Vacuum polarization in thermal QED
with an external magnetic field

J. Alexandre
Department of Physics, National Technical University of Athens,
Zografou Campus, 157 80 Athens, GREECE
jalex@lattice.physics.mathphys.ntua.gr

Abstract

The one-loop vacuum polarization tensor is computed in QED with an external constant, homogeneous magnetic field at finite temperature. The Schwinger proper-time formalisme is used and the computations are done in Euclidian space. The well-known results are recovered when the temperature and/or the magnetic field are switched off and the effect of the magnetic field on the Debye screening is discussed.

Introduction

The question of dynamical chiral symmetry breaking in thermal QED with an external magnetic field (magnetic catalysis) has been studied in the context of the electroweak transition [1] and also, with QED$_3$ (in 2+1 dimensions), in the framework of effective descriptions of planar superconductors [2],[3]. Recent studies of the magnetic catalysis at zero temperature [4] showed that it is essential to take into account the momentum dependence of the fermion self-energy since the dynamical mass given by the constant self-energy approximation proved to be too small, by several orders of magnitude in the case of QED. These studies have been made with the analysis of the gap equation provided by the Schwinger-Dyson equation, where the photon propagator was truncated at the one-loop level. The polarization tensor in the presence of an external magnetic field was used in its lowest Landau level approximation, as was done in [5]. The study of the magnetic catalysis at finite temperature taking into account the momentum dependence of the fermion self-energy has been done in QED$_3$ [3] but not in QED for which only the constant self-energy approximation has been done [6]. As a first step in this direction, we compute here the one-loop polarization tensor in finite temperature QED in the presence of a external constant, homogeneous magnetic field.

The computation will be done in Euclidian space, using the proper-time formalism introduced by Schwinger [7] which takes into account the complete interaction between the fermion and the external, classical field. The same computation has been done at zero temperature [8] and this work will be often cited in the present paper. We note that the derivation of the Heisenberg-Euler lagrangian has been done at finite temperature with the same formalism [9].
1 Fermions in a constant magnetic field

To fix our notations we shortly review here the characteristics of fermions in an external constant, homogeneous magnetic field at zero temperature.

The model we are going to consider is described by the Lagrangian density:

\[\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i \overline{\Psi} D_{\mu} \gamma^\mu \Psi - m \overline{\Psi} \Psi, \]

(1)

where \(D_{\mu} = \partial_{\mu} + ieA_{\mu} + ieA_{\mu}^{\text{ext}} \), \(A_{\mu} \) is the abelian quantum gauge field, \(F_{\mu\nu} \) its corresponding field strength, and \(A_{\mu}^{\text{ext}} \) describes the external magnetic field. We recall the usual definition \(e^2 = 4\pi\alpha \).

We will choose the symmetric gauge for the external field (\(\vec{B} \) is in the direction 3)

\[A_0^{\text{ext}}(x) = 0, \quad A_1^{\text{ext}}(x) = -\frac{B}{2} x_2, \quad A_2^{\text{ext}}(x) = +\frac{B}{2} x_1, \quad A_3^{\text{ext}}(x) = 0 \]

(2)

for which we know from the work by Schwinger [7] that the fermion propagator is given by:

\[S(x, y) = e^{i e x_{\mu} A_{\mu}^{\text{ext}}(y)} \tilde{S}(x - y), \]

(3)

where the translational invariant part \(\tilde{S} \) has the following Fourier transform in the proper-time formalisme:

\[\tilde{S}(p) = \int_0^\infty ds e^{i s (p_0^2 - p_3^2 - p_\perp^2 \tanh(|eB|s)/|eB|s) - m^2)} \]

\[\times \left[(p_0^0 \gamma^0 - p_3^3 \gamma^3 + m)(1 + \gamma^1 \gamma^2 \tanh(|eB|s)) - p_\perp^\perp (1 + \tanh^2(|eB|s)) \right] \]

(4)

where \(p_\perp = (p_1, p_2) \) is the transverse momentum and the same notation holds for the gamma matrices.

