REGULATED CHIRAL GAUGE THEORY

H. Neuberger
Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855, USA
E-mail: neuberg@physics.rutgers.edu

After a brief introduction to the overlap two examples relating to topological properties of chiral fermion systems in interaction with gauge fields are presented: It is shown how the overlap preserves the continuum structure of exact fermionic zero modes in gauge backgrounds that are instanton-like and why chiral anomalies are inevitable.

1 Introduction

On the lattice, any exact global symmetry group that acts locally can be turned into the gauge group of a gauge invariant theory by the lattice version of the principle of minimal substitution and its non-abelian generalization. This leaves no room for anomalies, and therefore cannot produce the correct continuum limit. To get around this difficulty one needs to take seriously the mathematical developments of the mid eighties which taught us that the chiral determinant is best thought of as a line bundle over gauge orbit space. This provides a natural setting for the nontrivial topological properties that complicate the interaction of chiral fermions with gauge fields. Also, it means that the fermionic path integral cannot be of an entirely traditional kind, because if it were, the chiral determinant would not stop at the stage of being a line bundle, it would be just a function. The total disregard almost all workers on lattice chirality had (and some still have) towards continuum topological properties explains why a decade of efforts from the early eighties to the early nineties amounted to an industry of failures. The key change in attitude that started in 1992 and led to success was accepting the preservation of topological continuum properties on the lattice as essential. Although the Ginsparg-Wilson relation was in the literature since 1982, the role of topology was not made explicit by it, and, as a result, the GW relation only played an after-the-fact role in our understanding of the modern solution to the chiral fermion problem. The main reason is that the GW relation deals directly only with

\[\text{Invited talk at the XVIII Autumn School on Topology of Strongly Correlated Systems, 8-13 October, 2000, Lisbon}\]
Dirac fermions, rather than the true fundamental building blocks of matter, namely the Weyl fermions.

The plan for the rest of my talk is as follows: I shall first present the main idea of the solution, make it concrete in the overlap and proceed to explain what the two topological issues mentioned in the abstract are and how they get resolved in the overlap. My main collaborator in the overlap work was R. Narayanan.

2 Basic Idea

It is easy (too easy!) to regulate in a gauge invariant way vector-like gauge theories of generic structure:

\[\mathcal{L}_\psi = \bar{\psi} D\psi + \bar{\psi} \left(P_L \mathcal{M} + P_R \mathcal{M}^\dagger \right) \psi. \] (1)

\(\mathcal{M} \) is the flavor-mixing mass matrix (taken as \(N \times N \)), \(\bar{\psi}, \psi \) are Dirac fermions and \(D_\mu \) is the gauge-covariant derivative. Employing a bi-unitary fermion field transformation, this theory is reduced to a theory of \(N \) decoupled flavors, each made out of two Weyl fermions.

Consider now the case that \(N = \infty \), assuming that the above reduction does not work because of the infinite dimensionality of the flavor Hilbert space. Then, possibly, the number of Weyl fermions is infinite but odd, corresponding to \(\infty + \frac{1}{2} \) flavors. It is well known how to get \(\infty + \frac{1}{2} \) flavors: Pick \(\mathcal{M} \) to have analytic index one.

\[\mathcal{M} \psi = 0 \Rightarrow \psi = \psi_0 \neq 0, \text{ but } \mathcal{M}^\dagger \psi = 0 \Rightarrow \psi = 0. \] (2)

Moreover, it is easy to find examples with \(\mathcal{M} \mathcal{M}^\dagger \) strictly larger than zero, and in such a case the above structure is stable under sufficiently small, but finite, perturbations \(\mathcal{M} \to \mathcal{M} + \delta \mathcal{M} \).

Obviously, a matrix and its hermitian conjugate can have different ranks only for infinite dimension. All nonzero eigenstates of \(\mathcal{M} \mathcal{M}^\dagger \) are paired with nonzero eigenstates of \(\mathcal{M}^\dagger \mathcal{M} \) and by rescaling \(\mathcal{M} \) by a large ultraviolet cutoff \(\Lambda \) each pair becomes a Dirac fermion of very large mass. Thus, only one light, zero mass Weyl particle is left at low energies.

