We study relationships between the neutron-rich skin of a heavy nucleus and the properties of neutron-star crusts. Relativistic effective field theories with a thicker neutron skin in \(^{208}\text{Pb}\) have a larger electron fraction and a lower liquid-to-solid transition density for neutron-rich matter. These properties are determined by the density dependence of the symmetry energy which we vary by adding nonlinear couplings between isoscalar and isovector mesons. An accurate measurement of the neutron radius in \(^{208}\text{Pb}\)—via parity violating electron scattering—may have important implications for the structure of neutron stars.

Heavy nuclei are expected to have a neutron-rich skin. This important feature of nuclear structure arises because of the large neutron excess and because the Coulomb barrier reduces the proton density at the surface. The thickness of the neutron skin depends on the pressure of neutron-rich matter: the greater the pressure, the thicker the skin as neutrons are pushed out against surface tension. The same pressure supports a neutron star against gravity [1]. Thus models with thicker neutron skins often produce neutron stars with larger radii.

Neutron stars are expected to have a solid crust of nonuniform neutron-rich matter above a liquid mantle. The phase transition from solid to liquid depends on the properties of neutron-rich matter. Indeed, a high pressure implies a rapid rise of the energy with density making it energetically unfavorable to separate uniform matter into regions of high and low densities. Thus a high pressure typically implies a low transition density from a solid crust to a liquid mantle. This suggests an inverse relationship: the thicker the neutron-rich skin of a heavy nucleus, the thinner the solid crust of a neutron star.

In this letter we study possible “data-to-data” relations between the neutron-rich skin of a heavy nucleus and the crust of a neutron star. These relations may impact neutron star observables. Indeed, properties of the crust are important for models of glitches in the rotational period of pulsars [2,3], for the shape and gravitational radiation of non-spherical rotating stars [4] and for neutron-star cooling [5]. Note that the skin of a heavy nucleus and the crust of a neutron star are composed of the same material: neutron-rich matter at similar densities.

The Parity Radius Experiment (PREX) at the Jefferson Laboratory aims to measure the neutron radius in \(^{208}\text{Pb}\) via parity violating electron scattering [6,7]. Parity violation is sensitive to the neutron density because the \(Z^0\) boson couples primarily to neutrons. The result of this purely electroweak experiment could be both accurate and model independent. In contrast, all previous measurements of bulk neutron densities used hadronic probes that suffer from controversial uncertainties in the reaction mechanism (see for example Ref. [8]). PREX should provide a unique observational constraint on the thickness of the neutron skin in a heavy nucleus. In this letter we explore some of the implications of this measurement on the structure of neutron stars.

Microscopic calculations of the energy of neutron matter constrain both the neutron skin in \(^{208}\text{Pb}\) and the crust of a neutron star; see for example Ref. [9]. However, these calculations of infinite neutron matter are not directly tested by observable properties of finite nuclei such as their charge densities or binding energies. Moreover, nonrelativistic calculations of symmetric nuclear matter have not succeeded in predicting the saturation density. It thus becomes necessary to fit some properties of a three-body force in order to reproduce nuclear saturation. Indeed, the properties of \(A=8\) pure neutron drops calculated in Ref. [10] may depend on the three-nucleon force used. Thus we feel that it is important to distinguish direct finite-nucleus measurements—such as PREX—from theoretical neutron-matter “observables” based solely on calculations. Indeed, PREX may provide an important test of these calculations [11].

We start with a relativistic effective field theory [12] that provides a simple description of finite nuclei and a Lorentz covariant extrapolation for the equation of state of dense neutron-rich matter. The theory has an isoscalar-scalar \(\phi\) (sigma) meson field and three vector fields: an isoscalar \(V\) (omega), an isovector \(b\) (rho), and the photon \(A\). We now supplement the Lagrangian with new nonlinear sigma-rho and omega-rho couplings.
The interacting Lagrangian density is given by [12],
\[\mathcal{L}_{\text{int}} = \bar{\psi} \left[g_\rho \phi - \left(g_\rho V_\mu + \frac{g_\rho}{2} \tau \cdot b_\mu + \frac{e}{2} (1 + \tau_3) A_\mu \right) \gamma^\mu \right] \psi \]
\[- \frac{k}{3!} (g_\rho \phi)^3 - \frac{\lambda}{4!} (g_\rho \phi)^4 + \frac{\zeta}{4!} g_\rho^4 (b_\mu \cdot b_\nu)^2 \]
\[+ g_\rho^2 \bar{b}_\mu \cdot b_\nu \left[\Lambda_4 g_\rho^2 \phi^2 + \Lambda_4 g_\rho^2 V_\mu V^\nu \right]. \] (1)

