In addition to the above, I have

\[
\left(\frac{1 + \lambda N}{1 - \lambda N} \right) = \left(\frac{\lambda N}{1 - \lambda N} \right)
\]

and for \(\lambda = \phi' \).

\[
\left(\frac{1 + \lambda \phi'}{1 - \lambda \phi'} \right) = \left(\frac{\lambda \phi'}{1 - \lambda \phi'} \right)
\]

We then obtain for \(\lambda = 1 \),

\[
1 - \frac{\phi}{(1 + \lambda \phi')(1 - \lambda \phi')} = \phi
\]

\(1 - \frac{\phi}{(1 - \lambda \phi')(1 + \lambda \phi')} = \phi' \).

I am not certain in this context.

\[\text{[Equation]}\]

\[\text{[Equation]}\]

However, I do not agree with the conclusion by Nima, I feel that the spin foam model does not reproduce the terms we need to reproduce the correct spin foam model.

The number of elements of the spin foam model is a critical issue that we need to reproduce the correct spin foam model.

I hope to comment on Dirac, spectral sum rules for QCD in

Three Dimensions,
mentioned correction, the sum rule was off by a factor of 4 due to various mistakes of factors of 2 for which I apologize. I will update the electronic versions of [2, 3] shortly.

The 3d sum rules can be summarized as follows:

\[
\left\langle \sum_{\lambda_k > 0} \frac{1}{N \sum \lambda_k} \right\rangle = \frac{2N_f}{2(2N_f - 1)(\frac{4N_f}{\beta} + 1)}
\] \hfill (4)

where the number of flavors is always even and denoted by 2N_f, and \(\beta \) is the Dyson index of the corresponding matrix model. The sum rule for \(\beta = 2 \) was given by Verbaarschot and Zahed in [5].

Acknowledgment

I thank Jac Verbaarschot for correspondence. I am indebted to him for assisting me in finding the mistake in my sum rules [6].

References