This idea has some promise as a starting point because we start from a bilinear fermion action with a formally gauge covariant kernel, this kernel is for a vector-like structure and should therefore be easy to regulate, and we avoid two deadly traps: The first is the “shape trap” and the second is the “anomaly trap”.

Suppose that you try a Weyl-fermion action \(\bar{\psi}_L K(A) \psi_L \), where \(K(A) \) is a gauge dependent finite matrix. When \(A = 0 \) one has the same number of
ψ and ψ fields and hence \(K(A) \) is a square matrix. But, when \(A \) is close to an instanton \(K(A) \) must become rectangular, say having one more column than rows. When \(A \) is close to an anti-instanton, we again need a rectangular matrix, but now the number of rows exceeds that of columns by one. So, the shape of \(K(A) \) must be allowed to change when the topological properties of the gauge background change. Only an \(\infty \times \infty \) matrix can effectively change its shape in the manner required. If we start with a well defined finite dimensional \(K(A) \) we fall into the shape trap.

Gauge covariance means that under the replacement of \(A \) by a gauge transform \(A^g \)

\[
K(A^g) = G(g) K(A) G(g) \tag{3}
\]
implying gauge invariance of \(\text{det} \ K(A) \) on account of the unitarity of \(G(g) \).

Here we made no restriction on the representation in which the fermions are and it could be that the continuum theory is anomalous, which means that determinant is not gauge invariant. It is possible to have a non-invariant determinant and a gauge covariant kernel if the kernel is infinite dimensional and the definition of the determinant is more subtle. Had we tried to keep \(K(A) \) a finite square matrix we would have fallen into the anomaly trap.

Our task now is to make a concrete choice of \(\mathcal{M} \), get rid of the infinity of heavy Dirac particles and end up with something completely well defined and finite, so it can be even put on a computer.

3 Overlap

We choose \(\mathcal{M} \) to be an operator on integrable functions on the real line, parameterized by \(s \),

\[
\mathcal{M} = \partial_s - f(s) \tag{4}
\]
where \(f(s) \) is \(\Lambda \) for \(s > 0 \) and \(-\Lambda' \) for \(s < 0 \). This arrangement means that

\[
\mathcal{L}_\psi = \psi^* \partial_s \psi + \psi^* [\gamma_5 \mathcal{D} - \gamma_5 f(s)] \psi \tag{5}
\]
where \(\psi^* = \bar{\psi} \gamma_5 \) plays the role of conjugate momentum to \(\psi \) when \(s \) is viewed as an Euclidean time, and \(\gamma_5 [\mathcal{D} - f(s)] \) is a hermitian operator on account of the anti-hermiticity of \(\mathcal{D} \) and its chiral property\(^{2,3,4} \). Assuming that \(\mathcal{D} \) has been replaced by a finite square matrix, the single infinity comes from the infinite extent of the line \(s \). The fermion path integral (at fixed gauge background) is now immediately interpreted as giving

\[
e^{-E_{\mathcal{M} s} (A \times \infty) \langle v_- (A) | v_+ (A) \rangle} e^{-E_{\mathcal{M} s} (A \times \infty) \times \infty} \tag{6}
\]
The infinite factors are gauge invariant, come from integrating out only very heavy Dirac particles, so are infinite but local gauge invariant functionals of A, and therefore can be discarded leaving the regulated chiral determinant given by
\[\langle v_-(A)|v_+(A) \rangle. \] (7)

Here
\[\hat{H}_\pm(A)|v_\pm(A) \rangle = E_{\pm}^\pm(A)|v_\pm(A) \rangle \quad \hat{H}_\pm(A) = \hat{a}^\dagger H_\pm(A)\hat{a}, \] (8)

where
\[H_+(A) = \gamma_5(D + \Lambda) \quad H_- = \gamma_5(D - \Lambda'). \] (9)
The main point is that everything ended up being defined in terms of the finite square matrices $H_\pm(A)$, and this is something a computer can “understand”.

