The Vacuum Polarization: Power Corrections beyond OPE? * 1

M. Göckeler a, R. Horsley b,c, W. Kürzinger d, V. Linke a,d, D. Pleiter b,d, P. E. L. Rakow a and G. Schierholz a,b,c

aInstitut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany
bDeutsches Elektronen-Synchrotron DESY & NIC, D-15735 Zeuthen, Germany
cInstitut für Physik, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany
dInstitut für Theoretische Physik, Freie Universität Berlin, D-14195 Berlin, Germany

We compute the vacuum polarization on the lattice using non-perturbatively O(a) improved Wilson fermions. The result is compared with the operator product expansion (OPE).

1. INTRODUCTION

The vacuum polarization is given by

\[\Pi_{\mu\nu}(q) = i \int d^4x \, e^{iqx} \langle 0 | T J_\mu(x) J_\nu(0) | 0 \rangle \]

\[= (q_\mu q_\nu - q^2 g_{\mu\nu}) \Pi(q^2), \] (1)

with the vector current \(J_\mu(x) = \bar{\psi}(x) \gamma_\mu \psi(x) \).

In the following we work at the Euclidean momenta \(Q^2 = -q^2 \). Because the polarization function \(\Pi(-Q^2) \) has logarithmic divergences, it is customary to study the Adler function [1]

\[D(Q^2) = -12 \pi^2 Q^2 \frac{d\Pi(-Q^2)}{dQ^2}. \] (2)

The Adler function provides a way of comparing theoretical predictions from QCD with available time-like experimental data for the \(e^+e^- \) total cross section via

\[D(Q^2) = Q^2 \int_{4m^2}^{\infty} \frac{R(s)}{(s + Q^2)^2} ds, \] (3)

where

\[R(s) = \frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)} \] (4)

is the ratio of the hadronic to the leptonic cross section at center of mass energy squared \(s \). Lattice calculations will give valuable information for the Adler function in the region shown in Figure 1.

The standard operator product expansion (OPE) of the Adler function is of the form

\[D(Q^2) = D^{\text{pert}}(Q^2) + D^{\text{NP}}(Q^2). \] (5)

The perturbative part is available to three loops in the form of a large-\(Q^2 \) expansion [3–5] and reads

\[D^{\text{pert}}(Q^2) = 3 \sum_q \frac{Q^2_q}{Q^2} \left\{ -6 \frac{Q^2_q}{Q^2} \ln \frac{Q^2_q}{Q^2} + 24 \frac{m_q^2}{Q^2} \ln \frac{m_q^2}{Q^2} + \alpha_s(Q^2) \left[1 - 12 \frac{m_q^2}{Q^2} \ln \frac{m_q^2}{Q^2} \right] \right\}. \] (6)

To leading order in \(1/Q^2 \) the non-perturbative part is given by

\[D^{\text{NP}}(Q^2) = 3 \sum_q Q^2_q \frac{\pi^2}{2} \left\{ w_1 \frac{\langle \bar{q} q GG \rangle}{Q^4} + w_2 \frac{\langle m_q \bar{q} q \rangle}{Q^4} + w_3 \sum_{q'} \frac{\langle m_{q'} \bar{q} q' \rangle}{Q^4} \right\}. \] (7)
The last sum in eq. (7) is over q' dynamical quark flavors which will not concern us here since we are working in the quenched approximation. The Wilson coefficients are given by [3]

$$w_1 = \frac{1}{12} \left(1 - \frac{11}{18} \frac{\alpha_s(\mu^2)}{\pi}\right) + O(\alpha_s^2) \quad (8)$$

$$w_2 = 2 + \frac{2}{3} \frac{\alpha_s(\mu^2)}{\pi}$$

$$(\frac{47}{4} - \frac{3}{2} \ln \frac{Q^2}{\mu^2}) \left(\frac{\alpha_s(\mu^2)}{\pi}\right)^2 + O(\alpha_s^3) \quad (9)$$

$$w_3 = \frac{4}{27} \frac{\alpha_s(\mu^2)}{\pi}$$

$$\left(\frac{4}{3} \zeta_3 - \frac{88}{243} - \frac{1}{3} \ln \frac{Q^2}{\pi^2}\right) \left(\frac{\alpha_s(\mu^2)}{\pi}\right)^2 + O(\alpha_s^3). \quad (10)$$

Computation of the vacuum polarization allows us in principle to determine the strong coupling constant α_s as well as the gluon, chiral and higher condensates.