We consider a number of different parameter sets. First, we note that the nonlinear rho coupling \(\xi \) will modify the density dependence of the rho mean field and this could change the neutron-skin thickness. However, unless \(\xi \) is made very large, this term was found to have a small effect [12]. Thus for simplicity, we set \(\xi = 0 \) in all our parameter sets. Second, note that we could have added a cubic sigma-rho interaction of the form: \(\mathcal{L}_3 = M \Lambda_3(g_\phi^3 - 3g_\rho^2 g_\phi b_\mu \cdot b_\nu). \) A nonzero \(\Lambda_3 \) does change the thickness of the neutron skin in \(^{208}\text{Pb}\)—but at the expense of a change in the proton density. Therefore, we set \(\Lambda_3 = 0\) and focus exclusively on \(\Lambda_4 \) and \(\Lambda_\nu. \)

We start with the original NL3 parameter set of Lalazissis, König, and Ring [13]. (Note that a small adjustment of the \(NN\rho \) coupling constant was needed to fit the symmetry energy of nuclear matter at a Fermi momentum of \(k_F = 1.15 \text{fm}^{-1} \); see text below). The NL3 set has \(\zeta = \Lambda_4 = \Lambda_\nu = 0 \) and provides a good fit to the ground-state properties of many nuclei. In this model symmetric nuclear matter saturates at \(k_F = 1.30 \text{fm}^{-1} \) with a binding energy per nucleon of \(E/A = -16.25 \text{MeV} \) and an incompressibility of \(K = 271 \text{MeV} \). All other parameter sets considered here have been fixed to the same saturation properties.

We now add the new nonlinear couplings \(\Lambda_4 \) and/or \(\Lambda_\nu \) between the isoscalar and the isovector mesons. At the same time we adjust the strength of the \(NN\rho \) coupling constant \(g_\rho \) from its NL3 value to maintain the symmetry energy of nuclear matter unchanged (see text below). Note that neither \(\Lambda_4 \) nor \(\Lambda_\nu \) affect the properties of symmetric nuclear matter since \(b_\mu = 0 \). Hence, the saturation properties remain unchanged. Our goal is to change the neutron density and the neutron-skin thickness in \(^{208}\text{Pb}\) while making very small changes to the proton density which is well constrained by the measured charge density [14]. The two new couplings \(\Lambda_4 \) and \(\Lambda_\nu \) change the skin thickness in \(^{208}\text{Pb}\) by similar amounts. Yet they have different high-density limits [12]. For \(\Lambda_4 = 0 \) the symmetry energy is proportional to the baryon density \(\rho \) in the limit of very high density, while it only grows like \(\rho^{1/3} \) for nonzero \(\Lambda_\nu \). This can produce noticeable differences in neutron star radii, as we show below.

Let us start with \(\Lambda_4 = 0 \). For a given omega-rho coupling \(\Lambda_\nu \) we readjust only the \(NN\rho \) coupling constant \(g_\rho \) in order to keep an average symmetry energy fixed. The symmetry energy at saturation density is not well constrained by the binding energy of nuclei. However, some average of the symmetry energy at full density and the surface energy is constrained by binding energies. As a simple approximation we evaluate the symmetry energy not at full density \(k_F \approx 1.30 \text{fm}^{-1} \) but rather at an average density corresponding to \(k_F = 1.15 \text{fm}^{-1} \). Thus, all our parameter sets have a symmetry energy of 23.50 MeV at \(k_F = 1.15 \text{fm}^{-1} \). Note that the original NL3 parameter set predicts a symmetry energy of 37.4 MeV at full saturation density and close to 23.50 MeV at \(k_F = 1.15 \text{fm}^{-1} \) [13]. This simple procedure produces a nearly constant binding energy per nucleon for \(^{208}\text{Pb}\) as \(\Lambda_\nu \) is changed, as can be seen in Table I. Moreover, Table I shows that increasing \(\Lambda_\nu \) reduces the neutron-skin thickness significantly—while maintaining the proton radius nearly constant. In the following we plot our results for a range of \(\Lambda_\nu \) values for which the proton radius is within 0.01 fm of its \(\Lambda_\nu = 0 \) value.