A technical simplification can be made on the lattice: one can take the mass parameter to infinity on one side of $s = 0$ and consequently replace the minus state in the overlap by a gauge field independent reference state $|v_{\text{ref}} \rangle$, defined by $H_-|v(A) \rangle = n|v(A) \rangle$. We now turn to how the two topological issues mentioned in the abstract get resolved, avoiding the shape and anomaly traps.

4 Instantons

The operators $\hat{H}_\pm(A)$ conserve fermion number \hat{N}_F. The reference state has fermion number equal to half of the dimension of the matrix $H(A) = H_+(A)$, $\frac{N}{2}$. For any A,
\[\hat{N}_F|v(A) \rangle = n|v(A) \rangle. \] (10)

For $A = 0$ or nearby gauge fields $n = \frac{N}{2}$ and the overlap can be nonzero. But for an instanton and nearby gauge configurations we have $n = \frac{N}{2} + 1$ and for an anti-instanton we have $n = \frac{N}{2} - 1$. Thus, we get exact zero for the regulated chiral determinants in topologically non-trivial backgrounds. Moreover, the insertion of an \hat{a} or an \hat{a}^\dagger into the overlap will render the result non-zero, exactly as required to generate 't Hooft vertices, once we interpret the insertions of \hat{a} to correspond to insertions of ψ in the path integral3.

We also ended up with a definition of lattice topological charge:
\[Q_{\text{top}} = n - \frac{N}{2} = -\frac{1}{2}Tr[H(A)]. \] (11)
The chiral fermion construction has naturally produced a slicing up of the connected space of lattice gauge field configurations into regions corresponding to different topological charge. A necessary ingredient of any approach to the regularization of chiral fermions (which preserves bilinearity) is a regulated definition of topological charge, something that was missing from all of the previous failed attempts.
5 Inevitability of anomalies

We need first to see why the overlap is not guaranteed to be gauge invariant although the Hamiltonian matrix is perfectly gauge covariant. Since $H(A^g) = \mathcal{G}(g)H(A)\mathcal{G}(g)$ and $H(A)$ is assumed to have no zero eigenstates, the ground state of $\hat{H}(A)$ is non-degenerate. Hence,

$$|\psi(A^g)\rangle = e^{iS_{WZ}(g,A)}G^i(g)|\psi(A)\rangle.$$ \hspace{1cm}(12)

Also, since $H = \gamma_5$, one can choose

$$G(g)|\psi_{\text{ref}}\rangle = |\psi_{\text{ref}}\rangle,$$

implying

$$\langle \psi_{\text{ref}}|\psi(A^g)\rangle = e^{iS_{WZ}(g,A)}\langle \psi_{\text{ref}}|\psi(A)\rangle,$$ \hspace{1cm}(14)

which is a reflection of the fact that the ground state is defined only up to phase. Thus, the overlap defines a line bundle over the space of gauge orbits $\{A\}/\{\mathcal{G}\}$. This is exactly the required kind of mathematical structure!

One imagines starting from some reasonable smooth\(^b\) phase convention, a choice of a section in the line bundle of $|\psi(A)\rangle$ over $\{A\}$. One then considers possible redefinitions of the phase by a local functional $\Phi(A)$:

$$|\psi(A)\rangle \rightarrow e^{i\Phi(A)}|\psi(A)\rangle.$$ \hspace{1cm}(15)

The question of gauge invariance now amounts to whether the Wess-Zumino functional is a trivial cocycle, meaning that a $\Phi(A)$ can be found such that

$$S_{WZ}(g,A) = \Phi(A^g) - \Phi(A).$$ \hspace{1cm}(16)

If such a $\Phi(A)$ can be found one can restore gauge invariance. An anomaly occurs if such a $\Phi(A)$ does not exist\(^5\).