It has been claimed by several groups [6–9] that the Adler function (as well as the polarization tensor) receives a further contribution of the form

$$\delta D(Q^2) \sim \Lambda^2/Q^2. \quad (11)$$

Such a term is not present in the OPE, because there exists no gauge invariant dimension-two operator. In this talk we shall compute the vacuum polarization and compare it with the predictions of the OPE.

2. LATTICE EVALUATION

To construct the polarization tensor on the lattice we demand the lattice Ward identity to be fulfilled. In lattice momentum space this leads to

$$\tilde{q}_\mu \Pi_{\mu\nu} = 0 \quad (12)$$

where the lattice momenta are defined as $\tilde{q}_\mu = (2/a) \sin(q_\mu a/2)$. (All momenta are Euclidean.) The polarization tensor splits into two parts:

$$\Pi_{\mu\nu} = \Pi_{\mu\nu}^{(a)} + \Pi_{\mu\nu}^{(b)}. \quad (13)$$

Figure 1. The analytic domain for the Adler function. Perturbative QCD is applicable in the hatched area of the complex q^2-plane while lattice data can provide information in the shaded region. The picture is taken from [2].

The first part is given by

$$\Pi_{\mu\nu}^{(a)}(q) = \sum_x e^{iqx+is\mu a/2-is\nu a/2}$$

$$\times \langle 0 | J_{\mu}^{(1)}(x) J_{\nu}^{(1)}(0) | 0 \rangle,$$ \hspace{1cm} (14)

while the second part corresponds to the tadpole diagram

$$\Pi_{\mu\nu}^{(b)}(q) = \langle 0 | J_{\mu}^{(2)}(0) | 0 \rangle \delta_{\mu\nu}. \quad (15)$$

For the current in eq. (14) we take the conserved vector current (CVC)

$$J_{\mu}^{(1)}(x) = \frac{1}{2} \left(\bar{\psi}(x + a\hat{\mu}) (1 + \gamma_\mu) U_{\mu}^- (x) \psi(x) - \bar{\psi}(x) (1 - \gamma_\mu) U_{\mu}^+ (x) \psi(x + a\hat{\mu})\right), \quad (16)$$

and the current in eq. (15) is given by

$$J_{\mu}^{(2)}(x) = \frac{1}{2} \left(\bar{\psi}(x + a\hat{\mu}) (1 + \gamma_\mu) U_{\mu}^- (x) \psi(x) + \bar{\psi}(x) (1 - \gamma_\mu) U_{\mu}^+ (x) \psi(x + a\hat{\mu})\right). \quad (17)$$

We shall take the following ansatz for the polarization tensor:

$$\Pi_{\mu\nu} = (\tilde{q}_\mu \tilde{q}_\nu - q^2 \delta_{\mu\nu}) \Pi(-q^2). \quad (18)$$

The calculations are done for non-perturbatively $O(a)$ improved Wilson fermions. Besides improving the fermionic action we have
to improve the current as well. The on-shell improved conserved vector current is

\begin{align}
J^{(1)\text{imp}}_{\mu}(x) &= J^{(1)}_{\mu}(x) \\
&+ \frac{c_{\text{cvc}}}{2} \text{i} \partial_{\lambda} \left\{ \bar{\psi}(x) \sigma_{\mu \lambda} \psi(x) \right\} . \tag{19}
\end{align}

The value of the improvement coefficient \(c_{\text{cvc}}\) is not known beyond tree level. We take the tree level value \(c_{\text{cvc}} = 1\). The derivative in eq. (19) must be defined such that the Ward identity, eq. (12), is fulfilled. We take

\begin{align}
\partial_{\lambda} f(x) &= \frac{1}{4\alpha} \left\{ f(x + a\hat{\lambda}) - f(x - a\hat{\lambda}) + f(x + a\hat{\mu} + a\hat{\lambda}) - f(x + a\hat{\mu} - a\hat{\lambda}) \right\} . \tag{20}
\end{align}

In the momentum space this gives a factor \(-\text{i}q_{\lambda} \cos(aq_{\lambda}/2) \cos(aq_{\mu}/2)\) which results in large \(O(a^2)\) corrections, even in the free case. In the following we omit the \(O(a^2)\) terms, thus leaving us with the factor \(-\text{i}q_{\lambda}\). This keeps the Ward identity fulfilled.