Let us now turn to the finite temperature case. We will note the fermionic Matsubara modes \(\tilde{\omega}_l = (2l + 1)\pi T \) and the bosonic ones \(\omega_n = 2n\pi T \). The translational invariant part of the bare fermion propagator reads in Euclidian space \((p_0 \to i\tilde{\omega}_l) \) and with the substitution \(s \to -is \):

\[\tilde{S}_l(p) = -i \int_0^\infty ds e^{-s (\tilde{\omega}_l^2 + p_3^2 + p_\perp^2 \tanh(|eB|s)/|eB|s) + m^2)} \]

\[\times \left[(-\tilde{\omega}_l^4 - p_3^3 \gamma^3 + m)(1 - i\gamma^1 \gamma^2 \tanh(|eB|s)) - p_\perp^\perp (1 - \tanh^2(|eB|s)) \right] \]

(5)
where the Euclidian gamma matrices satisfy the anticommutation relation
\[\{ \gamma, \gamma \} = 2 \delta \]
with \(\mu, \nu = 1, 2, 3, 4 \) and \(\vec{p} = (p_\perp, p_3) \).

Finally, the one-loop polarization tensor is
\[\Pi^{\mu\nu}_n(\vec{k}) = -4\pi\alpha T \int \frac{d^3\vec{p}}{(2\pi)^3} \sum_{l=-\infty}^{\infty} \text{tr} \left\{ \gamma^\mu \tilde{S}_l(\vec{p}) \gamma^\nu \tilde{S}_{l-n}(\vec{p} - \vec{k}) \right\} + Q^{\mu\nu}(k) \] (6)
where \(Q^{\mu\nu} \), usually called the 'contact term', cancels the ultraviolet divergences and therefore does not depend on the temperature or on the magnetic field since these give finite effects. The addition of this contact term is equivalent to the addition of the counterterm \((1 - Z_3) F^{\mu\nu} F_{\mu\nu}/4 \) in the original Lagrangian and the usual ultraviolet divergences appear in the proper-time formalisme as singularities in \(s = 0 \), as will be seen in the next section. We remind that with this proper-time method, a cut-off \(\varepsilon > 0 \) for \(s \) provides a gauge invariant regularization which will be used in what follows. The limit \(\varepsilon \to 0 \) will be taken after computing the contact term \(Q^{\mu\nu} \).

We note that the \(A_{\mu}^{\text{ext}} \)-dependent phase of the fermion propagator does not contribute to the polarization tensor since in coordinate space this phase contribution is
\[\exp \left\{ ie \left(x^\mu A_{\mu}^{\text{ext}}(y) + y^\mu A_{\mu}^{\text{ext}}(x) \right) \right\} = 1 \] (7)
as can be seen from the potential (2).

2 44-component

With the expression (5) of the fermion propagator, we obtain for the 44-component of the polarization tensor after the integration over \(\vec{p} \)
\[\Pi_{n}^{44}(\vec{k}) = -2\alpha T |eB| \int_{\varepsilon}^{\infty} \frac{dsd\sigma}{\sqrt{s + \sigma(\tanh(|eB|s) + \tanh(|eB|\sigma))}} \]
\[\times \sum_{l=-\infty}^{\infty} e^{-\frac{k^2}{\tanh(|eB|s) \tanh(|eB|\sigma)}} \left[\left(s + \sigma\left(\hat{\omega}_l^2 + m^2 \right) + s\omega_n(\omega_n - 2\hat{\omega}_l) + \frac{s^2}{s + \sigma} k_3^2 \right) \right. \]
\[\times \left[k_3^2 \frac{\tanh(|eB|s) \tanh(|eB|\sigma)}{(\tanh(|eB|s) + \tanh(|eB|\sigma))^2} \right. \]
\[\left. \left(1 - \tanh(|eB|s)) \right) \left(1 - \tanh(|eB|\sigma)) \right) \right. \]
\[\left. \left. \tanh(|eB|s) + \tanh(|eB|\sigma) \right) \right. \]
\[+ \left(\hat{\omega}_l \hat{\omega}_l - \omega_n \right) - m^2 + \frac{s\sigma}{(s + \sigma)^2} k_3^2 - \frac{1}{2(s + \sigma)} \right] (1 + \tanh(|eB|s) \tanh(|eB|\sigma)) \right] + Q^{44}(k) \]
where \(m \) is the fermionic mass. In finite temperature computations, one usually first does the summation over Matsubara modes and then the integration over momenta. In this formalisme, what is important as we will see bellow is to do the summation over Matsubara modes before the integration over the proper-time parameters, when the cut-off is removed (i.e. \(\varepsilon \to 0 \)). As in [8], we make the change of variable \(s = u(1 - v)/2 \) and \(\sigma = u(1 + v)/2 \) to obtain
\[\Pi_{n}^{44}(\mathbf{k}) = -\frac{\alpha T}{\sqrt{\pi}} |eB| \int_{\varepsilon}^{\infty} du \sqrt{u} \int_{-1}^{1} dv \sum_{l=-\infty}^{\infty} e^{\frac{k^2}{\varepsilon} \cosh \frac{\pi}{2 \sinh u} - u[\omega_l^2 + m^2 + (1-v)w_n/(2-\omega_l) + \frac{1}{4}k_3^2]} \times \left[(\omega_l (\omega_l - w_n) + \frac{1-v^2}{4} k_3^2 - \frac{1}{2} u - m^2) \coth \frac{\pi}{2} - \frac{|eB|}{\sinh^2 \frac{\pi}{2}} + k_2 \frac{\cosh \omega_l - \cosh \omega_l'}{2 \sinh^3 \frac{\pi}{2}} \right] + Q^{44}(k) \]