We now focus on the simple example of two dimensional $U(1)$ chiral gauge theory and show that a topological obstruction makes $S_{WZ}(g,A)$ a nontrivial cocycle. The obstruction should be independent of the phase choice, invariant under the $U_0(1)$ gauge group of phase redefinitions of $|\psi(A)\rangle$. The natural $U_0(1)$ invariant quantity is Berry’s curvature \mathcal{F}, derived from Berry’s $U_0(1)$ connection \mathcal{A}. Denoting $A_\mu(x) = \xi_\alpha$, where $\alpha = (\mu, x)$, we have

$$i\mathcal{A} = \langle \psi|\partial_\alpha v\rangle d\xi_\alpha$$ \hspace{1cm}(17)

and

$$i\mathcal{F} = id\mathcal{A} = \frac{1}{2}[\langle \partial_\alpha v|\partial_\beta v\rangle - \langle \partial_\beta v|\partial_\alpha v\rangle]d\xi_\alpha d\xi_\beta.$$ \hspace{1cm}(18)

\(^5\)We shall discuss later on what constitutes an acceptable initial phase choice.
Before continuing, we characterize the initial phase choice more precisely; for our example we do not need a good section explicitly, only the assumption that one exists. One of the main conditions the initial phase choice must obey is that \(A\) be a local functional of \(A\). In addition, both perturbative and nonperturbative anomalies must be reproduced, \(S_{WZ}(g, A)\) must switch sign when the handedness of the fermion is switched and a large discrete set of symmetries ought to be obeyed. At present, the best phase choice theoretically seems to be the adiabatic phase choice\(^6\) and the single numerically practical and theoretically plausible phase choice is the Brillouin-Wigner one\(^3\).

Because of \(U_0(1)\) gauge invariance \(F\) is also a closed form on orbit space \(\{A\}/\{G\}\). Over \(\{A\}\), \(F\) is also exact, but this is not guaranteed to be true over \(\{A\}/\{G\}\). However, if \(A\) were gauge invariant, \(F\) would be exact also over \(\{A\}/\{G\}\). If \(S_{WZ}(g, A)\) could be eliminated by a phase redefinition, Berry's connection would indeed be \(U(1)\) gauge invariant. We shall make the obstruction explicit by finding a two torus embedded in orbit space over which the integral of \(F\) vanishes only if \(F\) is made up additively of contributions of several fermions of different handedness and charge, and the fermion set is perturbatively anomaly free. When this condition is not met \(F\) is not exact and hence it is impossible to eliminate \(S_{WZ}(g, A)\) by a \(U_0(1)\) gauge transformation.

We are working on a finite toroidal square lattice\(^5\) and the link variables are \(U_\mu(x)\). We pick a uniform background, \(U_\mu(x) = e^{ih_\mu}\) for all links in the direction \(\mu\). A shift \(h_\mu \rightarrow h_\mu + \frac{2\pi}{L} n_\mu, n_\mu \in \mathbb{Z}\) amounts to a gauge transformation, so in \(\{A\}/\{G\}\) we have a torus \(|h_\mu| \leq \frac{\pi}{L}\). In Fourier space, \(H(A)\) decouples into diagonal blocks \(H_n\). For \(h_\mu = 0\)

\[
H_n = \left(\begin{array}{cc} \frac{1}{2} \hat{p}_n^2 - 1 & i \hat{p}_n - \frac{\bar{p}_n^2}{2} \\ -i \hat{p}_n - \frac{\bar{p}_n^2}{2} & 1 - \frac{1}{2} \hat{p}_n^2 \end{array} \right),
\]

where

\[
\hat{p}_\mu = \sin p_\mu, \quad \hat{p}_\mu = 2 \sin \frac{1}{2} p_\mu, \quad n_\mu = 0, 1, \ldots L - 1, \quad p_\mu = \frac{2\pi}{L} n_\mu.
\]

For nonzero \(h_\mu\), \(p_n\) gets replaced by \(p_n + h\).

