G_\sigma^{(0)} \) in (46) at the expense of an \(O(a)(x) \) term. Furthermore we have \(\|[L^{(0)}, V]\| \sim O(a^3) \) (cf. the appendix). This leads to \(\|[G_\sigma^{(0)}, V]\| \sim O(a^3) \) as follows: The bound \(\|\nabla^\pm_\mu\| \leq 2 \) and triangle inequalities lead to an \(a \)-independent upper bound \(L < c \) which allows to expand

\[
G_\sigma = \left(\frac{1}{c + \sigma^2} \right) \left(\frac{1}{1 - \frac{c-L}{c+\sigma}} \right) = \frac{1}{c + \sigma^2} \sum_{m=0}^{\infty} \left(\frac{c-L}{c+\sigma^2} \right)^m
\]

Now, since

\[
\|[c - L^{(0)})^m, V]\| \leq m\|[L^{(0)}, V]\| \cdot ||c - L||^{m-1} \leq m(3K)(c - b/2)^{m-1}
\]
we get
\[||[G_0^0, V]]| \leq \frac{a^3 K}{c^2} \sum_{m=0}^{\infty} (m + 1) \left(\frac{c - b/2}{c} \right)^m \]
and this is \(\sim O(a^3) \) since the sum converges (since \(0 < b/2 < c \)). Taking this into account in (46), it follows from (45) that
\[
q_\mathcal{H}(x) = -\frac{1}{2} \int_{-\infty}^{\infty} \frac{da}{\pi} \text{tr}[H^0 V^2 (G_\sigma^0)^3] (x, x) + O(a)(x)
\]
\[
= -\frac{1}{2} \text{tr}[H^0 V^2 \int_{-\infty}^{\infty} \frac{d\sigma}{\pi} \frac{1}{(L^0 + \sigma^2)^3}] (x, x) + O(a)(x)
\]
\[
= -\frac{3}{16} \text{tr}[H^0 V^2 (L^0)^{-5/2}] (x, x) + O(a)(x)
\]
(47)
Evaluating the trace over spinor indices we find (with \(\nabla_\mu = \frac{1}{2}(\nabla_\mu^+ + \nabla_\mu^-) \))
\[
q_\mathcal{H}(x) = \frac{-3r}{16} \epsilon_{\mu\nu\rho\sigma} \text{tr} \left[(-\nabla_\mu^0 (V_\nu V_{\rho\sigma} + V_{\nu\rho} V_\sigma) + (\frac{1}{2} \Delta_\mu^0 - m_0) V_{\mu\nu} V_{\rho\sigma}) (L^0)^{-5/2} \right] (x, x)
\]
\[
+ O(a)(x)
\]
(48)
where \(V_\mu \) and \(V_{\mu\nu} \) are given by (40)-(41). Calculations give (cf. the appendix)
\[
[\nabla_\mu^+, \nabla_\nu^-] \psi(x) = (a^2 F_{\mu\nu} (x) + O(a^3)(x)) \psi(x \pm e_\mu \pm e_\nu)
\]
(49)
\[
[\nabla_\mu^+, \nabla_\nu^+] \psi(x) = (a^2 F_{\mu\nu} (x) + O(a^3)(x)) \psi(x \pm e_\mu \mp e_\nu)
\]
(50)
These determine the relevant contributions of \(V_\mu \) and \(V_{\mu\nu} \) in (48).

We now exploit the fact that there is a Fourier transformation on \(\mathcal{H}^{sc} \) (=the space of scalar lattice fields with \(||\phi||^2 = \sum_{x \in a \mathbb{Z}^4} |\phi(x)|^2 < \infty \)); in particular \(\delta_x \) has the Fourier expansion
\[
\delta_x = \int_{-\pi}^{\pi} \frac{d^4k}{(2\pi)^4} e^{-ikx/a} \phi_k
\]
(51)
where \(\phi_k(y) := e^{i ky/a} \). For a general operator \(\mathcal{O} \) this leads to
\[
\mathcal{O}_\mathcal{H}(x, x) = \frac{1}{a^4 (a^2)} \delta_x \mathcal{O} \delta_x = \frac{1}{a^4} \int_{-\pi}^{\pi} \frac{d^4k}{(2\pi)^4} e^{-ikx/a} \frac{1}{a^4} \delta_x \mathcal{O} \delta_x
\]
\[
= \frac{1}{a^4} \int_{-\pi}^{\pi} \frac{d^4k}{(2\pi)^4} e^{-ikx/a} (\mathcal{O} \phi_k)(x)
\]
(52)
In the case where
\[
\mathcal{O} = \epsilon_{\mu\nu\rho\sigma} (-\nabla_\mu^0 (V_\nu V_{\rho\sigma} + V_{\nu\rho} V_\sigma) + (\frac{1}{2} \Delta_\mu^0 - m_0) V_{\mu\nu} V_{\rho\sigma}) (L^0)^{-5/2}
\]
(53)
a calculation using (40)–(41) with (49)–(50) gives

\[(O \phi_k)(x) = 32\pi^2 a^4 \lambda(k; r, m_0)(q^A(x) + O(a)(x))\phi_k(x)\]

(54)

where

\[
\lambda(k; r, m_0) = \frac{\prod_\nu \cos k_\nu (-m_0 + \sum_\mu (1 - \cos k_\mu) - \sum_\mu \frac{\sin^2 k_\mu}{\cos k_\mu})}{[\sum_\mu \sin^2 k_\mu + r^2 (-m_0 + \sum_\mu (1 - \cos k_\mu))^2]^{5/2}}
\]

(55)

It follows from (48) and (52) that

\[q_H(x) = I(r, m_0)q^A(x) + O(a)(x)\]

(56)

where

\[I(r, m_0) = \frac{-3r}{8\pi^2} \int_{-\pi}^{\pi} d^4 k \lambda(k; r, m_0).\]

(57)

This integral was evaluated earlier in [21, 23]. It was found to be independent of \(r > 0\) and a locally constant function of \(m_0\) with values given by (18). This completes the proof of proposition 2.