where \(\mathbf{\bar{u}} = |eB|u \). We make the integration by parts over \(u \)

\[|eB| \int_{\varepsilon}^{\infty} du e^{-\phi(u)} \frac{\sqrt{u}}{\sinh^2 \frac{\pi}{2}} \rightarrow \int_{\varepsilon}^{\infty} du e^{-\phi(u)} \sqrt{u} \coth \left(\frac{1}{2u} - \frac{d\phi(u)}{du} \right) \]

where we disregard the surface term [8]. We then obtain the final expression

\[\Pi_{n}^{44}(\mathbf{k}) = -\frac{\alpha T}{\sqrt{\pi}} |eB| \int_{\varepsilon}^{\infty} du \sqrt{u} \int_{-1}^{1} dv \sum_{l=-\infty}^{\infty} e^{\frac{k^2}{\varepsilon} \cosh \frac{\pi}{2 \sinh u} - u[m^2 + W_l^2 + \frac{1}{4}v_2^2(w_n^2 + k_3^2) - \omega_l^2]} \times \left[\frac{k_2^2 \cosh \omega_l - v \coth \omega_l \sinh \omega_l}{\sinh \omega_l} - \coth \frac{\pi}{2} \left(\frac{1}{u} - 2W_l^2 + v w_n W_l - \frac{1-v^2}{2} k_3^2 \right) \right] + Q^{44}(k) \]

where \(W_l = \omega_l - \frac{(1-v)}{2} \omega_n \). We can note for the purpose of consistency that the integrand in (10) is an even function of the parameter \(v \) since \(W_l(-v) = -W_{n-l-1}(v) \) and therefore \(\sum_l e^{-u W_l^2} \) is even in \(v \), which ensures the symetry between the proper-times \(s \) and \(\sigma \). Thus it is important to perform the summation over Matsubara modes before doing the integrations over the proper-time parameters. Another reason to do the summation over Matsubara modes first is to avoid artificial divergences in the temperature-dependent part of the polarization tensor (which should be finite), as will be seen at the end of this section.

Let us now determine the contact term \(Q^{44}(k) \). Since it does not depend on the temperature or the magnetic field, it will be determined after taking the limit \(T \rightarrow 0 \) and \(|eB| \rightarrow 0 \) of (10). If we set \(T = 0 \) in (10), we recover the zero-temperature results given in [8] since the substitutions \(W_l \rightarrow p_4 \) and \(T \sum_l \rightarrow (2\pi)^{-1} \int dp_4 \) lead to

\[\lim_{T \rightarrow 0} T \sum_{l=-\infty}^{\infty} e^{-u W_l^2} = \frac{1}{2 \sqrt{\pi u}} \]

\[\lim_{T \rightarrow 0} T \sum_{l=-\infty}^{\infty} \left(\frac{1}{u} - 2W_l^2 \right) e^{-u W_l^2} = 0 \]

\[\lim_{T \rightarrow 0} T \sum_{l=-\infty}^{\infty} v w_n W_l e^{-u W_l^2} = 0 \]

and therefore \((\omega_n \rightarrow k_4) \)