We need to calculate the two form

\[
f(h) = \langle \frac{\partial v}{\partial h_\mu} \frac{\partial v}{\partial h_\nu} \rangle dh_\mu dh_\nu.
\]

\[
|v(h)\rangle \text{ is a Slater determinant of single particle two component spinorial wave functions for each } n, u(p_n + h). \text{ Hence,}
\]

\[
f(h) = \sum_n \left[\frac{\partial u_\dagger(p_n + h)}{\partial h_\mu} \cdot \frac{\partial u(p_n + h)}{\partial h_\nu} \right] dh_\mu dh_\nu,
\]
where

\[H_n u(p_n) = E_n(p_n) u(p_n). \]

(23)

Although \(u \) depends on phase choices, \(f \) does not, and this is made explicit by introducing the invariant two by two projector matrices \(P = uu^\dagger \).

\[
 f(h) = \frac{1}{2} \sum_n \text{Tr} \left(P[\partial_{h_n} P, \partial_{h_c} P] \right)|_{p_n+h} dh_\mu dh_\nu. \tag{24}
\]

For each \(n \),

\[
 P|_{p_n+h} = \frac{1}{2} (1 - \vec{w}_n(h) \cdot \vec{\sigma}); \quad \vec{w}_n^2(h) = 1. \tag{25}
\]

Hence,

\[
 f(h) = \frac{i}{2} \sum_n \vec{w}_n \cdot \left(\frac{\partial \vec{w}_1}{\partial h_1} \times \frac{\partial \vec{w}_2}{\partial h_2} \right) dh_1 dh_2. \tag{26}
\]

One has \(\vec{w}_n = \vec{w}(p_n + h) \) and \(\vec{w}(\theta) \) is a map from \(T^2 \) to \(S^2 \). We now calculate the integral

\[
 \int_{|\theta| \leq \pi} f(h). \tag{27}
\]

The sum over \(n \) combines with the \(h \)-integral to give the answer

\[
 \int_{|\theta| \leq \pi} \vec{w}(\theta) \cdot \left(\frac{\partial \vec{w}_1}{\partial \theta_1} \times \frac{\partial \vec{w}_2}{\partial \theta_2} \right) d^2 \theta, \tag{28}
\]

which is the winding number of the map \(\vec{w}(\theta) \), the integrand having the explicit form of a surface element on the sphere, parameterized by \(\theta \). \(\vec{w}(\theta) \) is defined by

\[
 \begin{pmatrix}
 \frac{1}{2} \hat{\theta}^2 & -i \hat{\theta} - \hat{\bar{\theta}} \\
 -i \hat{\theta} - \hat{\bar{\theta}} & 1 - \frac{1}{2} \hat{\bar{\theta}}^2
\end{pmatrix} = E(\theta) \vec{w}(\theta) \cdot \vec{\sigma}; \quad \vec{w}^2(\theta) = 1, \quad E(\theta) < 0. \tag{29}
\]

Until now we had only one left handed Weyl fermion of unit charge. For charge \(q \) each \(h \)-factor is multiplied by \(q \) so we get a multiplicative factor of \(q^2 \). The overall sign switches with the handedness. Thus, unless \(\sum q_L^2 = \sum q_R^2 \), the total \(F \) is proven not to be exact over gauge orbit space, \(S_{WZ}(g, A) \) cannot be eliminated, and no phase choice can restore gauge invariance - the anomaly is inevitable.

It is noteworthy that this inevitability was established in a completely finite system, in the presence of both an IR and a UV cutoff; the main ingredient in the proof was the smoothness in \(h \) of the state entering the overlap. Thus, the source of the obstruction is topological.
6 Discussion

Let me end by touching upon some issues related to lattice chirality that came up during the discussion sessions at the school and pointing out connections to other talks.

6.1 How the Nielsen - Ninomiya obstruction in crystal momentum space is avoided

Starting from the toroidal shape of momentum space on the lattice one can establish under general assumptions that no traditional free fermionic action can have truly chiral global symmetries, the chiral nature being replaced by a vector-like one due to fermion doubling. While this version of the no-go theorem holds for any finite fermionic kernel, it can fail when the kernel is an infinite matrix. In the case relevant to the overlap, the free kernel in momentum space is an infinite operator analytically depending on the momentum. However, the eigenvalues do no depend analytically on the momentum: the mode corresponding to the chiral fermion state exists only in a finite region around the origin of momentum space and disappears outside it. Our first paper on the subject was devoted to showing that this abrupt behavior did not induce any non-analyticity to any order in perturbation theory, since the fermionic propagator was well behaved.