Remark. It is straightforward to generalise the results of this paper to \(SU(N)\) gauge fields on the \(2n\)-torus for arbitrary \(n \geq 2\) and to \(U(1)\) gauge fields on the 2-torus.

Acknowledgements. This work has benefited greatly from the input of Martin Lüscher, for which I thank him. I also thank Ting-Wai Chiu and Herbert Neuberger for encouraging correspondence at various stages. The author is supported by an ARC postdoctoral fellowship.

Appendix

In this appendix we recall, for completeness, certain standard facts concerning the lattice transcript of a smooth continuum gauge field on \(\mathbb{R}^4\) which lead to the bounds used in this paper. The lattice transcript (5) can be written as

\[U_\mu(x) = \sum_{n=0}^{\infty} a^n \int_{0 \leq t_1 \leq \cdots \leq t_n \leq 1} dt_n \cdots dt_1 A_\mu(x, t_n) \cdots A_\mu(x, t_1)\]

(58)
where $A_{\mu}(x, t) = A_{\mu}(x + (1 - t)e_{\mu})$. When A is bounded, i.e. $\|A_{\mu}(x)\| \leq K$ for all x, μ, we have

$$
\left\| \sum_{n=p}^{\infty} a^n \int_{0 \leq t_1 \leq \cdots \leq t_n \leq 1} dt_n \cdots dt_1 A_{\mu}(x, t_n) \cdots A_{\mu}(x, t_1) \right\| \leq \sum_{n=p}^{\infty} a^n \frac{1}{n!} K^n
$$

$$
\leq a^p K^p e^{aK} \sim O(a^p)
$$

(59)

Therefore, to derive the $O(a^p)$ and $O(a^p)(x)$ bounds used in the text it suffices to consider only a finite number of terms in the expansion (58) (typically just the first few terms). An immediate consequence of (59) with $p = 1$ is the following: If A is bounded then for any operator $P = P(\nabla_{\mu}^\pm)$ which is a polynomial in the covariant finite difference operators (10)–(11) we have

$$
\left\| P - P(0) \right\| \sim O(a).
$$

The bounds $\|H - H(0)\| \sim O(a)$ and $\|L - L(0)\| \sim O(a)$ are particular examples of this. If we furthermore assume that the first order partial derivatives of A are bounded, i.e. $\|\partial_{\mu}A_{\nu}(x)\| \leq K$ for all x, μ, ν, we have

$$
\left\| [\nabla_{\mu}^{\pm}(0), U_{\nu}] \right\| \sim O(a).
$$

(60)

To see this, note that

$$
[\nabla_{\mu}^{\pm}(0), U_{\nu}] \psi(x) = (U_{\nu}(x + ae_{\mu}) - U_{\nu}(x))\psi(x + ae_{\mu})
$$

$$
= \left(a \int_{0 \leq t \leq 1} dt (A_{\nu}(x + ae_{\mu}, t) - A_{\nu}(x, t)) + O(a^2) \right) \psi(x + ae_{\mu})
$$

(61)

By the middle-value theorem,

$$
A_{\nu}(x + ae_{\mu}, t) - A_{\nu}(x, t) = \partial_{\mu}A_{\nu}(x + sae_{\mu}, t)
$$

for some $s \in [0, 1]$. Since $\|\partial_{\mu}A_{\nu}\|$ is bounded (60) now follows from (61). The bound (60) has the following easy generalisation: Let $P = P(\nabla_{\mu}^{\pm})$ be a polynomial of degree k in the ∇_{μ}^{\pm}’s; then if all the partial derivatives of A of order $\leq k$ are bounded we have

$$
\left\| \left[P(0), U_{\nu} \right] \right\| \sim O(a)
$$

(62)
Moreover, with the same boundedness assumptions on $A_\mu(x)$ and $\partial_\mu A_\nu(x)$ straightforward calculations using the middle-value theorem give

$$1 - U(p_{x,\mu,\nu}) = a^2 F_{\mu\nu}(x) + O(a^3)(x) \quad (63)$$

Noting that [16]

$$[\nabla_\mu^\pm, \nabla_\nu^\pm]\psi(x) = (1 - U(p_{x,\mu,\nu})) U_\mu(x) U_\nu(x + ae_\mu + ae_\nu) \quad (64)$$

and similar formulae for the other commutators, a straightforward refinement of the arguments leading to (62) and (63) shows

$$\||[P^{(0)}, [\nabla_\mu^\pm, \nabla_\nu^\pm]]\|| \sim O(a^3) \quad , \quad \||[P^{(0)}, [\nabla_\mu^\pm, \nabla_\nu^-]]\|| \sim O(a^3) \quad (65)$$

The requirement for this is that A and all its partial derivatives up to order r be bounded, where $r = \text{min}\{k, 2\}$. Since V is a linear combination of commutators of the ∇_μ^\pm’s we have in particular $\||[L^{(0)}, V]]\|| \sim O(a^3)$ when A and its partial derivatives up to order 2 are bounded. Finally, we remark that (49)–(50) follow from combining (64) and the corresponding formulae for the other commutators with (63).

References

[19] M. Lüscher, private communication