\[\lim_{T \rightarrow 0} \Pi_{n}^{44}(\mathbf{k}) = -\frac{\alpha |eB|}{4\pi} \int_{\varepsilon}^{\infty} du \int_{-1}^{1} dv e^{\frac{k^2}{|eB|} \cosh \frac{\pi}{2 \sinh u} - u[m^2 + \frac{1}{4}v_2^2(k_3^4 + k_3^2)]} \times \left[\frac{k_2^2 \cosh \omega_l - v \coth \omega_l \sinh \omega_l}{\sinh \omega_l} + k_3^2 (1-v^2) \coth \frac{\pi}{2} \right] + Q^{44}(k) \]
critical one, for any value of the gauge coupling $[5]$. The magnetic field always generates a dynamical mass when the temperature is lower than the temperature limit. We can easily see this if we set $m = 0$ in $\Pi_0^{44}(0)$: the change of variable $u \to u/T^2$ shows then that $\Pi_0^{44}(0)$ would reach a non-zero value in the limit $T \to 0$. Thus we can commute the limit $T \to 0$ and the integration over the proper-time u to find a consistent zero temperature result only if $m \neq 0$, at least as long as $|eB| > 0$. This condition is consistent since the magnetic field always generates a dynamical mass when the temperature is lower than the critical one, for any value of the gauge coupling $[5]$.

If we now wish to take the limit of zero magnetic field of (12), we take $\vec{B} \to 0$ and obtain

$$\lim_{T \to 0,|eB| \to 0} \Pi_n^{44}(k) = -\frac{\alpha}{4\pi} \int_{\xi}^{\infty} \frac{du}{u} \int_{-1}^{1} dv e^{-um^2} \sum_{l=0}^{\infty} e^{-\frac{1}{4} l^2 (u^2 + k^2)} (1 - v^2) k^2 + Q_n^{44}(k)$$

(13)

where $k^2 = k_1^2 + k_2^2$. Then if we take the contact term

$$Q_n^{44}(k) = \frac{\alpha}{4\pi} \int_{\xi}^{\infty} \frac{du}{u} \int_{-1}^{1} dv e^{-um^2} (1 - v^2) k^2$$

(14)

we obtain finally when $\varepsilon \to 0$

$$\lim_{T \to 0,|eB| \to 0} \Pi_n^{44}(k) = -\frac{\alpha}{4\pi} \int_{0}^{\infty} \frac{du}{u} \int_{-1}^{1} dv (1 - v^2) \left(e^{-u|m^2 + \frac{1}{4} l^2 k^2|} - e^{-um^2} \right) k^2$$

$$= \frac{\alpha}{4\pi} \int_{-1}^{1} dv (1 - v^2) \ln \left(1 + \frac{1 - v^2}{4m^2 k^2} \right) k^2$$

(15)

which is a result obtained by standard methods $[10]$ with the Feynman parameter $z = (1+v)/2$.

To finish the comparisons with results already established, let us take the zero magnetic field limit of (10). The limit $\vec{B} \to 0$ in (10) leads to

$$\lim_{|eB| \to 0} \Pi_n^{44}(k) = -\frac{\alpha T}{\sqrt{\pi}} \int_{\xi}^{\infty} \frac{du}{u} \int_{-1}^{1} dv \sum_{l=0}^{\infty} e^{-u|m^2 + W_l^2 + \frac{1}{4} l^2 (w_n^2 + k^2)}}$$

$$\times \left[\frac{k^2}{2} (1 - v^2) - \left(\frac{1}{u} - 2W_l^2 + v w_n W_l - \frac{1 - v^2}{4 k_3^2} \right) \right]$$

(16)

For $|eB| = 0$, we can take a massless fermion ($m = 0$) since there is no magnetic catalysis and the Debye screening is then given by

$$M^2_{|eB| = 0, m = 0}(T) = -\lim_{k^2 \to 0} \Pi_0^{44}(k) = c \alpha T^2$$

(17)

with $\varepsilon \to 0$

$$c = 2\sqrt{\pi} \int_{0}^{\infty} \frac{du}{\sqrt{u}} \sum_{l=0}^{\infty} e^{-u(2l+1)^2} \left[2(2l + 1)^2 - \frac{1}{u} \right]$$

(18)

We find numerically that c reaches the value $4\pi/3$ when the precision increases, which gives the well known result for the one-loop Debye screening with massless fermions $[11]$ for which higher order corrections can be found in $[12]$. We note again that it is essential to perform the summation over Matsubara modes before doing the integration over the proper-time u to avoid the singularity $\int du u^{-3/2}$ in (18). We can see this with the Poisson resumation $[9]$.