In the vector-like case the shape trap does not apply because the shapes of the kernels corresponding to the left and right handed blocks change in a complementary manner in the presence of instantons or anti-instantons, so that the combined kernel in Dirac space is always square. Thus, one should be able to get a traditional type of action for vector-like fermions, so long the anomaly trap is avoided. By a few manipulations it was shown that the removal of all the extra heavy Dirac fermions leaves a lattice action known as the overlap Dirac operator, D_o. Although the relation of D_o to the GW relation was pointed out already in this comment seems to have been ignored until it was amplified in. D_o has no difficulty with the no-go theorem because it does not anticommute with γ_5; however, the chiral symmetry is just hidden as a result of eliminating all the extra fermions and this can be re-interpreted as a consequence of the GW relation.

6.2 Numerical prospects

It is premature to predict when the new fermionic actions would replace the traditional ones, because at the moment implementation costs run roughly a factor of 100 higher. The most tested approach is that of domain wall...
fermions11 and the next one in line is based on rational approximants to D_o12. Personally, I believe that using D_o is better because it is cleaner theoretically and, apparently, the implementation cost is similar13. If the factor of 100 were not critical there would be no question that one should use the new fermionic actions. This factor probably can be reduced by several tricks and the last word hasn’t been said yet.

Already now, for some calculations, the simplification afforded by exact chirality on the lattice may outweigh the large implementation cost. This would be the case in calculations that deal with matrix elements of operators that do not mix under renormalization in the continuum but, on the lattice, do mix when traditional fermions are employed. Disentangling this mixing numerically is so costly that it is probably advantageous to pay the higher implementation price instead and use fermions with exact chiral symmetry.

6.3 Restoring gauge invariance

We have seen an example which shows how continuum anomalies prohibit the restoration of non-perturbative gauge invariance. In the abelian case, at infinite volume and with non-compact gauge fields one can show that non-perturbative gauge invariance can be restored if continuum anomalies cancel6. From the mathematical viewpoint, since four dimensional abelian gauge theories do not have an interacting continuum limit (just like ϕ^4, which is relevant to Higgs physics14), the difference between an anomalous and a non-anomalous theory is of a more quantitative than qualitative nature. Both theories are effective in the sense that they make predictions of limited accuracy whose validity holds only for energies below a cutoff Λ. In addition, the coupling constant cannot be too large, and has to vanish in the limit $\Lambda \rightarrow \infty$. The bound on the coupling constant is much less stringent if anomalies cancel6.

6.4 Connections to other talks

J. Zinn-Justin has given an introduction to the GW relation in his series of talks on the regularization of chiral gauge theories. The overlap produces the overlap Dirac operator, which satisfies the GW relation and in a certain sense is the most general solution to this relation. It is important to keep in mind that satisfying the GW relation is, in itself, not sufficient to ensure the presence of chiral fermions. Extra conditions must be attached, and it is easy to come up with useless solutions to the GW relation if these extra conditions are not met. At present there is some discussion in the literature about what the minimal set of extra conditions needed to ensure the presence of chiral fermions is15.

9
The technical aspects of my derivation of the two dimensional obstruction to the restoration of gauge invariance (showing how the “anomaly trap” is avoided) are almost identical to the derivations surrounding the TAP integers that appeared briefly in the lectures by D. Thouless. Berry’s connection plays a central role, similar to the role it plays in the chiral fermion context.

The “shape trap” is associated with ’t Hooft vertices which appeared in G. ’t Hooft’s lectures in the vector-like context. The role of the ’t Hooft vertex is even more dramatic in the chiral context, as discovered by ’t Hooft but not discussed in his lectures here.

If one keeps the extra fermions in the picture, and uses the entire system to calculate anomalies the quantization of the anomaly coefficient comes from nontrivial winding in Fourier space This makes contact with Volovik’s lectures where the role of topology in momentum-energy space (round singularities in the fermion propagator) was emphasized.

Acknowledgments
This research was supported in part by the DOE under grant # DE-FG05-96ER40559. I wish to thank the organizers for the invitation to participate, for support, and for the immense hospitality extended.

References
15. Ting-Wai Chiu, hep-lat/0008010.