3. PRELIMINARY RESULTS

We have performed simulations at the \(\beta\) and \(\kappa\) values shown in Table 1. Because the Adler function involves a derivative with respect to \(Q^2\) we prefer to work with the polarization function. The polarization function is thus written as

\begin{align}
-12\pi^2 \Pi(-Q^2) &= c_0 + c_1 \alpha_s(\mu^2) + c_2 \alpha_s^2(\mu^2) \\
&+ \left\{ \frac{P_1}{Q^2} + \frac{P_2}{Q^4} + P_3 \alpha_s Q^2 + P_4 \right\} . \tag{21}
\end{align}

We have included an additive constant \((P_4)\) to account for the logarithmically divergent contribution [4,10]. This depends on the renormalization scheme. For the perturbative contribution we take the three-loop result [4] renormalized in the \(\overline{\text{MS}}\) scheme. The first coefficient in eq. (21) reads for a single quark with charge \(Q_q = 1\)

\begin{align}
c_0 &= -\frac{9}{4} \left[\frac{20}{9} - \frac{4}{3} \ln \frac{Q^2}{\mu^2} - 8 \frac{m^2}{Q^2} \right] .
\end{align}
<table>
<thead>
<tr>
<th>β</th>
<th>κ</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>0.1336</td>
<td>16</td>
</tr>
<tr>
<td>6.0</td>
<td>0.1339</td>
<td>16</td>
</tr>
<tr>
<td>6.0</td>
<td>0.1342</td>
<td>16</td>
</tr>
<tr>
<td>6.0</td>
<td>0.1345</td>
<td>16</td>
</tr>
<tr>
<td>6.0</td>
<td>0.1345</td>
<td>32</td>
</tr>
<tr>
<td>6.2</td>
<td>0.1344</td>
<td>24</td>
</tr>
<tr>
<td>6.2</td>
<td>0.1349</td>
<td>24</td>
</tr>
<tr>
<td>6.2</td>
<td>0.1352</td>
<td>24</td>
</tr>
<tr>
<td>6.4</td>
<td>0.1343</td>
<td>32</td>
</tr>
<tr>
<td>6.4</td>
<td>0.1346</td>
<td>32</td>
</tr>
<tr>
<td>6.4</td>
<td>0.1350</td>
<td>32</td>
</tr>
<tr>
<td>6.4</td>
<td>0.1352</td>
<td>32</td>
</tr>
</tbody>
</table>

Table 1
The values of β and κ used in the simulations.

\[
+ \left(\frac{4m^2}{Q^2} \right)^2 \left(\frac{1}{4} + \frac{1}{2} \ln \frac{Q^2}{m^2} \right) + \ldots \quad (22)
\]

and is related to the leading part in eq. (6) via a derivative with respect to $\ln(Q^2)$. For $\alpha_s(\mu^2)$ we take the four-loop result [11,12] with $\Lambda_{\overline{MS}} = 238(19)$ MeV [13]. The quark mass renormalizations are taken from [14]. Thus the perturbative part is completely known. We also allow for a $1/Q^2$ contribution. Residual $O(a^2Q^2)$ corrections are accounted for by P_3. In Figure 2 we show the lattice data for $\beta = 6.0$ and $\kappa = 0.1345$. This is compared with the perturbative part of eq. (21) including a constant term P_4. There we have also set $\mu = 1/a$. However the result was found not to depend significantly on the exact choice of μ. For values of $Q^2 > 2$ GeV2 we find very good agreement between the lattice data and three-loop perturbation theory. Alternatively fitting eq. (21), our data in 1 GeV $\lesssim Q \lesssim$ 5 GeV gives the result shown in Figure 3. It turns out that P_4 is consistent with zero. (Note that $r_0^2 \approx 6$/GeV2.) At present we are not able to quote a reliable number for P_2.

ACKNOWLEDGEMENTS

The numerical calculations were performed on the Quadrics parallel computer of DESY Zeuthen. We thank the operating stuff for support.

REFERENCES