5
\[
\sum_{l=-\infty}^{\infty} e^{-a(l-z)^2} = \left(\frac{\pi}{a} \right)^{1/2} \sum_{l=-\infty}^{\infty} e^{-z^2/4a - 2\pi \alpha l} \tag{19}
\]

which shows that the would-be diverging term actually cancels in the difference

\[
\sum_{l=-\infty}^{\infty} e^{-u(2l+1)^2} \left[2(2l+1)^2 - \frac{1}{u} \right] = \frac{\pi^{5/2}}{2u^{5/2}} \sum_{l \geq 1} (-1)^l l^2 e^{-4l^2/4u} \tag{20}
\]

so that the integration over \(u \) in (18) is safe for every term of the Matsubara series, both on the I.R. and U.V. sides.

Using the Poisson resumation (19), we can give another form of \(\Pi_n^{\mathbb{44}}(\vec{k}) \) which splits the temperature independent part from the temperature dependent one. A straightforward computation leads to

\[
\Pi_n^{\mathbb{44}}(\vec{k}) = \Pi_n^0(\vec{k}) + \Pi_n^T(\vec{k}) \tag{21}
\]

where \(\Pi_n^0(\vec{k}) \) is the zero temperature part (12) (with \(k_4 \to \omega_n \)) and \(\Pi_n^T(\vec{k}) \) the temperature dependent part

\[
\Pi_n^T(\vec{k}) = -\frac{\alpha}{2\pi} |eB| \int_0^\infty du \int_{-1}^1 dv \left[\frac{k_1^2 \cosh \pi v - v \coth \pi \sinh \pi v}{\sinh \pi} + k_3^2 (1 - v^2) \coth \pi \right] \cos \pi nl(1 - v)
\]

\[
\times \sum_{l \geq 1} (-1)^l e^{-\frac{l^2}{4\pi^2}} \left[\left(k_1^2 \cosh \pi v - v \coth \pi \sinh \pi v \right) + k_3^2 (1 - v^2) \coth \pi \right] \cos \pi nl(1 - v)
\]

\[
- \frac{l^2}{u T^2} \cos \pi nl(1 - v) - 2\pi v nl \sin \pi nl(1 - v) \right] \tag{22}
\]

where we took \(\varepsilon \to 0 \) since the temperature dependent part is finite. We see that after this Poisson resumation every term of the Matsumbara series gives a finite integration over the proper-time \(u \).

3 Other components and transversality

We now compute the other components in a similar way and thus will give only the important steps. We first give the diagonal components of the polarization tensor which all need integrations by parts to lead to the good limit when \(T \to 0 \). We will note

\[
\phi_l(u,v) = \frac{k_1^2}{2|eB|} \frac{\cosh \pi v - \cosh \pi \bar{u}}{\sinh \pi} + u \left[m^2 + W_l^2 + \frac{1 - v^2}{4} \left(w_n^2 + k_3^2 \right) \right] \tag{23}
\]

Let us start with \(\Pi_n^{\mathbb{33}}(\vec{k}) \). The same steps as the ones used for the computation of \(\Pi_n^{\mathbb{44}}(\vec{k}) \) and the same integration by parts lead to

\[
\Pi_n^{\mathbb{33}}(\vec{k}) = -\frac{\alpha T}{\sqrt{\pi}} |eB| \int_{-\infty}^{\infty} du \sqrt{u} \int_{-1}^1 dv \sum_{l=-\infty}^{\infty} e^{-\phi_l(u,v)}
\]

\[
\times \left[v \omega_n W_l \coth \pi + \frac{k_1^2}{2} \frac{\cosh \pi \bar{v} - v \coth \pi \sinh \pi \bar{v}}{\sinh \pi} + \omega_n^2 \frac{1 - v^2}{2} \coth \pi \right] + Q^{\mathbb{33}}(k) \tag{24}
\]
After the integration over the loop momentum \vec{p}, the change of variable $s = u(1 + v)/2$ and $\sigma = u(1 + v)/2$ leads to

$$\Pi_n(k) = \frac{\alpha T}{\sqrt{\pi}} |eB| \int_{\epsilon}^{\infty} du \sqrt{u} \int_{-1}^{1} dv \sum_{l=-\infty}^{\infty} e^{-\phi(u,v)} \left[\frac{\cosh \pi v}{\sinh \pi l} \left(v \omega_n W_l - \frac{1}{2u} - W_l^2 - m^2 \right) \right. \left. + \frac{2k_i^2 - k_i^2 \cosh \pi - \cosh \pi v}{2} \right] + Q_n(k)$$