To study the solid crust of a neutron star we make a simple random-phase-approximation (RPA) calculation of the transition density below which uniform neutron-rich matter becomes unstable against small amplitude density fluctuations. This provides a lower bound to the true transition density [15]. We start with the longitudinal dielectric function \(\epsilon_L \), as defined in Eq. (68) of Ref. [16], evaluated at an energy transfer \(q_0 = 0 \) and at an arbitrary momentum transfer \(q \). That is,
\[\epsilon_L(q_0 = 0, q) = \det(1 - D_L \Pi_L). \] (2)

Here \(\Pi_L \) is a longitudinal polarization matrix describing particle-hole excitations of a uniform system of protons, neutrons, and electrons in beta equilibrium, as given in Eq. (56) of Ref. [16]. The matrix \(D_L \), describing meson and photon propagation, follows from Eq. (57) of Ref. [16]—but includes additional terms to account for the nonlinear nature of the meson self-couplings [17]. We estimate the transition density \(\rho_c \) by computing the largest density at which \(\epsilon_L(0, q) < 0 \) for any given \(q \).

TABLE I. Results for the NL3 Parameter Set. The binding energy per particle in \(^{208}\text{Pb}\) is B.E., \(R_p \) is the proton and \(R_n - R_p \) is the difference between neutron and proton radii in Pb. (Note that we do not include center of mass corrections.) Finally, \(\rho_c \) is our estimate for the transition density of neutron-rich matter from a nonuniform to uniform phase.

<table>
<thead>
<tr>
<th>(\Lambda_\nu)</th>
<th>(g_\rho^2)</th>
<th>B.E. (MeV)</th>
<th>(R_p) (fm)</th>
<th>(R_n - R_p) (fm)</th>
<th>(\rho_c) (fm(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>79.6</td>
<td>7.85</td>
<td>5.460</td>
<td>0.280</td>
<td>0.052</td>
</tr>
<tr>
<td>0.005</td>
<td>84.9</td>
<td>7.86</td>
<td>5.461</td>
<td>0.265</td>
<td>0.056</td>
</tr>
<tr>
<td>0.01</td>
<td>90.9</td>
<td>7.87</td>
<td>5.462</td>
<td>0.251</td>
<td>0.061</td>
</tr>
<tr>
<td>0.015</td>
<td>97.9</td>
<td>7.88</td>
<td>5.463</td>
<td>0.237</td>
<td>0.067</td>
</tr>
<tr>
<td>0.02</td>
<td>106.0</td>
<td>7.88</td>
<td>5.466</td>
<td>0.223</td>
<td>0.075</td>
</tr>
<tr>
<td>0.025</td>
<td>115.6</td>
<td>7.89</td>
<td>5.469</td>
<td>0.209</td>
<td>0.081</td>
</tr>
</tbody>
</table>
that the scalar mass \(m \) rate nuclear matter with are for parameter sets having \(\zeta \) set also has considerable information on the transition density. \(M \) correlation seems to be insensitive to with the skin thickness expressed in fm. Moreover, this \(\Lambda \) parameter is adjusted to reproduce the proton radius in \(R \) predicted difference in the root-mean-square neutron and proton radii \(R_n - R_p \) in \(208 \)Pb. The curves are parameterized by different values of \(\Lambda_v \), as shown in Table I. The NL3 parameter set saturates nuclear matter with a relatively small value of the nucleon effective mass: \(M^* \equiv M - g_s \phi = 0.59M \). The parameter set S271 saturates nuclear matter as NL3 but with \(M^* = 0.70M \). This set also has \(\zeta = 0 \). The two remaining curves in the figure are for parameter sets having \(\zeta = 0.06 \) and both saturate nuclear matter with \(M^* = 0.80M \). (Set Z271v has a nonzero \(\Lambda_v \) while set Z2714 uses a nonzero \(\Lambda_4 \)). Note that the scalar mass \(m_s \) for parameter sets S271, Z271v, and Z2714 is adjusted to reproduce the proton radius in \(208 \)Pb as computed with NL3. Figure 1 displays a clear inverse correlation between the transition density and the neutron-skin thickness \(R_n - R_p \). The transition density expressed in \(\text{fm}^{-3} \) is about,

\[
\rho_c \approx 0.16 - 0.39 \hspace{1pt} (R_n - R_p),
\]

with the skin thickness expressed in fm. Moreover, this correlation seems to be insensitive to \(M^* \) or to using \(\Lambda_4 \) or \(\Lambda_v \) to change \(R_n - R_p \). These results suggest that a measurement of the neutron radius in \(208 \)Pb will provide considerable information on the transition density.