Then we make the integration by parts over u

$$\int_{\epsilon}^{\infty} du e^{-\phi(u,v)} m^2 \sqrt{u} \frac{\cosh \pi v}{\sinh \pi} \rightarrow \int_{\epsilon}^{\infty} du e^{-\phi(u,v)} \left[\frac{1}{2u} + |eB|(v \tanh \pi v + \coth \pi v) - \frac{d}{du} \left(\phi(u,v) - um^2 \right) \right]$$

followed by the integration by parts over v

$$\int_{-1}^{1} dv e^{-\phi(u,v)} \left[\frac{\cosh \pi v}{\sinh \pi} + \frac{\sinh \pi v}{\sinh \pi} - \coth \pi \cosh \pi v \right] \rightarrow \int_{-1}^{1} dv e^{-\phi(u,v)} \left[\frac{\cosh \pi v}{\sinh \pi} - \frac{\cosh \pi v - v \coth \pi \sinh \pi v}{\sinh \pi} \right]$$

where we again disregard the surface terms. We obtain finally

$$\Pi_n(k) = -\frac{\alpha T}{\sqrt{\pi}} |eB| \int_{\epsilon}^{\infty} du \sqrt{u} \int_{-1}^{1} dv \sum_{l=-\infty}^{\infty} e^{-\phi(u,v)} \left[\coth \pi \frac{\sinh \pi v}{\sinh \pi l} \omega_n W_l \right. \left. + \left(k_i^2 - k_i^2 \cosh \pi - \cosh \pi v \right) \frac{\sinh \pi v}{\sinh \pi} \right] + Q_n(k)$$

Now let us go to the off-diagonal components of the polarization tensor. What differs from the diagonal components is that we do not make any integration by parts and we obtain directly the final results with the expected limit when $T \rightarrow 0$:

$$\Pi^{34}_n(k) = \frac{\alpha T}{\sqrt{\pi}} |eB| \int_{\epsilon}^{\infty} du \sqrt{u} \int_{-1}^{1} dv \sum_{l=-\infty}^{\infty} e^{-\phi(u,v)} k_3 \left[v W_l + \frac{1 - v^2}{2} \omega_n \right] \coth \pi + Q^{34}_n(k)$$

$$\Pi^{12}_n(k) = \frac{\alpha T}{\sqrt{\pi}} |eB| \int_{\epsilon}^{\infty} du \sqrt{u} \int_{-1}^{1} dv \sum_{l=-\infty}^{\infty} e^{-\phi(u,v)} k_1 k_2 \frac{\cosh \pi v - \cosh \pi v}{\sinh \pi} + Q^{12}_n(k)$$

$$\Pi^{4i}_n(k) = \frac{\alpha T}{\sqrt{\pi}} |eB| \int_{\epsilon}^{\infty} du \sqrt{u} \int_{-1}^{1} dv \sum_{l=-\infty}^{\infty} e^{-\phi(u,v)} k_i \left[W_l \coth \pi \frac{\sinh \pi v}{\sinh \pi l} \right. \left. + \frac{\omega_n \cosh \pi v - v \coth \pi \sinh \pi v}{2} \right] + Q^{4i}_n(k)$$

$$\Pi^{3i}_n(k) = \frac{\alpha T}{\sqrt{\pi}} |eB| \int_{\epsilon}^{\infty} du \sqrt{u} \int_{-1}^{1} dv \sum_{l=-\infty}^{\infty} e^{-\phi(u,v)} k_1 k_3 \frac{\cosh \pi v - v \coth \pi \sinh \pi v}{\sinh \pi} + Q^{3i}_n(k)$$
where 1, 2. It is easy to check that all the components of the polarization tensor give the results found in [8] when $T \to 0$. The contact terms are determined in the same way as $Q^{44}(k)$ and can be summarised as

$$ Q^{\mu\nu}(k) = \frac{\alpha}{4\pi} \int_1^\infty \frac{du}{u} \int_{-1}^1 dv e^{-um^2}(1 - v^2) \left(\delta^{\mu\nu}k^2 - k^\mu k^\nu \right) $$ \hspace{1cm} (30)

as was found in [8].