<table>
<thead>
<tr>
<th>Model</th>
<th>(g_s^2)</th>
<th>(g_v^2)</th>
<th>(\kappa)</th>
<th>(\lambda)</th>
<th>(\zeta)</th>
<th>(m_n)</th>
<th>(m_v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL3</td>
<td>104.387</td>
<td>165.585</td>
<td>3.860</td>
<td>-0.01591</td>
<td>0</td>
<td>508.194</td>
<td>782.5</td>
</tr>
<tr>
<td>S271</td>
<td>85.992</td>
<td>116.766</td>
<td>6.68</td>
<td>-0.01578</td>
<td>0</td>
<td>505</td>
<td>783</td>
</tr>
<tr>
<td>Z271v</td>
<td>53.785</td>
<td>70.669</td>
<td>6.17</td>
<td>0.15634</td>
<td>0.06</td>
<td>465</td>
<td>783</td>
</tr>
</tbody>
</table>

In Fig. 2 we show the electron fraction per baryon \(Y_e \) versus density for uniform neutron-rich matter in beta equilibrium. We include results only for the S271 parameter set as all other sets yield similar results. The different curves are for different values of \(\Lambda_v \), which predict the indicated \(R_n - R_p \) values. The curves start near the transition densities displayed in Fig. 1. The electron fraction \(Y_e \) is determined by the symmetry energy while \(R_n - R_p \) is sensitive to the density dependence of the symmetry energy. Therefore a measurement of \(R_n - R_p \) constrains the growth of \(Y_e \) with density. If \(R_n - R_p \) is greater than about 0.24 fm, \(Y_e \) becomes large enough to allow the direct URCA process [18] to cool down a 1.4 solar mass neutron star.

The radius \(R \) of a 1.4 solar mass neutron star is shown in Figure 3. Note that this figure is based on the equation of state of uniform matter so there may be small errors from the surface region. For a given parameter set, \(R \) increases with \(R_n - R_p \). However, as one changes the parameter set to increase \(M^* \) or \(\zeta \) the equation of state becomes softer at high density. As a result \(R \) decreases for fixed \(R_n - R_p \). Also, the high density equation of state is softer with \(\Lambda_v \) than with \(\Lambda_4 \) so Z271v gives slightly smaller stars than parameter set Z2714. We conclude that \(R \) is not uniquely constrained by a measurement of the neutron-skin thickness because \(R_n - R_p \) only depends on the equation of state at normal and lower densities while \(R \) is also sensitive to the equation of state at higher densities. Yet one may be able to combine separate measurements of \(R_n - R_p \) and \(R \) to obtain considerable information about the equation of state at low and high densities. For example, if \(R_n - R_p \) is relatively large.
In conclusion: 1) It is possible to fit nuclear observables—such as charge densities, binding energies, and single particle spectra—with effective field theories that predict a range of neutron-skin thicknesses. This can be done by adding nonlinear couplings between isoscalar and isovector meson fields or, in general, by adding interactions that modify the density dependence of the symmetry energy. We conclude that the neutron-skin thickness is not tightly constrained by these observables. Yet a measurement of the skin thickness will constrain the density dependence of the symmetry energy.

2) The density dependence of the symmetry energy is adjustable in our relativistic effective field models while still reproducing nuclear-matter properties and other ground-state observables. Indeed, our models can provide a Lorentz-covariant extrapolation for the high density equation of state with a symmetry energy that rises slower with density relative to earlier relativistic mean-field models.

3) The electron fraction Y_e of neutron-rich matter in beta equilibrium is correlated with the neutron-skin thickness in 208Pb. The thicker the neutron skin the faster Y_e rises with density. In our models a neutron-skin thickness of the order of 0.24 fm or larger suggests that Y_e will become large enough to allow a direct URCA process to cool down a $1.4M_\odot$ neutron star.

4) We have found an inverse correlation between the neutron-skin thickness and the density of a phase transition from nonuniform to uniform neutron-rich matter.

5) Microscopic calculations of the energy of neutron matter constrain the density dependence of the symmetry energy and hence the neutron-skin thickness in 208Pb. Therefore a neutron skin measurement may provide an important observational check on such calculations that is not provided by other observables. Moreover, a neutron-skin measurement may constrain three-body forces in neutron-rich matter.

We acknowledge useful discussions with A. Brown, R. Furnstahl, J. Lattimer, S. Reddy and B. Serot. We thank A. Brown for sharing results prior to publication. This work was supported in part by DOE grants DE-FG02-87ER40365 and DE-FG05-92ER40750.

FIG. 3. Radius of a 1.4 solar mass neutron star versus neutron-minus-proton radius in 208Pb for the four parameter sets described in the text.