It is important now to check the transversality of the polarization tensor. The contact term (30) is obviously transverse and with the expressions (10), (24), (28) and (29), we obtain

$$ k_\nu \Pi^{\nu\mu}_n(\tilde{k}) = \omega_n \Pi^{4\mu}_n(\tilde{k}) + k_3 \Pi^{3\mu}_n(\tilde{k}) + k_i \Pi^{i\mu}_n(\tilde{k}) = \omega_n \Pi^{4\mu}_n(\tilde{k}) + k_3 \Pi^{3\mu}_n(\tilde{k}) + k_i \Pi^{i\mu}_n(\tilde{k}) = 2\delta_{4\mu} \frac{\alpha T}{\sqrt{\pi}} |eB| \int_0^\infty \frac{du}{u} \coth u \int_{-1}^1 dv \left(\frac{\omega_n}{u} + W_l \left(v(\omega_n^2 + k_3^2) + \frac{\sinh \pi v}{\sinh \pi k_\perp} - 2\omega_n W_l \right) \right) $$

$$ = 2\delta_{4\mu} \frac{\alpha T}{\sqrt{\pi}} |eB| \int_0^\infty \frac{du}{u} \coth u \int_{-1}^1 dv \frac{dv}{dv} \left(\sum_{l=-\infty}^{\infty} W_l e^{-\phi(u,v)} \right) $$

$$ = \text{surface term} $$ \hspace{1cm} (31)

so that the polarization tensor is transverse, since the above sum is zero up to surface terms which are normally omitted in this formalism.

Conclusion: Debye screening in a magnetic field

To conclude, we look in more details to the Debye screening that we obtain in this computation. From (22), we find for the Debye mass

$$ M^2_{|eB|}(T) = \lim_{\tilde{k}^2 \to 0} \Pi^\mu_0(\tilde{k}) = \frac{\alpha |eB|}{\pi T^2} \int_0^\infty \frac{du}{u^2} \coth u e^{-um^2} \sum_{l \geq 1} (-1)^l l^2 e^{-\frac{l^2}{4u^2T^2}} $$ \hspace{1cm} (32)

The zero-magnetic field limit is

$$ M^2_{|eB|=0}(T) = \frac{\alpha}{\pi T^2} \int_0^\infty \frac{du}{u^3} e^{-um^2} \sum_{l \geq 1} (-1)^l l^2 e^{-\frac{l^2}{4u^2T^2}} $$ \hspace{1cm} (33)

For given values of $|eB|$ and m, we compare in figure 1 the ratios $M^2_{|eB|}/|eB|$ and $M^2_{|eB|=0}/|eB|$ as functions of $T/\sqrt{|eB|}$, such that all the dimensionful quantities are rescaled in units of the magnetic field ($|eB| = 2$). For high temperatures the curves converge towards the result (17) (rescaled by $|eB|$) since $m << T$ and $\sqrt{|eB|} << T$, but for strong magnetic field $T << \sqrt{|eB|}$, a strong Debye screening is generated compared to the one without external field. As long as the temperature remains greater than the fermion mass, the Debye screening follows a plateau when the temperature decreases. We note that if we had $m = 0$, this plateau would be maintained until T reaches 0, but when $T < m$ the fermion mass enforces the screening to vanish with the temperature.
We note that a more unexpected behaviour has been observed in QED$_3$ at finite temperature and with an external magnetic field [3]: $M_{|eB|}^2$ first increases when the temperature decreases (in the region $T \ll \sqrt{|eB|}$), reaches a maximum when $T \simeq m$ and then decreases to 0 when $T \to 0$.

To conclude, we note again the consistency between the necessity to have a massive fermion to obtain the good zero temperature limits (as long as $|eB| > 0$) and the occurrence of the magnetic catalysis which generates dynamically this mass.

Acknowledgements

This work has been done within the TMR project 'Finite temperature phase transitions in particle Physics’, EU contract number: FMRX-CT97-0122. I would like to thank K.Farakos and G.Koutsoumbas for guiding me through the subject of magnetic catalysis.

References

